-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.m
458 lines (398 loc) · 16.6 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
function [data] = main(seed)
%--------------------------------------------------------------------------
% MAIN FUNCTION
% Simplified ADCS Simulator for Delfi-PQ (Detumbling mode)
% Author: Robert Fonod (c)
% Version: 0.8
% Last Modified: 12 October 2018
% Note: muT == micro Tesla
%--------------------------------------------------------------------------
if nargin == 0
tic, clc
MC_on = 0; % Monte Carlo {1 - yes, 0 - no}
seed = 1; % noise seed assignment
else
MC_on = 1;
end
%% Some Useful Constants and Global Parameters
global I Iinv rho areas
rng(seed,'v5normal') % seed for randn
rng(seed,'v5uniform') % seed for rand
rng(seed,'twister'); % seed for randi
d2r = pi/180; % deg to rad conversion
r2d = 1/d2r; % rad to deg conversion
%% Simulation Related Parameters
N_orb = 10; % number of orbits (1h day ~ 16 orb) per simulation [-]
q0 = [1 0 0 0]'; % initial attitude (BODY wrt ECI) quaternion [q_v,q_s] [-]
w0 = 30*[1;1;1]*d2r; % initial angular velocity (BODY wrt ECI) [rad/s]
no_C = 0; % duration of no-control after release [s] /1800 = 30 min/
AirDens = 'low'; % air density {low, medium, high}
att_solv = 'RK4'; % attitude propagation solver {'RK4','ODE45'}
%att_solv = 'ODE45'; % attitude propagation solver {'RK4','ODE45'}
savePlots = 0; % save plots {1 - yes, 0 - no}
saveExcel = 0; % save data to excel file for implementation testing
%% Delfi-PQ Related Parameters
% A - Magnetorques (MTQs)
m_rise = .01; % magnetorquers rise/fall time [s]
m_x_max = .002; % max magnetic dipole moment along x-axis [A.m^2]
m_y_max = .002; % max magnetic dipole moment along y-axis [A.m^2]
m_z_max = .002; % max magnetic dipole moment along z-axis [A.m^2]
if MC_on % adding 15% uncertainty truncated at 3sigma
m_all_unc = truncatedGaussian(m_x_max/15,3*m_x_max/15,3);
m_x_max = m_x_max + m_all_unc(1);
m_y_max = m_y_max + m_all_unc(2);
m_z_max = m_z_max + m_all_unc(3);
end
m_max = [m_x_max m_y_max m_z_max]';
m_res_mag = .0001; % res. mag. dipole moment magnitude [A.m^2]
if MC_on % res. mag. dipole moment direction (unit vector) [-]
az = 2*pi*rand; el = 2*pi*rand;
m_res_dir = [sin(az)*cos(el); sin(az)*sin(el); cos(az)];
m_res_dir = m_res_dir/norm(m_res_dir);
m_res_mag = m_res_mag + truncatedGaussian(m_res_mag/10,3*m_res_mag/10);
else
m_res_dir = [-0.6045; -0.4251; -0.6737]; % arbitrary direction - sample run
end
m_res = m_res_mag*m_res_dir; % res. mag. dipole moment vector [A.m^2]
m_x_pol = 1; % magnetorquer polarity in x-axis [-]
m_y_pol = 1; % magnetorquer polarity in y-axis [-]
m_z_pol = 1; % magnetorquer polarity in z-axis [-]
m_pol = [m_x_pol m_y_pol m_z_pol]';
% B - Magnetometers (MTMs)
mag1_rms = .5; % MTM 1 noise (rms) [muT]
mag2_rms = .5; % MTM 2 noise (rms) [muT]
mag1_res = .3; % MTM 1 resolution [muT/LSb] (BMX055=.3, MAG3110=.1)
mag2_res = .3; % MTM 2 resolution [muT/LSb] (BMX055=.3, MAG3110=.1)
mag1_S2B = [1 0 0;0 1 0;0 0 -1]; % MTM 1 frame to B frame rotation
mag2_S2B = [1 0 0;0 1 0;0 0 -1]; % MTM 2 frame to B frame rotation
mag1_bias_mag = .4; % MTM 1 bias magnitude [muT]
mag2_bias_mag = .4; % MTM 2 bias magnitude [muT]
if MC_on % MTM 1/2 bias directions (unit vectors) [-]
az1 = 2*pi*rand; el1 = 2*pi*rand;
az2 = 2*pi*rand; el2 = 2*pi*rand;
mag1_bias_dir = [sin(az1)*cos(el1); sin(az1)*sin(el1); cos(az1)];
mag2_bias_dir = [sin(az2)*cos(el2); sin(az2)*sin(el2); cos(az2)];
mag1_bias_dir = mag1_bias_dir/norm(mag1_bias_dir);
mag2_bias_dir = mag2_bias_dir/norm(mag2_bias_dir);
else
mag1_bias_dir = [-0.9416; -0.2857; -0.1781]; % arbitrary dir. for sample run
mag2_bias_dir = [-0.2574; 0.0577; 0.9646]; % arbitrary dir. for sample run
end
mag1_bias = mag1_bias_mag*mag1_bias_dir; % MTM 1 bias vector [muT]
mag2_bias = mag2_bias_mag*mag2_bias_dir; % MTM 2 bias vector [muT]
w1 = .5; % weight factor of MTM 1
w2 = .5; % weight factor of MTM 2
% C - Mass & Dimension
mass = .6; % nominal mass [kg]
mass_uncer = .1; % +/- uncertainty on mass (for MC) [kg]
if MC_on
mass = mass + truncatedGaussian(mass_uncer,3*mass_uncer);
end
d_x = .05; % main body x-axis length [m]
d_y = .05; % main body y-axis length [m]
d_z = .178; % main body z-axis length [m]
d_x_p = .0640; % plate x-axis length [m]
d_y_p = .0016; % plate y-axis length [m]
d_z_p = .1920; % plate z-axis length [m]
area_x = (d_y+d_y_p)*d_z+(d_z_p-d_z)*d_y_p; % cross-sectional area x face [m^2]
area_y = d_x_p*d_z_p; % cross-sectional area y face [m^2]
area_z = d_x*d_y+(d_x_p-d_x)*d_y_p; % cross-sectional area z face [m^2]
areas = [area_x area_y area_z area_x area_y area_z]; %(x,y,z,-x,-y,-z)
plate_pos = [0;d_y+d_y_p;0]/2; % plate position from main body centre [m]
mbody_vol = d_x*d_y*d_z; % main body volume [m^3]
plate_vol = d_x_p*d_y_p*d_z_p; % plate volume [m^3]
density = mass/(mbody_vol + plate_vol); % satellite density [kg/m^3]
mbody_mass = density*mbody_vol; % main body mass [kg]
plate_mass = density*plate_vol; % plate body mass [kg]
% D - CoM & Inertia
CoM = plate_mass*plate_pos/mass;
% Mass moment of inertia (with the plate) along x,y,z-axis [kg.m^2]
I_x = mbody_mass*(d_z^2 + d_y^2)/12 + plate_mass*(d_z_p^2 + d_y_p^2)/12 + ...
mbody_mass*CoM(2)^2 + plate_mass*(plate_pos(2)-CoM(2))^2;
I_y = mbody_mass*(d_z^2 + d_x^2)/12 + plate_mass*(d_z_p^2 + d_x_p^2)/12;
I_z = mbody_mass*(d_y^2 + d_x^2)/12 + plate_mass*(d_y_p^2 + d_x_p^2)/12 + ...
mbody_mass*CoM(2)^2 + plate_mass*(plate_pos(2)-CoM(2))^2;
% Mass moment of inertia (without the plate) along x,y,z-axis [kg.m^2]
% I_x = mass*(d_z^2 + d_y^2)/12; % mass moment of inertia along x-axis [kg.m^2]
% I_y = mass*(d_z^2 + d_x^2)/12; % mass moment of inertia along y-axis [kg.m^2]
% I_z = mass*(d_y^2 + d_x^2)/12; % mass moment of inertia along z-axis [kg.m^2]
I_nom = [I_x,I_y,I_z];
if MC_on % adding 5% additional uncertainty (16.67% due to mass uncertainty)
I_x = I_x + truncatedGaussian(I_x/20,3*I_x/20);
I_y = I_y + truncatedGaussian(I_y/20,3*I_y/20);
I_z = I_z + truncatedGaussian(I_z/20,3*I_z/20);
end
I = diag([I_x,I_y,I_z]); % inertia matrix [kg.m^2]
Iinv = inv(I); % inertia matrix inverse [kg^-1.m^-2]
%% Orbit Related Parameters
alt = 350e3; % altitude (LEO) [m]
re = 6378.137e3; % Earth (equatorial) radius [m]
a = re + alt; % semi-major axis (assuming circular orbit) [m]
ecc = 0; % eccentricity [-]
inc = 96.84895*d2r; % orbital inclination [rad]
omega = 0; % argument of perigee (periapsis) [rad]
OMEGA = 210*d2r; % RAAN [rad]
M0 = 60*d2r; % mean anomaly at epoch (t0) [rad]
M = 5.97218e24; % mass of the Earth [kg]
G = 6.67408e-11; % gravitational constant [m^3/(kg.s^2)]
mu = 3.9860044181e14; % Earth's standard gravitational parameter [m^3/s^2]
n = sqrt(mu/a^3); % mean motion [rad/s]
T_orb = 2*pi/n; % orbital period [s]
I2E0 = 0; % initial rotation of the ECEF wrt ECI frame [rad]
we = 7.292115e-5; % Earth's rotational rate (GWS84) [rad/s]
Ldate = decyear(2018,3,31); % date for IGRF 12
T_srd = 24*60^2*365.24/366.24; % sidereal day [s]
C_I2Ev = [0 1 0;-1 0 0;0 0 0]; % for conversion of v_I to v_E
% Air density [kg/m^3], see Ref. [http://www.braeunig.us/space/atmos.htm]
switch AirDens
case 'low'
rho = 0.5*(2.50 + 1.510)*1e-12; % lows solar activity [kg/m^3]
case 'medium'
rho = 0.5*(1.16 + 0.799)*1e-11; % medium solar activity [kg/m^3]
case 'high'
rho = 0.5*(1.03 + 0.805)*1e-10; % extremely high solar activity [kg/m^3]
end
%% Detuble Algorithm Related Parameters
f_c = 4; % control/sensing loop frequency [Hz]
T_c = 1/f_c; % control/sensing loop sampling rate [s]
delta = .6; % MTQs duty cycle [fraction of T_c]
w_des = 5*d2r; % desired detumbling (stopping) rate for all axes [rad/s]
alpha = 1/200; % filter costant (detumbling parameter) [-]
p_tmb = 2*[1;1;1]; % initial tumbling parameter [muT/s]
p_bar_l = .075; % lower tumble parameter threshold [muT/s]
p_bar_u = .085; % upper tumble parameter threshold [muT/s]
C_det = 0; % detumbled counter [-]
C_tum = 0; % tumbling counter [-]
t_bar_det = 1*60*60; % confirmation time for detumbled state [s]
t_bar_tum = 1*2*60; % confirmation time for tumbling state [s]
g_m = 11.44*d2r; % Earth geom. field tild angle wrt the polar axis [rad]
xi_m = acos(cos(inc)*cos(g_m)+sin(inc)*sin(g_m)); % Ref. [Avanzi & Giulietti]
k_w_T = 2*n*(1+sin(xi_m))*min(I_nom); % B-dot gain [A.m^2.s/T]
k_w = k_w_T*1e6; % B-dot gain [A.m^2.s/muT]
%% Load Orbital Data (R_I V_I R_E V_E B_E) if Existent
if ~exist('Existing_Orbits','dir')
mkdir('Existing_Orbits')
end
addpath('Existing_Orbits')
for i=0:31
orbit_str = sprintf('Orbit_%d_%d_%d.mat',alt/1e3,f_c,N_orb+i);
if exist(orbit_str,'file')
load(orbit_str,'B_E','R_E','R_I','V_I')
orbit_exists = 1; break;
end
end
if ~exist('orbit_exists','var')
orbit_exists = 0;
orbit_str = sprintf('Orbit_%d_%d_%d.mat',alt/1e3,f_c,N_orb);
disp('Orbit not yet simulated. Simulation On!')
end
%% Simulation Initialization
ADCS_on = 0; % initial ADCS mode {1 - actuating, 0 - sensing}
q = q0; % initial quaternion [-]
w = w0; % initial angular rate [rad/s]
t_on_cnt = [0;0;0]; % sum of the opening times (per axis) [s]
t0 = 0; % initial time [s]
t_tot = ceil(N_orb*T_orb); % total simulation time [s]
t = t0:T_c:t0+t_tot; % time vector [s]
t_len = length(t); % total number of sample/time points [-]
k_orb = 0; % number of orbits passed [-]
[t_det_w,t_det_p] = deal(nan); % stopping times (real and estimated) [s]
[t_on_sum_w,t_on_sum_p] = deal(nan(3,1)); % sum of t_on times - whole period [s]
t_on_orb = nan(3,N_orb); % sum of t_on times - per orbit basis [s]
%% Vector Pre-allocation
if ~MC_on
if ~orbit_exists
[R_I,V_I,R_E,V_E,B_E] = deal(zeros(3,t_len));
end
if saveExcel
[B_B_meas1,B_B_meas2] = deal(zeros(3,t_len));
[C_tum_vec,C_det_vec] = deal(nan(t_len,1));
end
[W,B_dot,B_B,B_B_meas,M_del,T_on,S_on,P_tmb] = deal(zeros(3,t_len));
Q = zeros(4,t_len);
end
%% Start Simulation
for k = 1:t_len
%---------------------------------------------------------------------------
% Environment Simulation
%---------------------------------------------------------------------------
% Attitude Propagation
if k>1
tspan = [t(k-1),t(k)];
inp.m_del = m_del;
inp.m_res = m_res;
inp.b_I = b_I;
inp.v_I = v_I;
r_I_norm = r_I/norm(r_I);
inp.T_gg = 3*mu*cross(r_I_norm,I*r_I_norm)/(norm(r_I)^3);
[q, w] = propag_att(tspan,[q; w],inp,att_solv);
end
% Rotation matrix from ECI to ECEF
phi = mod(I2E0+2*pi*t(k)/T_srd,2*pi);
C_I2E = rot_mat(phi,3);
% Rotation matrix from ECI to BODY
C_I2B = q2dcm(q);
if orbit_exists
b_E = B_E(:,k);
r_I = R_I(:,k);
v_I = V_I(:,k);
else
% Satellite position and velocity in ECI
trueAnom = M0 + t(k)*n;
[r_I,v_I] = kepler2cart(a,ecc,inc,OMEGA,omega,trueAnom,mu);
% Satellite position and velocity in ECEF
r_E = C_I2E*r_I;
v_E = C_I2E*(v_I+we*C_I2Ev*r_I);
% Satellite position in Geodetic coordinates
LLA = ecef2lla(r_E');
latDeg = LLA(1); lonDeg = LLA(2); altGeo = LLA(3);
% Earth's geomegnetic field in NED (two implementations are equivalent)
b_NED = igrfmagm(altGeo,latDeg,lonDeg,Ldate,12)'*1e-3; % [muT]
%b_NED = wrldmagm(altGeo,latDeg,lonDeg,Ldate,'2015')*1e-3; % [muT]
% Earth's geomagnetic field NED to ECEF conversion
[b_Ex,b_Ey,b_Ez] = ned2ecefv(b_NED(1),b_NED(2),b_NED(3),latDeg,lonDeg);
b_E = [b_Ex;b_Ey;b_Ez];
end
% Magnetic field in ECI and BODY
b_I = C_I2E'*b_E;
b_B = C_I2B*b_I;
%---------------------------------------------------------------------------
% ADCS
%---------------------------------------------------------------------------
% Sensing (frame transf. + noise + bias + sensor resolution error) [muT]
b_S_raw1 = round((mag1_S2B'*(b_B + mag1_rms*randn(3,1) + mag1_bias))/mag1_res)*mag1_res;
b_S_raw2 = round((mag2_S2B'*(b_B + mag2_rms*randn(3,1) + mag2_bias))/mag2_res)*mag2_res;
b_B_meas1 = mag1_S2B*b_S_raw1;
b_B_meas2 = mag2_S2B*b_S_raw2;
b_B_meas = w1*b_B_meas1 + w2*b_B_meas2; % weighted average (un-normalized)
b_B_meas_norm = b_B_meas/norm(b_B_meas); % weighted average (normalized)
if exist('b_B_meas_prev_norm','var')
b_dot = (b_B_meas - b_B_meas_prev)/T_c; % not used
b_dot_norm = (b_B_meas_norm - b_B_meas_prev_norm)/T_c; % for B-dot
% Tumble parameter update
p_tmb = alpha*abs(b_dot_norm) + (1-alpha)*p_tmb;
else
b_dot = zeros(3,1);
b_dot_norm = zeros(3,1);
end
b_B_meas_prev = b_B_meas;
b_B_meas_prev_norm = b_B_meas_norm;
% Counter update for the "detumbled" state
if all(p_tmb<=p_bar_l)
if C_det < 65535 % for a 16 bit (unsigned) inteeger only
C_det = C_det + 1;
end
else
C_det = 0;
end
% Counter update for the "tumbling" state
if any(p_tmb>=p_bar_u)
if C_tum < 65535 % for a 16 bit (unsigned) inteeger only
C_tum = C_tum + 1;
end
else
C_tum = 0;
end
% Check detumbling stoping criteria - true
if all(abs(w)<=w_des) && isnan(t_det_w)
t_det_w = t(k);
t_on_sum_w = t_on_cnt;
end
% Check "detumbled" state stoping criteria - estimate
if C_det*T_c >= t_bar_det
if isnan(t_det_p)
t_det_p = t(k);
t_on_sum_p = t_on_cnt;
end
ADCS_on = 0;
end
% Check "tumbling" state start criteria - estimate
if C_tum*T_c >= t_bar_tum
ADCS_on = 1;
end
% Commands computation
if (t(k) > no_C) && ADCS_on
m_des = -k_w*b_dot_norm/norm(b_B_meas);
t_on = delta*T_c*min(1,abs(m_des)./m_max);
s_on = m_pol.*sign(m_des);
m_del = s_on.*(t_on-m_rise).*m_max/T_c;
else
[t_on, s_on, m_del] = deal(zeros(3,1));
end
t_on_cnt = t_on_cnt + t_on;
if MC_on && ~isnan(t_det_w) && ~isnan(t_det_p)
break
end
%---------------------------------------------------------------------------
% House Keeping
%---------------------------------------------------------------------------
if ~MC_on
if ~orbit_exists
R_I(:,k) = r_I;
V_I(:,k) = v_I;
R_E(:,k) = r_E;
V_E(:,k) = v_E;
B_E(:,k) = b_E;
end
if saveExcel
B_S_raw1(:,k) = b_S_raw1;
B_S_raw2(:,k) = b_S_raw2;
C_det_vec(k) = C_det;
C_tum_vec(k) = C_tum;
end
Q(:,k) = q;
W(:,k) = w;
B_B(:,k) = b_B;
B_B_meas(:,k) = b_B_meas;
B_dot(:,k) = b_dot;
M_del(:,k) = m_del;
T_on(:,k) = t_on;
S_on(:,k) = s_on;
P_tmb(:,k) = p_tmb;
end
%---------------------------------------------------------------------------
% Orbit Count Display
%---------------------------------------------------------------------------
if t(k)>=(k_orb+1)*T_orb
k_orb = k_orb + 1;
if k_orb == 1
t_on_orb(:,k_orb) = t_on_cnt(:);
else
t_on_orb(:,k_orb) = t_on_cnt(:) - sum(t_on_orb(:,1:k_orb-1),2);
end
if ~MC_on, fprintf('Orbit %d/%d passed\n',k_orb,N_orb); end
end
end
%% Save Orbital Data (R_I V_I R_E V_E B_E) if Non-existent
if ~orbit_exists && ~MC_on
cd('Existing_Orbits')
save(orbit_str,'R_I','V_I','R_E','V_E','B_E')
cd('..')
end
%% Plot Results
if saveExcel
T = table(B_S_raw1',B_S_raw2',T_on',S_on',P_tmb',C_tum_vec,C_det_vec);
filename = 'data4test_03_in.csv';
writetable(T,filename,'Delimiter',',')
end
if MC_on
data(1,1) = t_det_w;
data(2,1) = t_det_p;
data(3,1) = mass;
data(4:6,1) = diag(I);
data(7:9,1) = m_max;
data(10:12,1) = m_res;
data(13:15,1) = p_tmb;
data(16:18,1) = w0;
data(19:21,1) = t_on_sum_w;
data(22:24,1) = t_on_sum_p;
data(25:25+N_orb-1,1) = t_on_orb;
else
toc
all_var = who;
for i=1:size(all_var,1)
putvar(all_var{i})
end
plots
end
end