Operator Domain: ai.onnx.ml |
|
|
|
Abs |
(in X:T, out Y:T) |
6+ |
T = tensor(int32), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(int64), tensor(double) |
Acos |
(in input:T, out output:T) |
7+ |
T = tensor(float) |
Acosh |
(in input:T, out output:T) |
9+ |
T = tensor(float) |
Add |
(in A:T, in B:T, out C:T) |
7+ |
T = tensor(int32), tensor(float), tensor(int64), tensor(double) |
Affine |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
And |
(in A:T, in B:T, out C:T1) |
7+ |
T = tensor(bool) |
|
|
|
T1 = tensor(bool) |
ArgMax |
(in data:T, out reduced:tensor(int64)) |
1+ |
T = tensor(int32), tensor(float) |
ArgMin |
(in data:T, out reduced:tensor(int64)) |
1+ |
T = tensor(int32), tensor(float) |
ArrayFeatureExtractor |
(in X:T, in Y:tensor(int64), out Z:T) |
1+ |
T = tensor(string), tensor(int32), tensor(float), tensor(int64), tensor(double) |
Asin |
(in input:T, out output:T) |
7+ |
T = tensor(float) |
Asinh |
(in input:T, out output:T) |
9+ |
T = tensor(float) |
Atan |
(in input:T, out output:T) |
7+ |
T = tensor(float) |
Atanh |
(in input:T, out output:T) |
9+ |
T = tensor(float) |
AveragePool |
(in X:T, out Y:T) |
10+ |
T = tensor(float) |
|
|
[7, 9] |
T = tensor(float) |
BatchNormalization |
(in X:T, in scale:T, in B:T, in mean:T, in var:T, out Y:T, out mean:T, out var:T, out saved_mean:T, out saved_var:T) |
[7, 9] |
B = tensor(float) |
|
|
|
X = tensor(float) |
|
|
|
mean = tensor(float) |
|
|
|
scale = tensor(float) |
|
|
|
var = tensor(float) |
Binarizer |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
Cast |
(in input:T1, out output:T2) |
9+ |
T1 = tensor(string) |
|
|
|
T2 = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
[6, 9] |
T1 = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
T2 = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
CastMap |
(in X:T1, out Y:T2) |
1+ |
T1 = unknown |
|
|
|
T2 = tensor(string), tensor(float), tensor(int64) |
CategoryMapper |
(in X:T1, out Y:T2) |
1+ |
T1 = tensor(string), tensor(int64) |
|
|
|
T2 = tensor(string), tensor(int64) |
Ceil |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
Clip |
(in input:T, out output:T) |
6+ |
T = tensor(float) |
Compress |
(in input:T, in condition:T1, out output:T) |
9+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
T1 = tensor(bool) |
Concat |
(in inputs:T, out concat_result:T) |
4+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
ConstantOfShape |
(in input:T1, out output:T2) |
9+ |
T1 = tensor(int64) |
|
|
|
T2 = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Conv |
(in X:T, in W:T, in B:T, out Y:T) |
1+ |
T = tensor(float) |
ConvInteger |
(in x:T1, in w:T2, in x_zero_point:T1, in w_zero_point:T2, out y:T3) |
10+ |
T1 = tensor(uint8) |
|
|
|
T2 = tensor(uint8) |
|
|
|
T3 = tensor(int32) |
ConvTranspose |
(in X:T, in W:T, in B:T, out Y:T) |
1+ |
T = tensor(float) |
Cos |
(in input:T, out output:T) |
7+ |
T = tensor(float) |
Cosh |
(in input:T, out output:T) |
9+ |
T = tensor(float) |
Crop |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
DepthToSpace |
(in input:T, out output:T) |
[1, 4] |
T = tensor(float) |
DequantizeLinear |
(in x:T, in x_scale:tensor(float), in x_zero_point:T, out y:tensor(float)) |
10+ |
x = tensor(uint8), unknown |
|
|
|
x_scale = tensor(float) |
|
|
|
x_zero_point = tensor(uint8), unknown |
|
|
|
y = tensor(float) |
DictVectorizer |
(in X:T1, out Y:T2) |
1+ |
T1 = unknown |
|
|
|
T2 = tensor(string), tensor(float), tensor(int64), tensor(double) |
Div |
(in A:T, in B:T, out C:T) |
7+ |
T = tensor(int32), tensor(float), tensor(int64), tensor(double) |
Dropout |
(in data:T, out output:T, out mask:T) or (in data:T, out output:T, out mask:T1) |
10+ |
T = tensor(float), tensor(MLFloat16), tensor(double) |
|
|
|
T1 = tensor(bool) |
|
|
[7, 9] |
T = tensor(float), tensor(MLFloat16), tensor(double) |
|
|
|
T1 = tensor(bool) |
DynamicSlice |
(in data:T, in starts:Tind, in ends:Tind, in axes:Tind, out output:T) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
Tind = tensor(int32), tensor(int64) |
Elu |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
Equal |
(in A:T, in B:T, out C:T1) |
11+ |
T = tensor(float) |
|
|
|
T1 = tensor(bool) |
|
|
7+ |
T = tensor(int32), tensor(bool), tensor(int64) |
|
|
|
T1 = tensor(bool) |
Erf |
(in input:T, out output:T) |
9+ |
T = tensor(float) |
Exp |
(in input:T, out output:T) |
6+ |
T = tensor(float), tensor(double) |
Expand |
(in input:T, in shape:tensor(int64), out output:T) |
8+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
EyeLike |
(in input:T1, out output:T2) |
9+ |
T1 = tensor(uint64), tensor(int32), tensor(float), tensor(int64), tensor(double) |
|
|
|
T2 = tensor(uint64), tensor(int32), tensor(float), tensor(int64), tensor(double) |
FeatureVectorizer |
(in X:T1, out Y:tensor(float)) |
1+ |
T1 = tensor(int32), tensor(float), tensor(int64), tensor(double) |
Flatten |
(in input:T, out output:T) |
9+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
[1, 8] |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Floor |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
GRU |
(in X:T, in W:T, in R:T, in B:T, in sequence_lens:T1, in initial_h:T, out Y:T, out Y_h:T) |
7+ |
T = tensor(float), tensor(double) |
|
|
|
T1 = tensor(int32) |
Gather |
(in data:T, in indices:Tind, out output:T) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
Tind = tensor(int32), tensor(int64) |
Gemm |
(in A:T, in B:T, in C:T, out Y:T) |
[7, 9] |
T = tensor(float) |
GlobalAveragePool |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
GlobalLpPool |
(in X:T, out Y:T) |
2+ |
T = tensor(float) |
GlobalMaxPool |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
Greater |
(in A:T, in B:T, out C:T1) |
9+ |
T = tensor(int32), tensor(int64) |
|
|
|
T1 = tensor(bool) |
|
|
[7, 9] |
T = tensor(float) |
|
|
|
T1 = tensor(bool) |
HardSigmoid |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
Hardmax |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
Identity |
(in input:T, out output:T) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
If |
(in cond:B, out outputs:V) |
1+ |
B = tensor(bool) |
|
|
|
V = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
ImageScaler |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
Imputer |
(in X:T, out Y:T) |
1+ |
T = tensor(float), tensor(int64) |
InstanceNormalization |
(in input:T, in scale:T, in B:T, out output:T) |
6+ |
T = tensor(float) |
IsInf |
(in X:T1, out Y:T2) |
10+ |
T1 = tensor(float), tensor(double) |
|
|
|
T2 = tensor(bool) |
IsNaN |
(in X:T1, out Y:T2) |
9+ |
T1 = tensor(float), tensor(MLFloat16) |
|
|
|
T2 = tensor(bool) |
LRN |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
LSTM |
(in X:T, in W:T, in R:T, in B:T, in sequence_lens:T1, in initial_h:T, in initial_c:T, in P:T, out Y:T, out Y_h:T, out Y_c:T) |
7+ |
T = tensor(float), tensor(double) |
|
|
|
T1 = tensor(int32) |
LabelEncoder |
(in X:T1, out Y:T2) |
2+ |
T1 = tensor(string), tensor(float), tensor(int64) |
|
|
|
T2 = tensor(string), tensor(float), tensor(int64) |
|
|
[1, 1] |
T1 = tensor(string), tensor(int64) |
|
|
|
T2 = tensor(string), tensor(int64) |
LeakyRelu |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
Less |
(in A:T, in B:T, out C:T1) |
9+ |
T = tensor(int32), tensor(int64) |
|
|
|
T1 = tensor(bool) |
|
|
[7, 9] |
T = tensor(float) |
|
|
|
T1 = tensor(bool) |
LinearClassifier |
(in X:T1, out Y:T2, out Z:tensor(float)) |
1+ |
T1 = tensor(int32), tensor(float), tensor(int64), tensor(double) |
|
|
|
T2 = tensor(string), tensor(int64) |
LinearRegressor |
(in X:T, out Y:tensor(float)) |
1+ |
T = tensor(float) |
Log |
(in input:T, out output:T) |
6+ |
T = tensor(float) |
LogSoftmax |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
Loop |
(in M:I, in cond:B, in v_initial:V, out v_final_and_scan_outputs:V) |
1+ |
B = tensor(bool) |
|
|
|
I = tensor(int64) |
|
|
|
V = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
LpNormalization |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
LpPool |
(in X:T, out Y:T) |
2+ |
T = tensor(float) |
MatMul |
(in A:T, in B:T, out Y:T) |
[1, 9] |
T = tensor(float), tensor(double) |
|
|
[9, 9] |
T = tensor(uint64), tensor(int32), tensor(int64), tensor(uint32) |
MatMulInteger |
(in A:T1, in B:T2, in a_zero_point:T1, in b_zero_point:T2, out Y:T3) |
10+ |
T1 = tensor(uint8) |
|
|
|
T2 = tensor(uint8) |
|
|
|
T3 = tensor(int32) |
Max |
(in data_0:T, out max:T) |
8+ |
T = tensor(float), tensor(double) |
|
|
[6, 7] |
T = tensor(float) |
MaxPool |
(in X:T, out Y:T) or (in X:T, out Y:T, out Indices:I) |
10+ |
I = tensor(int64) |
|
|
|
T = tensor(float) |
|
|
[1, 7] |
T = tensor(float) |
|
|
[8, 9] |
I = tensor(int64) |
|
|
|
T = tensor(float) |
MaxRoiPool |
(in X:T, in rois:T, out Y:T) |
1+ |
T = tensor(float) |
MaxUnpool |
(in X:T1, in I:T2, in output_shape:T2, out output:T1) |
9+ |
T1 = tensor(float) |
|
|
|
T2 = tensor(int64) |
Mean |
(in data_0:T, out mean:T) |
8+ |
T = tensor(float) |
|
|
[6, 7] |
T = tensor(float) |
MeanVarianceNormalization |
(in X:T, out Y:T) or (in input:T, out output:T) |
9+ |
T = tensor(float) |
|
|
[1, 8] |
T = tensor(float) |
Min |
(in data_0:T, out min:T) |
8+ |
T = tensor(float) |
|
|
[6, 7] |
T = tensor(float) |
Mod |
(in A:T, in B:T, out C:T) |
10+ |
T = tensor(int32), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Mul |
(in A:T, in B:T, out C:T) |
7+ |
T = tensor(int32), tensor(float), tensor(int64), tensor(double) |
Multinomial |
(in input:T1, out output:T2) |
7+ |
T1 = tensor(float) |
|
|
|
T2 = tensor(int32), tensor(int64) |
Neg |
(in X:T, out Y:T) |
6+ |
T = tensor(int32), tensor(float), unknown |
NonZero |
(in X:T, out Y:tensor(int64)) |
9+ |
T = tensor(int32), tensor(float), tensor(bool), tensor(int64) |
Normalizer |
(in X:T, out Y:tensor(float)) |
1+ |
T = tensor(int32), tensor(float), tensor(int64), tensor(double) |
Not |
(in X:T, out Y:T) |
1+ |
T = tensor(bool) |
|
|
|
T1 = tensor(bool) |
OneHot |
(in indices:T1, in depth:T2, in values:T3, out output:T3) |
9+ |
T1 = tensor(int32), tensor(float), tensor(int64) |
|
|
|
T2 = tensor(int32), tensor(float), tensor(int64) |
|
|
|
T3 = tensor(string), tensor(int32), tensor(float), tensor(int64) |
OneHotEncoder |
(in X:T, out Y:tensor(float)) |
1+ |
T = tensor(string), tensor(float), tensor(int64), tensor(double) |
Or |
(in A:T, in B:T, out C:T1) |
7+ |
T = tensor(bool) |
|
|
|
T1 = tensor(bool) |
PRelu |
(in X:T, in slope:T, out Y:T) |
[7, 9] |
T = tensor(float) |
Pad |
(in data:T, out output:T) |
2+ |
T = tensor(float) |
ParametricSoftplus |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
Pow |
(in X:T, in Y:T, out Z:T) |
7+ |
T = tensor(float), tensor(double) |
QLinearConv |
(in x:T1, in x_scale:tensor(float), in x_zero_point:T1, in w:T2, in w_scale:tensor(float), in w_zero_point:T2, in y_scale:tensor(float), in y_zero_point:T3, in B:T4, out y:T3) |
10+ |
T1 = tensor(uint8) |
|
|
|
T2 = tensor(uint8) |
|
|
|
T3 = tensor(uint8) |
|
|
|
T4 = tensor(int32) |
QLinearMatMul |
(in a:T1, in a_scale:tensor(float), in a_zero_point:T1, in b:T2, in b_scale:tensor(float), in b_zero_point:T2, in y_scale:tensor(float), in y_zero_point:T3, out y:T3) |
10+ |
T1 = tensor(uint8) |
|
|
|
T2 = tensor(uint8) |
|
|
|
T3 = tensor(uint8) |
QuantizeLinear |
(in x:T1, in y_scale:tensor(float), in y_zero_point:T2, out y:T2) |
10+ |
x = tensor(float) |
|
|
|
y = tensor(uint8), unknown |
|
|
|
y_zero_point = tensor(uint8), unknown |
RNN |
(in X:T, in W:T, in R:T, in B:T, in sequence_lens:T1, in initial_h:T, out Y:T, out Y_h:T) |
7+ |
T = tensor(float) |
|
|
|
T1 = tensor(int32) |
RandomNormal |
(out output:T) |
1+ |
T = tensor(float), tensor(double) |
RandomNormalLike |
(in input:T1, out output:T2) |
1+ |
T1 = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
T2 = tensor(float), tensor(double) |
RandomUniform |
(out output:T) |
1+ |
T = tensor(float), tensor(double) |
RandomUniformLike |
(in input:T1, out output:T2) |
1+ |
T1 = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
T2 = tensor(float), tensor(double) |
Reciprocal |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
ReduceL1 |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float) |
ReduceL2 |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float) |
ReduceLogSum |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float) |
ReduceLogSumExp |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float) |
ReduceMax |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float) |
ReduceMean |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float) |
ReduceMin |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float) |
ReduceProd |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float) |
ReduceSum |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float), tensor(double) |
ReduceSumSquare |
(in data:T, out reduced:T) |
1+ |
T = tensor(int32), tensor(float), tensor(double) |
Relu |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
Reshape |
(in data:T, in shape:tensor(int64), out reshaped:T) or (in data:T, out reshaped:T) |
5+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
shape = tensor(int64) |
Reshape_1 |
|
[1, 4] |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Resize |
(in X:T, in scales:tensor(float), out Y:T) |
10+ |
T = tensor(int32), tensor(float), tensor(uint8) |
ReverseSequence |
(in input:T, in sequence_lens:tensor(int64), out Y:T) |
10+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
RoiAlign |
(in X:T1, in rois:T1, in batch_indices:T2, out Y:T1) |
10+ |
T = tensor(float), tensor(double) |
|
|
|
T2 = tensor(int64) |
SVMClassifier |
(in X:T1, out Y:T2, out Z:tensor(float)) |
1+ |
T1 = tensor(int32), tensor(float), tensor(int64), tensor(double) |
|
|
|
T2 = tensor(string), tensor(int64) |
SVMRegressor |
(in X:T, out Y:tensor(float)) |
1+ |
T = tensor(float) |
Scale |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
ScaledTanh |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
Scaler |
(in X:T, out Y:tensor(float)) |
1+ |
T = tensor(int32), tensor(float), tensor(int64), tensor(double) |
Scan |
(in sequence_lens:I, in initial_state_and_scan_inputs:V, out final_state_and_scan_outputs:V) or (in initial_state_and_scan_inputs:V, out final_state_and_scan_outputs:V) |
9+ |
I = tensor(int64) |
|
|
|
V = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
[8, 8] |
I = tensor(int64) |
|
|
|
V = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Scatter |
(in data:T, in indices:Tind, in updates:T, out output:T) |
9+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
Tind = tensor(int32), tensor(int64) |
Selu |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
Shape |
(in data:T, out shape:T1) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
T1 = tensor(int64) |
Shrink |
(in input:T, out output:T) |
9+ |
T = tensor(int32), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Sigmoid |
(in X:T, out Y:T) |
6+ |
T = tensor(float) |
Sign |
(in input:T, out output:T) |
9+ |
T = tensor(int32), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Sin |
(in input:T, out output:T) |
7+ |
T = tensor(float), tensor(double) |
Sinh |
(in input:T, out output:T) |
9+ |
T = tensor(float) |
Size |
(in data:T, out size:T1) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(int64), tensor(double) |
|
|
|
T1 = tensor(int64) |
Slice |
(in data:T, out output:T) or (in data:T, in starts:Tind, in ends:Tind, in axes:Tind, in steps:Tind, out output:T) |
10+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
Tind = tensor(int32), tensor(int64) |
|
|
[1, 9] |
T = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Softmax |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
Softplus |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
Softsign |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
SpaceToDepth |
(in input:T, out output:T) |
1+ |
T = tensor(float) |
Split |
(in input:T, out outputs:T) or (in input:T, in split:T, out outputs...:T) |
2+ |
T = tensor(string), tensor(int32), tensor(float) |
Sqrt |
(in X:T, out Y:T) |
6+ |
T = tensor(float), tensor(double) |
Squeeze |
(in data:T, out squeezed:T) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
StringNormalizer |
(in X:tensor(string), out Y:tensor(string)) |
10+ |
T = tensor(string) |
Sub |
(in A:T, in B:T, out C:T) |
7+ |
T = tensor(int32), tensor(float), tensor(int64), tensor(double) |
Sum |
(in data_0:T, out sum:T) |
8+ |
T = tensor(float) |
|
|
[6, 7] |
T = tensor(float) |
Tan |
(in input:T, out output:T) |
7+ |
T = tensor(float) |
Tanh |
(in input:T, out output:T) |
6+ |
T = tensor(float) |
TfIdfVectorizer |
(in X:T, out Y:T1) |
9+ |
T = tensor(string), tensor(int32), tensor(int64) |
|
|
|
T1 = tensor(float) |
ThresholdedRelu |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
|
|
10+ |
T = tensor(float) |
Tile |
(in input:T, in tiles:T, in axis:T, out output:T) or (in input:T, in repeats:T1, out output:T) |
6+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(float), tensor(uint64), tensor(int64), tensor(double) |
|
|
|
T1 = tensor(int64) |
TopK |
(in X:T, in K:tensor(int64), out Values:T, out Indices:I) or (in X:T, out Values:T, out Indices:I) |
10+ |
I = tensor(int64) |
|
|
|
T = tensor(float) |
|
|
[1, 9] |
I = tensor(int64) |
|
|
|
T = tensor(float) |
Transpose |
(in data:T, out transposed:T) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
TreeEnsembleClassifier |
(in X:T1, out Y:T2, out Z:tensor(float)) |
1+ |
T1 = tensor(int32), tensor(float), tensor(int64), tensor(double) |
|
|
|
T2 = tensor(string), tensor(int64) |
TreeEnsembleRegressor |
(in X:T, out Y:tensor(float)) |
1+ |
T = tensor(float) |
Unsqueeze |
(in data:T, out expanded:T) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
Upsample |
(in X:T, out Y:T) or (in X:T, in scales:tensor(float), out Y:T) |
[7, 9] |
T = tensor(int32), tensor(float), tensor(uint8) |
Where |
(in condition:B, in X:T, in Y:T, out output:T) |
9+ |
T = tensor(string), tensor(int32), tensor(float) |
Xor |
(in A:T, in B:T, out C:T1) |
7+ |
T = tensor(bool) |
|
|
|
T1 = tensor(bool) |
ZipMap |
(in X:tensor(float), out Z:T) |
1+ |
T = unknown |
|
|
|
|
|
|
|
|
Operator Domain: com.microsoft |
|
|
|
AttnLSTM |
(in X:T, in W:T, in R:T, in B:T, in sequence_lens:T1, in initial_h:T, in initial_c:T, in P:T, in QW:T, in MW:T, in V:T, in M:T, in memory_seq_lens:T1, in AW:T, out Y:T, out Y_h:T, out Y_c:T) |
1+ |
T = tensor(float), tensor(double) |
|
|
|
T1 = tensor(int32) |
ConvTransposeWithDynamicPads |
(in X:T, in W:T, in Pads:tensor(int64), in B:T, out Y:T) |
1+ |
T = tensor(float) |
CropAndResize |
(in X:T1, in rois:T1, in batch_indices:T2, in crop_size:T2, out Y:T1) |
1+ |
T = tensor(float) |
|
|
|
T2 = tensor(int32) |
ExpandDims |
(in X:T, in axis:tensor(int32), out Y:T) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
axis = tensor(int32) |
FusedConv |
(in X:T, in W:T, in B:T, out Y:T) |
1+ |
T = tensor(float) |
FusedGemm |
(in A:T, in B:T, in C:T, out Y:T) |
1+ |
T = tensor(float) |
GatherND |
(in data:T, in indices:Tind, out output:T) |
1+ |
T = tensor(int32), tensor(bool), tensor(int16), tensor(bfloat16), tensor(uint8), unknown, tensor(uint32), tensor(uint16), tensor(string), tensor(float), tensor(uint64), tensor(MLFloat16), tensor(int64), tensor(double) |
|
|
|
Tind = tensor(int32), tensor(int64) |
MaxpoolWithMask |
(in X:T, in M:tensor(int32), out Y:T) |
1+ |
X = tensor(float) |
MurmurHash3 |
(in X:T1, out Y:T2) |
1+ |
T1 = tensor(string), tensor(int32), tensor(uint32) |
|
|
|
T2 = tensor(int32), tensor(uint32) |
Pad |
(in data:T, in pads:tensor(int64), in value:T, out output:T) |
1+ |
T = tensor(float) |
Range |
(in start:T, in limit:T, in delta:T, out Y:T) |
1+ |
T = tensor(int32), tensor(float), tensor(int64), tensor(int16), tensor(double) |
SampleOp |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
Tokenizer |
(in X:T, out Y:T) |
1+ |
T = tensor(string) |
Unique |
(in x:T, out y:T, out idx:tensor(int64), out counts:tensor(int64)) |
1+ |
T = tensor(float) |
WordConvEmbedding |
(in Sequence:T, in W:T1, in B:T1, in C:T1, out Y:T1) |
1+ |
T = tensor(int32) |
|
|
|
T1 = tensor(float) |
|
|
|
|
|
|
|
|
Operator Domain: com.microsoft.nchwc |
|
|
|
AveragePool |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
Conv |
(in X:T, in W:T, in B:T, in Sum:T, out Y:T) |
1+ |
T = tensor(float) |
GlobalAveragePool |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
GlobalMaxPool |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
MaxPool |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
ReorderInput |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
ReorderOutput |
(in X:T, out Y:T) |
1+ |
T = tensor(float) |
|
|
|
|
|
|
|
|