-
Notifications
You must be signed in to change notification settings - Fork 13
/
metric_gpr_image.py
420 lines (322 loc) · 13.8 KB
/
metric_gpr_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import sys
import os
from scipy import interpolate
import numpy as np
import matplotlib.pyplot as plt
import logging
from PIL import Image
from skimage.restoration import denoise_wavelet
from scipy import signal
from scipy.ndimage import gaussian_filter, gaussian_filter1d
from measurement_structures import GprMeasurements
from signal_processing_utils import *
class GprImage:
"""Constructs a GPR image from a linear trajectory segment."""
MAX_VALUE = None
MAX_TRACE_VALUE = None
ZERO_POSITION = None
def __init__(self, config, gpr_m, im_std, zero_position):
self.config = config
self.t_begin = gpr_m.times[0]
self.t_end = gpr_m.times[-1]
self.zero_position = zero_position
self.min_range = np.min(gpr_m.ranges)
self.max_range = np.max(gpr_m.ranges)
self.direction = gpr_m.directions
self.average_trace = None
self.im_std = None
self.max_value = None
self.time_to_range = interpolate.interp1d(
gpr_m.times, gpr_m.ranges, fill_value="extrapolate")
new_gpr = np.empty((gpr_m.measurements.shape[0],0))
new_ranges = list()
temp_measurement = gpr_m.measurements[:,0][:,None]
for i in range(1, gpr_m.ranges.size):
if not np.any(np.abs(np.array(new_ranges) - gpr_m.ranges[i]) < .03):
new_ranges.append(gpr_m.ranges[i])
temp_measurement = np.hstack((temp_measurement,
gpr_m.measurements[:,i][:,None]))
new_gpr = np.hstack((new_gpr,
np.average(temp_measurement, axis=-1)[:,None]))
temp_measurement = np.empty((gpr_m.measurements.shape[0],0))
else:
temp_measurement = np.hstack((temp_measurement,
gpr_m.measurements[:,i][:,None]))
num_rows = new_gpr.shape[0]
self.y_values = np.arange(num_rows).astype(float)
print(gpr_m.ranges.size, new_gpr.shape[1])
self.range_to_gpr_f = interpolate.interp2d(
new_ranges, self.y_values, new_gpr, kind="linear")
self.average_trace = np.average(new_gpr, axis=-1)
self.init = True
# self.zero_position = 0
self.max_term = 1
def __contains__(self, other):
if other >= self.t_begin and other <= self.t_end:
return True
def get_gpr_image_at_time(self,
config,
time,
total_range,
resolution,
gt_point='center',
v_flag=False):
"""Constructs image at the specified time.
params:
config: im_props yaml config formatted as an AttrDict.
time: Time of image acquisition. If set to -1, then is all data.
total_range: Size of image in meters.
resolution: Sampling resolution of image in meters/pixel.
gt_point: Location of timestamp in image.
v_flag: Turn on visualization for debugging or demonstration.
"""
# For time=-1, parse entire image at desired resolution.
center = 0
if time == -1:
start = self.time_to_range(self.t_begin)
end = self.time_to_range(self.t_end)
num = int(np.abs(self.max_range - self.min_range) / resolution)
# If -1 flag is not applied and time is not in range, return empty array.
elif time < self.t_begin or time > self.t_end:
raise ValueError(f"Invalid time {time} provided.")
else:
num = int(total_range / resolution)
if gt_point == 'left':
start = self.time_to_range(time)
end = start + self.direction*total_range
elif gt_point == 'center':
center = self.time_to_range(time)
start = center - 1*self.direction*total_range/2
end = center + self.direction*total_range/2
if (start < self.min_range or start > self.max_range or
end < self.min_range or end > self.max_range):
return np.array([])
sampling_points = np.linspace(start=start, stop=end, num=num)
im_unfiltered = self.range_to_gpr_f(sampling_points, self.y_values)
rows, cols = im_unfiltered.shape
im_filtered = np.zeros((rows, cols))
im_unfiltered = bgr(im_unfiltered, window=config.background_removal_window)
im_unfiltered = dewow(config.dewow_params, im_unfiltered)
if v_flag:
plt.figure()
plt.imshow(np.copy(im_unfiltered), cmap='gray')
plt.title('dewowed')
im_unfiltered = triangular(config.triangular_params, im_unfiltered)
if v_flag:
plt.figure()
plt.imshow(np.copy(im_unfiltered), cmap='gray')
plt.title('triangular')
if config.background_removal:
if config.background_removal_window == -1:
im_unfiltered = im_unfiltered - np.average(im_unfiltered, axis=-1)[:,None]
if v_flag:
plt.figure()
plt.imshow(np.copy(im_unfiltered), cmap='gray')
plt.title('bgr')
im_filtered[0:rows-self.zero_position,:] = im_unfiltered[self.zero_position:,:]
if v_flag:
plt.figure()
plt.imshow(im_filtered, cmap='gray')
plt.title('zero_time')
im_filtered = sec_gain(im_filtered,
a=config.sec_gain_params.a,
b=config.sec_gain_params.b,
threshold=config.sec_gain_params.thresh)
if v_flag:
plt.figure()
plt.imshow(np.copy(im_filtered), cmap='gray')
plt.title('gained')
im_filtered = denoise_wavelet(im_filtered, multichannel=False)
if v_flag:
plt.figure()
plt.imshow(np.copy(im_filtered), cmap='gray')
plt.title('wavelet')
if (config.gaussian_params.use and
config.gaussian_params.sigma > 0):
im_filtered = gaussian_filter1d(im_filtered,
sigma=config.gaussian_params.sigma,
order=config.gaussian_params.order,
axis=1)
if v_flag:
plt.figure()
plt.imshow(np.copy(im_filtered), cmap='gray')
plt.title('thresholded')
return im_filtered
class MetricGprImage:
"""Creates metric (range-based) image from GPR measurements.
Params:
config: im_props yaml config formatted as an AttrDict.
gpr_m: GPR measurements and estimated ranges.
imu_m: IMU measurements (accel, gyro, magnetometer).
gt_point: Location of timestamp in image.
v_flag: Turn on visualization for debugging or demonstration.
"""
def __init__(self, config, gpr_m, imu_m, gt_point='center', v_flag=True):
self.config = config
# TODO(abaikovitz): Add gyro value to segment based on rotation as well.
self.gpr_images = list()
self.gpr_im_height = gpr_m.measurements.shape[0]
self.t_begin = gpr_m.times[0]
self.t_end = gpr_m.times[-1]
self.gt_point = gt_point
# Filter the initial range signal to remove high frequency noise.
b, a = signal.butter(self.config.split.range.butter.order,
self.config.split.range.butter.wn,
btype='lowpass')
ranges = signal.filtfilt(b, a, gpr_m.ranges)
if imu_m.measurements.size > 0:
inertial_meas = bw_filter(imu_m.measurements[3,:],
imu_m.measurements[4,:],
imu_m.measurements[5,:],
imu_m.measurements[0,:],
imu_m.measurements[1,:],
imu_m.measurements[2,:])
self.accel_x, self.accel_y, self.accel_z, self.ang_x, self.ang_y, self.ang_z = inertial_meas
velocities = np.diff(ranges)
accelerations = np.diff(velocities)
range_maxima = signal.argrelextrema(ranges, np.greater)
range_minima = signal.argrelextrema(ranges, np.less)
final_elem = np.array([ranges.size-1])
all_range_peaks = np.sort(np.concatenate((range_maxima[0],
range_minima[0],
final_elem)))
range_peaks_arr = [0]
prev_peak = 0
for peak in all_range_peaks:
if prev_peak is not None and np.abs(ranges[peak]-ranges[prev_peak]) < 1:
continue
range_peaks_arr.append(peak)
prev_peak = peak
accel_peaks = signal.find_peaks(np.abs(accelerations),
height=self.config.split.range.accel)
if self.config.split.gyro.use and imu_m.measurements.size > 0:
ang_z_peaks = signal.find_peaks(np.abs(self.ang_z),
height=self.config.split.gyro.height,
distance=self.config.split.gyro.dist)
traj_segments = range_peaks_arr
if self.config.split.gyro.use and imu_m.measurements.size > 0:
for ang_z_peak in ang_z_peaks[0]:
peak_time = imu_m.times[ang_z_peak]
range_peak = np.argmin(np.abs(gpr_m.times - peak_time))
if np.any(np.abs(traj_segments - range_peak) > 20):
traj_segments = np.append(traj_segments, range_peak)
self.traj_segments = np.sort(traj_segments)
print(self.traj_segments)
if v_flag:
fig, [ax1, ax2, ax3] = plt.subplots(3,1)
# Plot ranges with filtered trajectory.
ax1.plot(gpr_m.ranges)
ax1.plot(ranges)
ax1.plot(self.traj_segments, ranges[self.traj_segments], '*')
ax1.set_ylabel("Range [m]")
ax1.legend(["Unfiltered", "Filtered", "Accepted Peaks"])
# Plot filtered velocity.
ax2.plot(velocities)
ax2.set_ylabel("Velocity [m/s]")
# Plot filtered acceleration.
ax3.plot(accelerations)
ax3.plot(accel_peaks[0], accelerations[accel_peaks[0]], '*')
ax3.set_ylabel("Acceleration [m/s^2]")
ax3.set_xlabel("Range Measurement Index")
ax3.legend(["Acceleration", "Accepted Peaks"])
fig.suptitle("Range, Velocity, Acceleration from Wheel Encoder")
if v_flag and self.config.split.gyro.use and imu_m.measurements.size > 0:
plt.figure()
plt.plot(imu_m.measurements[2,:])
plt.plot(self.ang_z)
plt.plot(ang_z_peaks[0], self.ang_z[ang_z_peaks[0]], '*')
plt.xlabel("Gyroscope Measurement Index")
plt.ylabel("Gyroscope Value [rad/s]")
plt.title("Gyroscope Measurements")
plt.legend(["Unfiltered", "Filtered"])
plt.figure()
plt.plot(imu_m.measurements[3,:])
plt.plot(self.accel_x)
plt.xlabel("Accelerometer Measurement Index")
plt.ylabel("Acceleration [m/s]")
plt.title("Accelerometer X Measurements")
plt.legend(["Unfiltered", "Filtered"])
gained=sec_gain(gpr_m.measurements,
a=config.sec_gain_params.a,
b=config.sec_gain_params.b,
threshold=config.sec_gain_params.thresh)
if config.gaussian_params.use:
im_std = np.std(gaussian_filter1d(gained,
config.gaussian_params.sigma,
order=config.gaussian_params.order))
else:
im_std = np.std(gained)
for i in range(self.traj_segments.size-1):
i1 = self.traj_segments[i]
i2 = self.traj_segments[i+1]
gpr_seg = GprMeasurements(gpr_m.measurements.shape[0])
gpr_seg.measurements = gpr_m.measurements[:,i1:i2]
gpr_seg.times = gpr_m.times[i1:i2]
gpr_seg.ranges = gpr_m.ranges[i1:i2]
gpr_seg.directions = np.sign(np.average(velocities[i1:i2]))
if gpr_seg.times.size == 0:
print("Invalid time segment.")
continue
self.gpr_images.append(GprImage(config,
gpr_seg,
im_std,
zero_position=np.average(
gpr_m.measurements, axis=-1).argmin()))
large_im = self.get_gpr_image(config, -1, -1, self.config.resolution)
self.maxI = config.std_max * np.std(large_im)
self.minI = -1*self.maxI
def get_gpr_image(self, config, time, total_range, resolution):
# If time is -1, then provide the entire image.
if time == -1:
total_im = np.empty((self.gpr_im_height, 0))
for gi in self.gpr_images:
im = gi.get_gpr_image_at_time(config,
time,
total_range,
resolution,
gt_point=self.gt_point)
if im.size != 0:
total_im = np.hstack((total_im, im))
return total_im
if time < self.t_begin or time > self.t_end:
print(f"Invalid time {time} provided.\t"
f"Not within range: [{self.t_begin}, {self.t_end}].")
np.array([])
# Otherwise, search for time in the images.
for i, gi in enumerate(self.gpr_images):
if time in gi:
im = gi.get_gpr_image_at_time(config,
time,
total_range,
resolution,
gt_point=self.gt_point)
return im
# If the time is not in the test space, then return nothing.
return np.array([])
def get_odom_and_dir(self, time):
for gi in self.gpr_images:
if time in gi:
rng = gi.time_to_range(time)
direction = gi.direction
return rng, direction
print("Invalid time provided to get_odom_and_dir.")
return np.array([])
def create_gpr_image(self, im_filtered, path, file_name, v_flag=False):
if not os.path.isdir(path):
os.mkdir(path)
img_filename = file_name + ".png"
img_path = os.path.join(path, img_filename)
if len(file_name) > 0:
plt.imsave(img_path,
im_filtered,
cmap='gray',
format='png',
vmin=self.minI,
vmax=self.maxI)
if v_flag:
plt.figure()
plt.imshow(im_filtered,
cmap='gray',
vmin=self.minI,
vmax=self.maxI
)