layout | background-class | body-class | title | summary | category | image | author | tags | github-link | github-id | featured_image_1 | featured_image_2 | accelerator | order | demo-model-link | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
hub_detail |
hub-background |
hub |
Densenet |
Dense Convolutional Network (DenseNet), connects each layer to every other layer in a feed-forward fashion. |
researchers |
densenet1.png |
Pytorch Team |
|
pytorch/vision |
densenet1.png |
densenet2.png |
cuda-optional |
10 |
import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'densenet121', pretrained=True)
# or any of these variants
# model = torch.hub.load('pytorch/vision:v0.10.0', 'densenet169', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'densenet201', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'densenet161', pretrained=True)
model.eval()
All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W)
, where H
and W
are expected to be at least 224
.
The images have to be loaded in to a range of [0, 1]
and then normalized using mean = [0.485, 0.456, 0.406]
and std = [0.229, 0.224, 0.225]
.
Here's a sample execution.
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
# Download ImageNet labels
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
Dense Convolutional Network (DenseNet), connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections - one between each layer and its subsequent layer - our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
The 1-crop error rates on the ImageNet dataset with the pretrained model are listed below.
Model structure | Top-1 error | Top-5 error |
---|---|---|
densenet121 | 25.35 | 7.83 |
densenet169 | 24.00 | 7.00 |
densenet201 | 22.80 | 6.43 |
densenet161 | 22.35 | 6.20 |