-
Notifications
You must be signed in to change notification settings - Fork 240
/
assembler.rs
243 lines (223 loc) · 9.1 KB
/
assembler.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// SPDX-License-Identifier: (Apache-2.0 OR MIT)
// Copyright 2017 Rich Lane <[email protected]>
//! This module translates eBPF assembly language to binary.
use crate::asm_parser::{Instruction, Operand, parse};
use crate::asm_parser::Operand::{Integer, Memory, Register, Nil};
use crate::ebpf;
use crate::ebpf::Insn;
use self::InstructionType::{AluBinary, AluUnary, LoadAbs, LoadInd, LoadImm, LoadReg, StoreImm,
StoreReg, JumpUnconditional, JumpConditional, Call, Endian, NoOperand};
use crate::lib::*;
#[derive(Clone, Copy, Debug, PartialEq)]
enum InstructionType {
AluBinary,
AluUnary,
LoadImm,
LoadAbs,
LoadInd,
LoadReg,
StoreImm,
StoreReg,
JumpUnconditional,
JumpConditional,
Call,
Endian(i64),
NoOperand,
}
fn make_instruction_map() -> HashMap<String, (InstructionType, u8)> {
let mut result = HashMap::new();
let alu_binary_ops = [("add", ebpf::BPF_ADD),
("sub", ebpf::BPF_SUB),
("mul", ebpf::BPF_MUL),
("div", ebpf::BPF_DIV),
("or", ebpf::BPF_OR),
("and", ebpf::BPF_AND),
("lsh", ebpf::BPF_LSH),
("rsh", ebpf::BPF_RSH),
("mod", ebpf::BPF_MOD),
("xor", ebpf::BPF_XOR),
("mov", ebpf::BPF_MOV),
("arsh", ebpf::BPF_ARSH)];
let mem_sizes =
[("w", ebpf::BPF_W), ("h", ebpf::BPF_H), ("b", ebpf::BPF_B), ("dw", ebpf::BPF_DW)];
let jump_conditions = [("jeq", ebpf::BPF_JEQ),
("jgt", ebpf::BPF_JGT),
("jge", ebpf::BPF_JGE),
("jlt", ebpf::BPF_JLT),
("jle", ebpf::BPF_JLE),
("jset", ebpf::BPF_JSET),
("jne", ebpf::BPF_JNE),
("jsgt", ebpf::BPF_JSGT),
("jsge", ebpf::BPF_JSGE),
("jslt", ebpf::BPF_JSLT),
("jsle", ebpf::BPF_JSLE)];
{
let mut entry = |name: &str, inst_type: InstructionType, opc: u8| {
result.insert(name.to_string(), (inst_type, opc))
};
// Miscellaneous.
entry("exit", NoOperand, ebpf::EXIT);
entry("ja", JumpUnconditional, ebpf::JA);
entry("call", Call, ebpf::CALL);
entry("lddw", LoadImm, ebpf::LD_DW_IMM);
// AluUnary.
entry("neg", AluUnary, ebpf::NEG64);
entry("neg32", AluUnary, ebpf::NEG32);
entry("neg64", AluUnary, ebpf::NEG64);
// AluBinary.
for &(name, opc) in &alu_binary_ops {
entry(name, AluBinary, ebpf::BPF_ALU64 | opc);
entry(&format!("{name}32"), AluBinary, ebpf::BPF_ALU | opc);
entry(&format!("{name}64"), AluBinary, ebpf::BPF_ALU64 | opc);
}
// LoadAbs, LoadInd, LoadReg, StoreImm, and StoreReg.
for &(suffix, size) in &mem_sizes {
entry(&format!("ldabs{suffix}"),
LoadAbs,
ebpf::BPF_ABS | ebpf::BPF_LD | size);
entry(&format!("ldind{suffix}"),
LoadInd,
ebpf::BPF_IND | ebpf::BPF_LD | size);
entry(&format!("ldx{suffix}"),
LoadReg,
ebpf::BPF_MEM | ebpf::BPF_LDX | size);
entry(&format!("st{suffix}"),
StoreImm,
ebpf::BPF_MEM | ebpf::BPF_ST | size);
entry(&format!("stx{suffix}"),
StoreReg,
ebpf::BPF_MEM | ebpf::BPF_STX | size);
}
// JumpConditional.
for &(name, condition) in &jump_conditions {
entry(name, JumpConditional, ebpf::BPF_JMP | condition);
entry(&format!("{name}32"), JumpConditional, ebpf::BPF_JMP32 | condition);
}
// Endian.
for &size in &[16, 32, 64] {
entry(&format!("be{size}"), Endian(size), ebpf::BE);
entry(&format!("le{size}"), Endian(size), ebpf::LE);
}
}
result
}
fn insn(opc: u8, dst: i64, src: i64, off: i64, imm: i64) -> Result<Insn, String> {
if !(0..16).contains(&dst) {
return Err(format!("Invalid destination register {dst}"));
}
if dst < 0 || src >= 16 {
return Err(format!("Invalid source register {src}"));
}
if !(-32768..32768).contains(&off) {
return Err(format!("Invalid offset {off}"));
}
if !(-2147483648..2147483648).contains(&imm) {
return Err(format!("Invalid immediate {imm}"));
}
Ok(Insn {
opc,
dst: dst as u8,
src: src as u8,
off: off as i16,
imm: imm as i32,
})
}
// TODO Use slice patterns when available and remove this function.
fn operands_tuple(operands: &[Operand]) -> Result<(Operand, Operand, Operand), String> {
match operands.len() {
0 => Ok((Nil, Nil, Nil)),
1 => Ok((operands[0], Nil, Nil)),
2 => Ok((operands[0], operands[1], Nil)),
3 => Ok((operands[0], operands[1], operands[2])),
_ => Err("Too many operands".to_string()),
}
}
fn encode(inst_type: InstructionType, opc: u8, operands: &[Operand]) -> Result<Insn, String> {
let (a, b, c) = (operands_tuple(operands))?;
match (inst_type, a, b, c) {
(AluBinary, Register(dst), Register(src), Nil) => insn(opc | ebpf::BPF_X, dst, src, 0, 0),
(AluBinary, Register(dst), Integer(imm), Nil) => insn(opc | ebpf::BPF_K, dst, 0, 0, imm),
(AluUnary, Register(dst), Nil, Nil) => insn(opc, dst, 0, 0, 0),
(LoadAbs, Integer(imm), Nil, Nil) => insn(opc, 0, 0, 0, imm),
(LoadInd, Register(src), Integer(imm), Nil) => insn(opc, 0, src, 0, imm),
(LoadReg, Register(dst), Memory(src, off), Nil) |
(StoreReg, Memory(dst, off), Register(src), Nil) => insn(opc, dst, src, off, 0),
(StoreImm, Memory(dst, off), Integer(imm), Nil) => insn(opc, dst, 0, off, imm),
(NoOperand, Nil, Nil, Nil) => insn(opc, 0, 0, 0, 0),
(JumpUnconditional, Integer(off), Nil, Nil) => insn(opc, 0, 0, off, 0),
(JumpConditional, Register(dst), Register(src), Integer(off)) => {
insn(opc | ebpf::BPF_X, dst, src, off, 0)
}
(JumpConditional, Register(dst), Integer(imm), Integer(off)) => {
insn(opc | ebpf::BPF_K, dst, 0, off, imm)
}
(Call, Integer(imm), Nil, Nil) => insn(opc, 0, 0, 0, imm),
(Endian(size), Register(dst), Nil, Nil) => insn(opc, dst, 0, 0, size),
(LoadImm, Register(dst), Integer(imm), Nil) => insn(opc, dst, 0, 0, (imm << 32) >> 32),
_ => Err(format!("Unexpected operands: {operands:?}")),
}
}
fn assemble_internal(parsed: &[Instruction]) -> Result<Vec<Insn>, String> {
let instruction_map = make_instruction_map();
let mut result: Vec<Insn> = vec![];
for instruction in parsed {
let name = instruction.name.as_str();
match instruction_map.get(name) {
Some(&(inst_type, opc)) => {
match encode(inst_type, opc, &instruction.operands) {
Ok(insn) => result.push(insn),
Err(msg) => return Err(format!("Failed to encode {name}: {msg}")),
}
// Special case for lddw.
if let LoadImm = inst_type {
if let Integer(imm) = instruction.operands[1] {
result.push(insn(0, 0, 0, 0, imm >> 32).unwrap());
}
}
}
None => return Err(format!("Invalid instruction {name:?}")),
}
}
Ok(result)
}
/// Parse assembly source and translate to binary.
///
/// # Examples
///
/// ```
/// use rbpf::assembler::assemble;
/// let prog = assemble("add64 r1, 0x605
/// mov64 r2, 0x32
/// mov64 r1, r0
/// be16 r0
/// neg64 r2
/// exit");
/// println!("{:?}", prog);
/// # assert_eq!(prog,
/// # Ok(vec![0x07, 0x01, 0x00, 0x00, 0x05, 0x06, 0x00, 0x00,
/// # 0xb7, 0x02, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00,
/// # 0xbf, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// # 0xdc, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
/// # 0x87, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// # 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]));
/// ```
///
/// This will produce the following output:
///
/// ```test
/// Ok([0x07, 0x01, 0x00, 0x00, 0x05, 0x06, 0x00, 0x00,
/// 0xb7, 0x02, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00,
/// 0xbf, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0xdc, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
/// 0x87, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
/// ```
pub fn assemble(src: &str) -> Result<Vec<u8>, String> {
let parsed = (parse(src))?;
let insns = (assemble_internal(&parsed))?;
let mut result: Vec<u8> = vec![];
for insn in insns {
result.extend_from_slice(&insn.to_array());
}
Ok(result)
}