-
Notifications
You must be signed in to change notification settings - Fork 0
Home
Ryan Tjoa edited this page Jul 30, 2021
·
1 revision
Welcome to the modular-documents wiki!
Right now, just using this to back up some documents...
JSON.parse("[{\"key\":0,\"data\":{\"align\":\"left\",\"text\":\"# Vector Fields\\n\\nLet’s start off with the formal definition of a vector field.\\n\\n### Definition\"},\"type\":\"text\",\"tempData\":null},{\"type\":\"latex\",\"data\":{\"inline\":true,\"text\":\"A vector field on two dimensional space is a function $\\\\vec{F}$ that assigns to each point $(x, y)$ a two-dimensional vector given by $\\\\vec{F}(x,y)$.\"},\"tempData\":null,\"key\":1},{\"type\":\"text\",\"data\":{\"align\":\"left\",\"text\":\"That may not make a lot of sense, but most people do know what a vector field is, or at least they’ve seen a sketch of a vector field. If you’ve seen a current sketch giving the direction and magnitude of a flow of a fluid or the direction and magnitude of the winds then you’ve seen a sketch of a vector field.\"},\"key\":2,\"tempData\":null},{\"type\":\"latex\",\"data\":{\"inline\":true,\"text\":\"The standard notation for the function $\\\\vec{F}$ is,\"},\"tempData\":null,\"key\":3},{\"type\":\"latex\",\"data\":{\"inline\":false,\"text\":\"$\\\\vec{F}(x, y) = P(x, y)\\\\vec{i} + Q(x, y)\\\\vec{j}$\"},\"key\":4,\"tempData\":null},{\"key\":5,\"tempData\":null,\"type\":\"latex\",\"data\":{\"inline\":true,\"text\":\"The functions $P$ and $Q$ are somtimes called $\\\\textbf{scalar functions}$.\"}},{\"tempData\":null,\"key\":6,\"type\":\"text\",\"data\":{\"text\":\"### Check your knowledge\",\"align\":\"left\"}},{\"data\":{\"question\":\"A two dimensional vector field is a function from...\",\"answer\":1,\"options\":[\"R¹ to R²\",\"R² to R²\",\"R² to R³\",\"R² to R³\"]},\"type\":\"multipleChoice\",\"tempData\":{\"choice\":null},\"key\":7},{\"data\":{\"text\":\"### Visualization\\n\\nWe can visualize vector fields by drawing the vector \\\"outputs\\\" at a sampling of points.\",\"align\":\"left\"},\"tempData\":null,\"key\":8,\"type\":\"text\"},{\"type\":\"image\",\"data\":{\"name\":\"xfnWYHP.png\",\"status\":\"complete\",\"src\":\"https://firebasestorage.googleapis.com/v0/b/modular-documents-2b3dd.appspot.com/o/xfnWYHP.png?alt=media&token=ec063fdc-db17-4261-b6eb-b4643dfec8ca\"},\"key\":9,\"tempData\":null},{\"key\":10,\"type\":\"text\",\"tempData\":null,\"data\":{\"align\":\"left\",\"text\":\"Adapted from [Paul's Online Math Notes](https://tutorial.math.lamar.edu/classes/calciii/VectorFields.aspx).\"}}]")
"[{\"tempData\":null,\"data\":{\"text\":\"## Welcome to Modular Documents!\",\"align\":\"center\"},\"key\":0,\"type\":\"text\",\"editing\":false},{\"data\":{\"align\":\"left\",\"text\":\"This document is made of modules of different types. For example, this paragraph is a text module. Different module types offer the ideal amount of flexibility for a wide range of content.\"},\"tempData\":null,\"key\":1,\"type\":\"text\",\"editing\":false},{\"key\":2,\"data\":{\"question\":\"What type of module is this?\",\"answer\":2,\"options\":[\"Text module\",\"Image module\",\"Multiple choice module\"]},\"type\":\"multipleChoice\",\"editing\":false,\"tempData\":{\"choice\":null}},{\"tempData\":null,\"editing\":false,\"data\":{\"text\":\"To get a version of this document that you can edit, sign in in the top right then click \\\"Make a copy.\\\"\"},\"type\":\"text\",\"key\":3},{\"tempData\":null,\"data\":{\"text\":\"Now, try double-clicking this module to edit it! Text modules also support [GitHub Flavored Markdown](https://github.github.com/gfm/).\\n\\n- You can **bold** text.\\n- *Italics* too!\\n\\n### Headers\\n#### of many\\n##### sizes!\"},\"type\":\"text\",\"editing\":false,\"key\":4},{\"tempData\":null,\"type\":\"latex\",\"editing\":false,\"data\":{\"inline\":false,\"text\":\"$\\\\LaTeX \\\\text{ modules are great for math!}$\"},\"key\":5},{\"data\":{\"text\":\"$x^2 + y^2 + z^2 = 1$\",\"inline\":false},\"type\":\"latex\",\"key\":6,\"tempData\":null,\"editing\":false},{\"tempData\":null,\"editing\":false,\"key\":7,\"data\":{\"text\":\"Or upload a **custom image**:\"},\"type\":\"text\"},{\"type\":\"image\",\"key\":8,\"tempData\":null,\"data\":{\"name\":\"logo.png\",\"src\":\"https://firebasestorage.googleapis.com/v0/b/modular-documents-2b3dd.appspot.com/o/logo.png?alt=media&token=9bd8ed25-4f8b-4e38-863f-de5da01cbadd\",\"status\":\"complete\"},\"editing\":false}]"