forked from tylertreat/BoomFilters
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cuckoo.go
269 lines (235 loc) · 7.31 KB
/
cuckoo.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
package boom
import (
"bytes"
"encoding/binary"
"errors"
"hash"
"hash/fnv"
"math"
"math/rand"
)
// maxNumKicks is the maximum number of relocations to attempt when inserting
// an element before considering the filter full.
const maxNumKicks = 500
// bucket consists of a set of []byte entries.
type bucket [][]byte
// contains indicates if the given fingerprint is contained in one of the
// bucket's entries.
func (b bucket) contains(f []byte) bool {
return b.indexOf(f) != -1
}
// indexOf returns the entry index of the given fingerprint or -1 if it's not
// in the bucket.
func (b bucket) indexOf(f []byte) int {
for i, fingerprint := range b {
if bytes.Equal(f, fingerprint) {
return i
}
}
return -1
}
// getEmptyEntry returns the index of the next available entry in the bucket or
// an error if it's full.
func (b bucket) getEmptyEntry() (int, error) {
for i, fingerprint := range b {
if fingerprint == nil {
return i, nil
}
}
return -1, errors.New("full")
}
// CuckooFilter implements a Cuckoo Bloom filter as described by Andersen,
// Kaminsky, and Mitzenmacher in Cuckoo Filter: Practically Better Than Bloom:
//
// http://www.pdl.cmu.edu/PDL-FTP/FS/cuckoo-conext2014.pdf
//
// A Cuckoo Filter is a Bloom filter variation which provides support for
// removing elements without significantly degrading space and performance. It
// works by using a cuckoo hashing scheme for inserting items. Instead of
// storing the elements themselves, it stores their fingerprints which also
// allows for item removal without false negatives (if you don't attempt to
// remove an item not contained in the filter).
//
// For applications that store many items and target moderately low
// false-positive rates, cuckoo filters have lower space overhead than
// space-optimized Bloom filters.
type CuckooFilter struct {
buckets []bucket
hash hash.Hash32 // hash function (used for fingerprint and hash)
m uint // number of buckets
b uint // number of entries per bucket
f uint // length of fingerprints (in bytes)
count uint // number of items in the filter
n uint // filter capacity
}
// NewCuckooFilter creates a new Cuckoo Bloom filter optimized to store n items
// with a specified target false-positive rate.
func NewCuckooFilter(n uint, fpRate float64) *CuckooFilter {
var (
b = uint(4)
f = calculateF(b, fpRate)
m = power2(n / uint(f) * 8)
buckets = make([]bucket, m)
)
for i := uint(0); i < m; i++ {
buckets[i] = make(bucket, b)
}
return &CuckooFilter{
buckets: buckets,
hash: fnv.New32(),
m: m,
b: b,
f: uint(f),
n: n,
}
}
// Buckets returns the number of buckets.
func (c *CuckooFilter) Buckets() uint {
return c.m
}
// Capacity returns the number of items the filter can store.
func (c *CuckooFilter) Capacity() uint {
return c.n
}
// Count returns the number of items in the filter.
func (c *CuckooFilter) Count() uint {
return c.count
}
// Test will test for membership of the data and returns true if it is a
// member, false if not. This is a probabilistic test, meaning there is a
// non-zero probability of false positives.
func (c *CuckooFilter) Test(data []byte) bool {
i1, i2, f := c.components(data)
// If either bucket contains f, it's a member.
return c.buckets[i1%c.m].contains(f) || c.buckets[i2%c.m].contains(f)
}
// Add will add the data to the Cuckoo Filter. It returns an error if the
// filter is full. If the filter is full, an item is removed to make room for
// the new item. This introduces a possibility for false negatives. To avoid
// this, use Count and Capacity to check if the filter is full before adding an
// item.
func (c *CuckooFilter) Add(data []byte) error {
return c.add(c.components(data))
}
// TestAndAdd is equivalent to calling Test followed by Add. It returns true if
// the data is a member, false if not. An error is returned if the filter is
// full. If the filter is full, an item is removed to make room for the new
// item. This introduces a possibility for false negatives. To avoid this, use
// Count and Capacity to check if the filter is full before adding an item.
func (c *CuckooFilter) TestAndAdd(data []byte) (bool, error) {
i1, i2, f := c.components(data)
// If either bucket contains f, it's a member.
if c.buckets[i1%c.m].contains(f) || c.buckets[i2%c.m].contains(f) {
return true, nil
}
return false, c.add(i1, i2, f)
}
// TestAndRemove will test for membership of the data and remove it from the
// filter if it exists. Returns true if the data was a member, false if not.
func (c *CuckooFilter) TestAndRemove(data []byte) bool {
i1, i2, f := c.components(data)
// Try to remove from bucket[i1].
b1 := c.buckets[i1%c.m]
if idx := b1.indexOf(f); idx != -1 {
b1[idx] = nil
c.count--
return true
}
// Try to remove from bucket[i2].
b2 := c.buckets[i2%c.m]
if idx := b2.indexOf(f); idx != -1 {
b2[idx] = nil
c.count--
return true
}
return false
}
// Reset restores the Bloom filter to its original state. It returns the filter
// to allow for chaining.
func (c *CuckooFilter) Reset() *CuckooFilter {
buckets := make([]bucket, c.m)
for i := uint(0); i < c.m; i++ {
buckets[i] = make(bucket, c.b)
}
c.buckets = buckets
c.count = 0
return c
}
// add will insert the fingerprint into the filter returning an error if the
// filter is full.
func (c *CuckooFilter) add(i1, i2 uint, f []byte) error {
// Try to insert into bucket[i1].
b1 := c.buckets[i1%c.m]
if idx, err := b1.getEmptyEntry(); err == nil {
b1[idx] = f
c.count++
return nil
}
// Try to insert into bucket[i2].
b2 := c.buckets[i2%c.m]
if idx, err := b2.getEmptyEntry(); err == nil {
b2[idx] = f
c.count++
return nil
}
// Must relocate existing items.
i := i1
for n := 0; n < maxNumKicks; n++ {
bucketIdx := i % c.m
entryIdx := rand.Intn(int(c.b))
f, c.buckets[bucketIdx][entryIdx] = c.buckets[bucketIdx][entryIdx], f
i = i ^ uint(binary.BigEndian.Uint32(c.computeHash(f)))
b := c.buckets[i%c.m]
if idx, err := b.getEmptyEntry(); err == nil {
b[idx] = f
c.count++
return nil
}
}
return errors.New("full")
}
// components returns the two hash values used to index into the buckets and
// the fingerprint for the given element.
func (c *CuckooFilter) components(data []byte) (uint, uint, []byte) {
var (
hash = c.computeHash(data)
f = hash[0:c.f]
i1 = uint(binary.BigEndian.Uint32(hash))
i2 = i1 ^ uint(binary.BigEndian.Uint32(c.computeHash(f)))
)
return i1, i2, f
}
// computeHash returns a 32-bit hash value for the given data.
func (c *CuckooFilter) computeHash(data []byte) []byte {
c.hash.Write(data)
hash := c.hash.Sum(nil)
c.hash.Reset()
return hash
}
// SetHash sets the hashing function used in the filter.
// For the effect on false positive rates see: https://github.com/tylertreat/BoomFilters/pull/1
func (c *CuckooFilter) SetHash(h hash.Hash32) {
c.hash = h
}
// calculateF returns the optimal fingerprint length in bytes for the given
// bucket size and false-positive rate epsilon.
func calculateF(b uint, epsilon float64) uint {
f := uint(math.Ceil(math.Log(2 * float64(b) / epsilon)))
f = f / 8
if f <= 0 {
f = 1
}
return f
}
// power2 calculates the next power of two for the given value.
func power2(x uint) uint {
x--
x |= x >> 1
x |= x >> 2
x |= x >> 4
x |= x >> 8
x |= x >> 16
x |= x >> 32
x++
return x
}