This repository has been archived by the owner on Apr 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
motivation.Rmd
104 lines (85 loc) · 1.98 KB
/
motivation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
layout: slides
title: R for reproducible scientific analysis
subtitle: Why Use R?
---
```{r, include=FALSE}
library(ggplot2)
theme_set(theme_bw())
source("tools/chunk-options.R")
library(dplyr)
gapminder <- tbl_df(read.csv("data/gapminder-FiveYearData.csv"))
```
## Why R?
* Powerful statistical analysis
* and powerful visualisation
* integrated elegantly
## What We'll Accomplish
* Get to know R and RStudio
* Analyze a meaningful data set
* Extract insights and deliver them visually
* Leave ready to learn more R independently
## R loves ingesting data
```
gapminder <- read.csv(
"data/gapminder-FiveYearData.csv",
header=TRUE,
sep=',')
```
## Data w/ column names
head(gapminder, 1) # Show me the first row
country year pop continent lifeExp gdpPercap
1 Afghanistan 1952 8425333 Asia 28.801 779.4453
## Quickly graph ...
```
ggplot(
data=gapminder,
aes(x=lifeExp, y=gdpPercap)
) + geom_point()
```
## ... to see what we have
![First plot](img/first_plot.png)
## Let's graph more factors
```
ggplot(
data=gapminder,
aes(x=year, y=lifeExp, by=country, colour=continent)
) + geom_line()
+ geom_point()
```
## Pretty!
![Countries and colors](img/countries_and_colors.png)
## dyplr gives us ...
```{r}
library(dplyr)
cors <- gapminder %>%
group_by(year) %>%
summarise(
gdpPercap.lifeExp = cor(gdpPercap, lifeExp),
gdpPercap.pop = cor(gdpPercap, pop),
pop.lifeExp = cor(pop, lifeExp))
```
## ... pairwise correlations
```
head(cors, 1)
Source: local data frame [1 x 4]
year gdpPercap.lifeExp gdpPercap.pop pop.lifeExp
1 1952 0.2780236 -0.02526041 -0.002724782
```
## Restructuring the table ...
```{r}
library(tidyr)
tidy.cors <- cors %>% gather(
variables, correlation,
gdpPercap.lifeExp, gdpPercap.pop,
pop.lifeExp)
```
## ... a subtle art ...
```
head(tidy.cors, 1)
Source: local data frame [1 x 3]
year variables correlation
1 1952 gdpPercap.lifeExp 0.2780236
```
## ... produces great results
![GDP and Life](img/gdp_and_life.png)