-
Notifications
You must be signed in to change notification settings - Fork 6
/
cint_array.c
1232 lines (1009 loc) · 28.2 KB
/
cint_array.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* cint_array.c - routines for arrays of (mostly) consecutive positive integer indices.
*/
/*
* Copyright (C) 1986, 1988, 1989, 1991-2013, 2016, 2017,
* the Free Software Foundation, Inc.
*
* This file is part of GAWK, the GNU implementation of the
* AWK Programming Language.
*
* GAWK is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GAWK is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "awk.h"
#define INT32_BIT 32
extern FILE *output_fp;
extern void indent(int indent_level);
extern NODE **is_integer(NODE *symbol, NODE *subs);
/*
* NHAT --- maximum size of a leaf array (2^NHAT).
* THRESHOLD --- Maximum capacity waste; THRESHOLD >= 2^(NHAT + 1).
*/
static int NHAT = 10;
static long THRESHOLD;
/*
* What is the optimium NHAT ? timing results suggest that 10 is a good choice,
* although differences aren't that significant for > 10.
*/
static NODE **cint_array_init(NODE *symbol, NODE *subs);
static NODE **is_uinteger(NODE *symbol, NODE *subs);
static NODE **cint_lookup(NODE *symbol, NODE *subs);
static NODE **cint_exists(NODE *symbol, NODE *subs);
static NODE **cint_clear(NODE *symbol, NODE *subs);
static NODE **cint_remove(NODE *symbol, NODE *subs);
static NODE **cint_list(NODE *symbol, NODE *t);
static NODE **cint_copy(NODE *symbol, NODE *newsymb);
static NODE **cint_dump(NODE *symbol, NODE *ndump);
#ifdef ARRAYDEBUG
static void cint_print(NODE *symbol);
#endif
afunc_t cint_array_func[] = {
cint_array_init,
is_uinteger,
null_length,
cint_lookup,
cint_exists,
cint_clear,
cint_remove,
cint_list,
cint_copy,
cint_dump,
(afunc_t) 0,
};
static inline int cint_hash(long k);
static inline NODE **cint_find(NODE *symbol, long k, int h1);
static inline NODE *make_node(NODETYPE type);
static NODE **tree_lookup(NODE *symbol, NODE *tree, long k, int m, long base);
static NODE **tree_exists(NODE *tree, long k);
static void tree_clear(NODE *tree);
static int tree_remove(NODE *symbol, NODE *tree, long k);
static void tree_copy(NODE *newsymb, NODE *tree, NODE *newtree);
static long tree_list(NODE *tree, NODE **list, assoc_kind_t assoc_kind);
static inline NODE **tree_find(NODE *tree, long k, int i);
static void tree_info(NODE *tree, NODE *ndump, const char *aname);
static size_t tree_kilobytes(NODE *tree);
#ifdef ARRAYDEBUG
static void tree_print(NODE *tree, size_t bi, int indent_level);
#endif
static inline NODE **leaf_lookup(NODE *symbol, NODE *array, long k, long size, long base);
static inline NODE **leaf_exists(NODE *array, long k);
static void leaf_clear(NODE *array);
static int leaf_remove(NODE *symbol, NODE *array, long k);
static void leaf_copy(NODE *newsymb, NODE *array, NODE *newarray);
static long leaf_list(NODE *array, NODE **list, assoc_kind_t assoc_kind);
static void leaf_info(NODE *array, NODE *ndump, const char *aname);
#ifdef ARRAYDEBUG
static void leaf_print(NODE *array, size_t bi, int indent_level);
#endif
/* powers of 2 table upto 2^30 */
static const long power_two_table[] = {
1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536, 131072, 262144,
524288, 1048576, 2097152, 4194304, 8388608, 16777216,
33554432, 67108864, 134217728, 268435456, 536870912, 1073741824
};
#define ISUINT(a, s) ((((s)->flags & NUMINT) != 0 || is_integer(a, s) != NULL) \
&& (s)->numbr >= 0)
/*
* To store 2^n integers, allocate top-level array of size n, elements
* of which are 1-Dimensional (leaf-array) of geometrically increasing
* size (power of 2).
*
* [0] --> [ 0 ]
* [1] --> [ 1 ]
* |2| --> [ 2 | 3 ]
* |3| --> [ 4 | 5 | 6 | 7 ]
* |.|
* |k| --> [ 2^(k - 1)| ... | 2^k - 1 ]
* ...
*
* For a given integer n (> 0), the leaf-array is at 1 + floor(log2(n)).
*
* The idea for the geometrically increasing array sizes is from:
* Fast Functional Lists, Hash-Lists, Deques and Variable Length Arrays.
* Bagwell, Phil (2002).
* http://infoscience.epfl.ch/record/64410/files/techlists.pdf
*
* Disadvantage:
* Worst case memory waste > 99% and will happen when each of the
* leaf arrays contains only a single element. Even with consecutive
* integers, memory waste can be as high as 50%.
*
* Solution: Hashed Array Trees (HATs).
*
*/
/* cint_array_init --- array initialization routine */
static NODE **
cint_array_init(NODE *symbol ATTRIBUTE_UNUSED, NODE *subs ATTRIBUTE_UNUSED)
{
if (symbol == NULL) {
long newval;
size_t nelems = (sizeof(power_two_table) / sizeof(power_two_table[0]));
/* check relevant environment variables */
if ((newval = getenv_long("NHAT")) > 1 && newval < INT32_BIT)
NHAT = newval;
/* don't allow overflow off the end of the table */
if (NHAT >= nelems)
NHAT = nelems - 2;
THRESHOLD = power_two_table[NHAT + 1];
} else
null_array(symbol);
return & success_node;
}
/* is_uinteger --- test if the subscript is an integer >= 0 */
NODE **
is_uinteger(NODE *symbol, NODE *subs)
{
if (is_integer(symbol, subs) != NULL && subs->numbr >= 0)
return & success_node;
return NULL;
}
/* cint_lookup --- Find the subscript in the array; Install it if it isn't there. */
static NODE **
cint_lookup(NODE *symbol, NODE *subs)
{
NODE **lhs;
long k;
int h1 = -1, m, li;
NODE *tn, *xn;
long cint_size, capacity;
k = -1;
if (ISUINT(symbol, subs)) {
k = subs->numbr; /* k >= 0 */
h1 = cint_hash(k); /* h1 >= NHAT */
if ((lhs = cint_find(symbol, k, h1)) != NULL)
return lhs;
}
xn = symbol->xarray;
if (xn != NULL && (lhs = xn->aexists(xn, subs)) != NULL)
return lhs;
/* It's not there, install it */
if (k < 0)
goto xinstall;
m = h1 - 1; /* m >= (NHAT- 1) */
/* Estimate capacity upper bound.
* capacity upper bound = current capacity + leaf array size.
*/
li = m > NHAT ? m : NHAT;
while (li >= NHAT) {
/* leaf-array of a HAT */
li = (li + 1) / 2;
}
capacity = symbol->array_capacity + power_two_table[li];
cint_size = (xn == NULL) ? symbol->table_size
: (symbol->table_size - xn->table_size);
assert(cint_size >= 0);
if ((capacity - cint_size) > THRESHOLD)
goto xinstall;
if (symbol->nodes == NULL) {
symbol->array_capacity = 0;
assert(symbol->table_size == 0);
/* nodes[0] .. nodes[NHAT- 1] not used */
ezalloc(symbol->nodes, NODE **, INT32_BIT * sizeof(NODE *), "cint_lookup");
}
symbol->table_size++; /* one more element in array */
tn = symbol->nodes[h1];
if (tn == NULL) {
tn = make_node(Node_array_tree);
symbol->nodes[h1] = tn;
}
if (m < NHAT)
return tree_lookup(symbol, tn, k, NHAT, 0);
return tree_lookup(symbol, tn, k, m, power_two_table[m]);
xinstall:
symbol->table_size++;
if (xn == NULL) {
xn = symbol->xarray = make_array();
xn->vname = symbol->vname; /* shallow copy */
/*
* Avoid using assoc_lookup(xn, subs) which may lead
* to infinite recursion.
*/
if (is_integer(xn, subs))
xn->array_funcs = int_array_func;
else
xn->array_funcs = str_array_func;
xn->flags |= XARRAY;
}
return xn->alookup(xn, subs);
}
/* cint_exists --- test whether an index is in the array or not. */
static NODE **
cint_exists(NODE *symbol, NODE *subs)
{
NODE *xn;
if (ISUINT(symbol, subs)) {
long k = subs->numbr;
NODE **lhs;
if ((lhs = cint_find(symbol, k, cint_hash(k))) != NULL)
return lhs;
}
if ((xn = symbol->xarray) == NULL)
return NULL;
return xn->aexists(xn, subs);
}
/* cint_clear --- flush all the values in symbol[] */
static NODE **
cint_clear(NODE *symbol, NODE *subs ATTRIBUTE_UNUSED)
{
size_t i;
NODE *tn;
assert(symbol->nodes != NULL);
if (symbol->xarray != NULL) {
NODE *xn = symbol->xarray;
assoc_clear(xn);
freenode(xn);
symbol->xarray = NULL;
}
for (i = NHAT; i < INT32_BIT; i++) {
tn = symbol->nodes[i];
if (tn != NULL) {
tree_clear(tn);
freenode(tn);
}
}
efree(symbol->nodes);
symbol->ainit(symbol, NULL); /* re-initialize symbol */
return NULL;
}
/* cint_remove --- remove an index from the array */
static NODE **
cint_remove(NODE *symbol, NODE *subs)
{
long k;
int h1;
NODE *tn, *xn = symbol->xarray;
if (symbol->table_size == 0)
return NULL;
if (! ISUINT(symbol, subs))
goto xremove;
assert(symbol->nodes != NULL);
k = subs->numbr;
h1 = cint_hash(k);
tn = symbol->nodes[h1];
if (tn == NULL || ! tree_remove(symbol, tn, k))
goto xremove;
if (tn->table_size == 0) {
freenode(tn);
symbol->nodes[h1] = NULL;
}
symbol->table_size--;
if (xn == NULL && symbol->table_size == 0) {
efree(symbol->nodes);
symbol->ainit(symbol, NULL); /* re-initialize array 'symbol' */
} else if(xn != NULL && symbol->table_size == xn->table_size) {
/* promote xn to symbol */
xn->flags &= ~XARRAY;
xn->parent_array = symbol->parent_array;
efree(symbol->nodes);
*symbol = *xn;
freenode(xn);
}
return & success_node;
xremove:
xn = symbol->xarray;
if (xn == NULL || xn->aremove(xn, subs) == NULL)
return NULL;
if (xn->table_size == 0) {
freenode(xn);
symbol->xarray = NULL;
}
symbol->table_size--;
assert(symbol->table_size > 0);
return & success_node;
}
/* cint_copy --- duplicate input array "symbol" */
static NODE **
cint_copy(NODE *symbol, NODE *newsymb)
{
NODE **old, **new;
size_t i;
assert(symbol->nodes != NULL);
/* allocate new table */
ezalloc(new, NODE **, INT32_BIT * sizeof(NODE *), "cint_copy");
old = symbol->nodes;
for (i = NHAT; i < INT32_BIT; i++) {
if (old[i] == NULL)
continue;
new[i] = make_node(Node_array_tree);
tree_copy(newsymb, old[i], new[i]);
}
if (symbol->xarray != NULL) {
NODE *xn, *n;
xn = symbol->xarray;
n = make_array();
n->vname = newsymb->vname;
(void) xn->acopy(xn, n);
newsymb->xarray = n;
} else
newsymb->xarray = NULL;
newsymb->nodes = new;
newsymb->table_size = symbol->table_size;
newsymb->array_capacity = symbol->array_capacity;
newsymb->flags = symbol->flags;
return NULL;
}
/* cint_list --- return a list of items */
static NODE**
cint_list(NODE *symbol, NODE *t)
{
NODE **list = NULL;
NODE *tn, *xn;
unsigned long k = 0, num_elems, list_size;
size_t j, ja, jd;
int elem_size = 1;
assoc_kind_t assoc_kind;
num_elems = symbol->table_size;
if (num_elems == 0)
return NULL;
assoc_kind = (assoc_kind_t) t->flags;
if ((assoc_kind & (AINDEX|AVALUE|ADELETE)) == (AINDEX|ADELETE))
num_elems = 1;
if ((assoc_kind & (AINDEX|AVALUE)) == (AINDEX|AVALUE))
elem_size = 2;
list_size = num_elems * elem_size;
if (symbol->xarray != NULL) {
xn = symbol->xarray;
list = xn->alist(xn, t);
assert(list != NULL);
assoc_kind &= ~(AASC|ADESC);
t->flags = (unsigned int) assoc_kind;
if (num_elems == 1 || num_elems == xn->table_size)
return list;
erealloc(list, NODE **, list_size * sizeof(NODE *), "cint_list");
k = elem_size * xn->table_size;
} else
emalloc(list, NODE **, list_size * sizeof(NODE *), "cint_list");
if ((assoc_kind & AINUM) == 0) {
/* not sorting by "index num" */
assoc_kind &= ~(AASC|ADESC);
t->flags = (unsigned int) assoc_kind;
}
/* populate it with index in ascending or descending order */
for (ja = NHAT, jd = INT32_BIT - 1; ja < INT32_BIT && jd >= NHAT; ) {
j = (assoc_kind & ADESC) != 0 ? jd-- : ja++;
tn = symbol->nodes[j];
if (tn == NULL)
continue;
k += tree_list(tn, list + k, assoc_kind);
if (k >= list_size)
return list;
}
return list;
}
/* cint_dump --- dump array info */
static NODE **
cint_dump(NODE *symbol, NODE *ndump)
{
NODE *tn, *xn = NULL;
int indent_level;
size_t i;
long cint_size = 0, xsize = 0;
AWKNUM kb = 0;
extern AWKNUM int_kilobytes(NODE *symbol);
extern AWKNUM str_kilobytes(NODE *symbol);
indent_level = ndump->alevel;
if (symbol->xarray != NULL) {
xn = symbol->xarray;
xsize = xn->table_size;
}
cint_size = symbol->table_size - xsize;
if ((symbol->flags & XARRAY) == 0)
fprintf(output_fp, "%s `%s'\n",
(symbol->parent_array == NULL) ? "array" : "sub-array",
array_vname(symbol));
indent_level++;
indent(indent_level);
fprintf(output_fp, "array_func: cint_array_func\n");
if (symbol->flags != 0) {
indent(indent_level);
fprintf(output_fp, "flags: %s\n", flags2str(symbol->flags));
}
indent(indent_level);
fprintf(output_fp, "NHAT: %d\n", NHAT);
indent(indent_level);
fprintf(output_fp, "THRESHOLD: %ld\n", THRESHOLD);
indent(indent_level);
fprintf(output_fp, "table_size: %ld (total), %ld (cint), %ld (int + str)\n",
symbol->table_size, cint_size, xsize);
indent(indent_level);
fprintf(output_fp, "array_capacity: %lu\n", (unsigned long) symbol->array_capacity);
indent(indent_level);
fprintf(output_fp, "Load Factor: %.2g\n", (AWKNUM) cint_size / symbol->array_capacity);
for (i = NHAT; i < INT32_BIT; i++) {
tn = symbol->nodes[i];
if (tn == NULL)
continue;
/* Node_array_tree + HAT */
kb += (sizeof(NODE) + tree_kilobytes(tn)) / 1024.0;
}
kb += (INT32_BIT * sizeof(NODE *)) / 1024.0; /* symbol->nodes */
kb += (symbol->array_capacity * sizeof(NODE *)) / 1024.0; /* value nodes in Node_array_leaf(s) */
if (xn != NULL) {
if (xn->array_funcs == int_array_func)
kb += int_kilobytes(xn);
else
kb += str_kilobytes(xn);
}
indent(indent_level);
fprintf(output_fp, "memory: %.2g kB (total)\n", kb);
/* dump elements */
if (ndump->adepth >= 0) {
const char *aname;
fprintf(output_fp, "\n");
aname = make_aname(symbol);
for (i = NHAT; i < INT32_BIT; i++) {
tn = symbol->nodes[i];
if (tn != NULL)
tree_info(tn, ndump, aname);
}
}
if (xn != NULL) {
fprintf(output_fp, "\n");
xn->adump(xn, ndump);
}
#ifdef ARRAYDEBUG
if (ndump->adepth < -999)
cint_print(symbol);
#endif
return NULL;
}
/* cint_hash --- locate the HAT for a given number 'k' */
static inline int
cint_hash(long k)
{
uint32_t num, r, shift;
assert(k >= 0);
if (k == 0)
return NHAT;
num = k;
/* Find the Floor(log base 2 of 32-bit integer) */
/*
* Warren Jr., Henry S. (2002). Hacker's Delight.
* Addison Wesley. pp. pp. 215. ISBN 978-0201914658.
*
* r = 0;
* if (num >= 1<<16) { num >>= 16; r += 16; }
* if (num >= 1<< 8) { num >>= 8; r += 8; }
* if (num >= 1<< 4) { num >>= 4; r += 4; }
* if (num >= 1<< 2) { num >>= 2; r += 2; }
* if (num >= 1<< 1) { r += 1; }
*/
/*
* Slightly different code copied from:
*
* http://www-graphics.stanford.edu/~seander/bithacks.html
* Bit Twiddling Hacks
* By Sean Eron Anderson
* Individually, the code snippets here are in the public domain
* (unless otherwise noted) --- feel free to use them however you please.
* The aggregate collection and descriptions are (C) 1997-2005
* Sean Eron Anderson. The code and descriptions are distributed in the
* hope that they will be useful, but WITHOUT ANY WARRANTY and without
* even the implied warranty of merchantability or fitness for a particular
* purpose.
*
*/
r = (num > 0xFFFF) << 4; num >>= r;
shift = (num > 0xFF) << 3; num >>= shift; r |= shift;
shift = (num > 0x0F) << 2; num >>= shift; r |= shift;
shift = (num > 0x03) << 1; num >>= shift; r |= shift;
r |= (num >> 1);
/* We use a single HAT for 0 <= num < 2^NHAT */
if (r < NHAT)
return NHAT;
return (1 + r);
}
/* cint_find --- locate the integer subscript */
static inline NODE **
cint_find(NODE *symbol, long k, int h1)
{
NODE *tn;
if (symbol->nodes == NULL || (tn = symbol->nodes[h1]) == NULL)
return NULL;
return tree_exists(tn, k);
}
#ifdef ARRAYDEBUG
/* cint_print --- print structural info */
static void
cint_print(NODE *symbol)
{
NODE *tn;
size_t i;
fprintf(output_fp, "I[%4lu:%-4lu]\n", (unsigned long) INT32_BIT,
(unsigned long) symbol->table_size);
for (i = NHAT; i < INT32_BIT; i++) {
tn = symbol->nodes[i];
if (tn == NULL)
continue;
tree_print(tn, i, 1);
}
}
#endif
/*------------------------ Hashed Array Trees -----------------------------*/
/*
* HATs: Hashed Array Trees
* Fast variable-length arrays
* Edward Sitarski
* http://www.drdobbs.com/architecture-and-design/184409965
*
* HAT has a top-level array containing a power of two
* number of leaf arrays. All leaf arrays are the same size as the
* top-level array. A full HAT can hold n^2 elements,
* where n (some power of 2) is the size of each leaf array.
* [i/n][i & (n - 1)] locates the `i th' element in a HAT.
*
*/
/*
* A half HAT is defined here as a HAT with a top-level array of size n^2/2
* and holds the first n^2/2 elements.
*
* 1. 2^8 elements can be stored in a full HAT of size 2^4.
* 2. 2^9 elements can be stored in a half HAT of size 2^5.
* 3. When the number of elements is some power of 2, it
* can be stored in a full or a half HAT.
* 4. When the number of elements is some power of 2, it
* can be stored in a HAT (full or half) with HATs as leaf elements
* (full or half), and so on (e.g. 2^8 elements in a HAT of size 2^4 (top-level
* array dimension) with each leaf array being a HAT of size 2^2).
*
* IMPLEMENTATION DETAILS:
* 1. A HAT of 2^12 elements needs 2^6 house-keeping NODEs
* of Node_array_leaf.
*
* 2. A HAT of HATS of 2^12 elements needs
* 2^6 * (1 Node_array_tree + 2^3 Node_array_leaf)
* ~ 2^9 house-keeping NODEs.
*
* 3. When a leaf array (or leaf HAT) becomes empty, the memory
* is deallocated, and when there is no leaf array (or leaf HAT) left,
* the HAT is deleted.
*
* 4. A HAT stores the base (first) element, and locates the leaf array/HAT
* for the `i th' element using integer division
* (i - base)/n where n is the size of the top-level array.
*
*/
/* make_node --- initialize a NODE */
static inline NODE *
make_node(NODETYPE type)
{
NODE *n;
getnode(n);
memset(n, '\0', sizeof(NODE));
n->type = type;
return n;
}
/* tree_lookup --- Find an integer subscript in a HAT; Install it if it isn't there */
static NODE **
tree_lookup(NODE *symbol, NODE *tree, long k, int m, long base)
{
NODE **lhs;
NODE *tn;
int i, n;
size_t size;
long num = k;
/*
* HAT size (size of Top & Leaf array) = 2^n
* where n = Floor ((m + 1)/2). For an odd value of m,
* only the first half of the HAT is needed.
*/
n = (m + 1) / 2;
if (tree->table_size == 0) {
size_t actual_size;
NODE **table;
assert(tree->nodes == NULL);
/* initialize top-level array */
size = actual_size = power_two_table[n];
tree->array_base = base;
tree->array_size = size;
tree->table_size = 0; /* # of elements in the array */
if (n > m/2) {
/* only first half of the array used */
actual_size /= 2;
tree->flags |= HALFHAT;
}
ezalloc(table, NODE **, actual_size * sizeof(NODE *), "tree_lookup");
tree->nodes = table;
} else
size = tree->array_size;
num -= tree->array_base;
i = num / size; /* top-level array index */
assert(i >= 0);
if ((lhs = tree_find(tree, k, i)) != NULL)
return lhs;
/* It's not there, install it */
tree->table_size++;
base += (size * i);
tn = tree->nodes[i];
if (n > NHAT) {
if (tn == NULL)
tn = tree->nodes[i] = make_node(Node_array_tree);
return tree_lookup(symbol, tn, k, n, base);
} else {
if (tn == NULL)
tn = tree->nodes[i] = make_node(Node_array_leaf);
return leaf_lookup(symbol, tn, k, size, base);
}
}
/* tree_exists --- test whether integer subscript `k' exists or not */
static NODE **
tree_exists(NODE *tree, long k)
{
int i;
NODE *tn;
i = (k - tree->array_base) / tree->array_size;
assert(i >= 0);
tn = tree->nodes[i];
if (tn == NULL)
return NULL;
if (tn->type == Node_array_tree)
return tree_exists(tn, k);
return leaf_exists(tn, k);
}
/* tree_clear --- flush all the values */
static void
tree_clear(NODE *tree)
{
NODE *tn;
size_t j, hsize;
hsize = tree->array_size;
if ((tree->flags & HALFHAT) != 0)
hsize /= 2;
for (j = 0; j < hsize; j++) {
tn = tree->nodes[j];
if (tn == NULL)
continue;
if (tn->type == Node_array_tree)
tree_clear(tn);
else
leaf_clear(tn);
freenode(tn);
}
efree(tree->nodes);
memset(tree, '\0', sizeof(NODE));
tree->type = Node_array_tree;
}
/* tree_remove --- If the integer subscript is in the HAT, remove it */
static int
tree_remove(NODE *symbol, NODE *tree, long k)
{
int i;
NODE *tn;
i = (k - tree->array_base) / tree->array_size;
assert(i >= 0);
tn = tree->nodes[i];
if (tn == NULL)
return false;
if (tn->type == Node_array_tree
&& ! tree_remove(symbol, tn, k))
return false;
else if (tn->type == Node_array_leaf
&& ! leaf_remove(symbol, tn, k))
return false;
if (tn->table_size == 0) {
freenode(tn);
tree->nodes[i] = NULL;
}
/* one less item in array */
if (--tree->table_size == 0) {
efree(tree->nodes);
memset(tree, '\0', sizeof(NODE));
tree->type = Node_array_tree;
}
return true;
}
/* tree_find --- locate an interger subscript in the HAT */
static inline NODE **
tree_find(NODE *tree, long k, int i)
{
NODE *tn;
assert(tree->nodes != NULL);
tn = tree->nodes[i];
if (tn != NULL) {
if (tn->type == Node_array_tree)
return tree_exists(tn, k);
return leaf_exists(tn, k);
}
return NULL;
}
/* tree_list --- return a list of items in the HAT */
static long
tree_list(NODE *tree, NODE **list, assoc_kind_t assoc_kind)
{
NODE *tn;
size_t j, cj, hsize;
long k = 0;
assert(list != NULL);
hsize = tree->array_size;
if ((tree->flags & HALFHAT) != 0)
hsize /= 2;
for (j = 0; j < hsize; j++) {
cj = (assoc_kind & ADESC) != 0 ? (hsize - 1 - j) : j;
tn = tree->nodes[cj];
if (tn == NULL)
continue;
if (tn->type == Node_array_tree)
k += tree_list(tn, list + k, assoc_kind);
else
k += leaf_list(tn, list + k, assoc_kind);
if ((assoc_kind & ADELETE) != 0 && k >= 1)
return k;
}
return k;
}
/* tree_copy --- duplicate a HAT */
static void
tree_copy(NODE *newsymb, NODE *tree, NODE *newtree)
{
NODE **old, **new;
size_t j, hsize;
hsize = tree->array_size;
if ((tree->flags & HALFHAT) != 0)
hsize /= 2;
ezalloc(new, NODE **, hsize * sizeof(NODE *), "tree_copy");
newtree->nodes = new;
newtree->array_base = tree->array_base;
newtree->array_size = tree->array_size;
newtree->table_size = tree->table_size;
newtree->flags = tree->flags;
old = tree->nodes;
for (j = 0; j < hsize; j++) {
if (old[j] == NULL)
continue;
if (old[j]->type == Node_array_tree) {
new[j] = make_node(Node_array_tree);
tree_copy(newsymb, old[j], new[j]);
} else {
new[j] = make_node(Node_array_leaf);
leaf_copy(newsymb, old[j], new[j]);
}
}
}
/* tree_info --- print index, value info */
static void
tree_info(NODE *tree, NODE *ndump, const char *aname)
{
NODE *tn;
size_t j, hsize;
hsize = tree->array_size;
if ((tree->flags & HALFHAT) != 0)
hsize /= 2;
for (j = 0; j < hsize; j++) {
tn = tree->nodes[j];
if (tn == NULL)
continue;
if (tn->type == Node_array_tree)
tree_info(tn, ndump, aname);
else
leaf_info(tn, ndump, aname);
}
}
/* tree_kilobytes --- calculate memory consumption of a HAT */
static size_t
tree_kilobytes(NODE *tree)
{
NODE *tn;
size_t j, hsize;
size_t sz = 0;
hsize = tree->array_size;
if ((tree->flags & HALFHAT) != 0)
hsize /= 2;
for (j = 0; j < hsize; j++) {
tn = tree->nodes[j];
if (tn == NULL)
continue;
sz += sizeof(NODE); /* Node_array_tree or Node_array_leaf */
if (tn->type == Node_array_tree)
sz += tree_kilobytes(tn);
}
sz += hsize * sizeof(NODE *); /* tree->nodes */
return sz;
}
#ifdef ARRAYDEBUG
/* tree_print --- print the HAT structures */