-
Notifications
You must be signed in to change notification settings - Fork 141
/
05-full-of-stars.ss
executable file
·437 lines (387 loc) · 12.7 KB
/
05-full-of-stars.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
;
; Chapter 5 of The Little Schemer:
; *Oh My Gawd*: It's Full of Stars
;
; Code examples assemled by Peteris Krumins ([email protected]).
; His blog is at http://www.catonmat.net -- good coders code, great reuse.
;
; Get yourself this wonderful book at Amazon: http://bit.ly/4GjWdP
;
; The atom? primitive
;
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
; The add1 primitive
;
(define add1
(lambda (n) (+ n 1)))
; The rember* function removes all matching atoms from an s-expression
;
(define rember*
(lambda (a l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) a)
(rember* a (cdr l)))
(else
(cons (car l) (rember* a (cdr l))))))
(else
(cons (rember* a (car l)) (rember* a (cdr l)))))))
; Examples of rember*
;
(rember*
'cup
'((coffee) cup ((tea) cup) (and (hick)) cup))
;==> '((coffee) ((tea)) (and (hick)))
(rember*
'sauce
'(((tomato sauce)) ((bean) sauce) (and ((flying)) sauce)))
;==> '(((tomato)) ((bean)) (and ((flying))))
; The insertR* function insers new to the right of all olds in l
;
(define insertR*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old)
(cons old (cons new (insertR* new old (cdr l)))))
(else
(cons (car l) (insertR* new old (cdr l))))))
(else
(cons (insertR* new old (car l)) (insertR* new old (cdr l)))))))
; Example of insertR*
;
(insertR*
'roast
'chuck
'((how much (wood)) could ((a (wood) chuck)) (((chuck)))
(if (a) ((wood chuck))) could chuck wood))
; ==> ((how much (wood)) could ((a (wood) chuck roast)) (((chuck roast)))
; (if (a) ((wood chuck roast))) could chuck roast wood)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The first commandment (final version) ;
; ;
; When recurring on a list of atoms, lat, ask two questions about it: ;
; (null? lat) and else. ;
; When recurring on a number, n, ask two questions about it: (zero? n) and ;
; else. ;
; When recurring on a list of S-expressions, l, ask three questions about ;
; it: (null? l), (atom? (car l)), and else. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The fourth commandment (final version) ;
; ;
; Always change at least one argument while recurring. When recurring on a ;
; list of atoms, lat, use (cdr l). When recurring on a number, n, use ;
; (sub1 n). And when recurring on a list of S-expressions, l, use (car l) ;
; and (cdr l) if neither (null? l) nor (atom? (car l)) are true. ;
; ;
; It must be changed to be closer to termination. The changing argument must ;
; be tested in the termination condition: ;
; * when using cdr, test the termination with null? and ;
; * when using sub1, test termination with zero?. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The occur* function counts the number of occurances of an atom in l
;
(define occur*
(lambda (a l)
(cond
((null? l) 0)
((atom? (car l))
(cond
((eq? (car l) a)
(add1 (occur* a (cdr l))))
(else
(occur* a (cdr l)))))
(else
(+ (occur* a (car l))
(occur* a (cdr l)))))))
; Example of occur*
;
(occur*
'banana
'((banana)
(split ((((banana ice)))
(cream (banana))
sherbet))
(banana)
(bread)
(banana brandy)))
;==> 5
; The subst* function substitutes all olds for news in l
;
(define subst*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old)
(cons new (subst* new old (cdr l))))
(else
(cons (car l) (subst* new old (cdr l))))))
(else
(cons (subst* new old (car l)) (subst* new old (cdr l)))))))
; Example of subst*
;
(subst*
'orange
'banana
'((banana)
(split ((((banana ice)))
(cream (banana))
sherbet))
(banana)
(bread)
(banana brandy)))
;==> '((orange)
; (split ((((orange ice)))
; (cream (orange))
; sherbet))
; (orange)
; (bread)
; (orange brandy))
; The insertL* function insers new to the left of all olds in l
;
(define insertL*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old)
(cons new (cons old (insertL* new old (cdr l)))))
(else
(cons (car l) (insertL* new old (cdr l))))))
(else
(cons (insertL* new old (car l)) (insertL* new old (cdr l)))))))
; Example of insertL*
;
(insertL*
'pecker
'chuck
'((how much (wood)) could ((a (wood) chuck)) (((chuck)))
(if (a) ((wood chuck))) could chuck wood))
; ==> ((how much (wood)) could ((a (wood) chuck pecker)) (((chuck pecker)))
; (if (a) ((wood chuck pecker))) could chuck pecker wood)
; The member* function determines if element is in a list l of s-exps
;
(define member*
(lambda (a l)
(cond
((null? l) #f)
((atom? (car l))
(or (eq? (car l) a)
(member* a (cdr l))))
(else
(or (member* a (car l))
(member* a (cdr l)))))))
; Example of member*
;
(member
'chips
'((potato) (chips ((with) fish) (chips)))) ; #t
; The leftmost function finds the leftmost atom in a non-empty list
; of S-expressions that doesn't contain the empty list
;
(define leftmost
(lambda (l)
(cond
((atom? (car l)) (car l))
(else (leftmost (car l))))))
; Examples of leftmost
;
(leftmost '((potato) (chips ((with) fish) (chips)))) ; 'potato
(leftmost '(((hot) (tuna (and))) cheese)) ; 'hot
; Examples of not-applicable leftmost
;
; (leftmost '(((() four)) 17 (seventeen))) ; leftmost s-expression is empty
; (leftmost '()) ; empty list
; Or expressed via cond
;
; (or a b) = (cond (a #t) (else b))
; And expressed via cond
;
; (and a b) = (cond (a b) (else #f))
; The eqlist? function determines if two lists are equal
;
(define eqlist?
(lambda (l1 l2)
(cond
; case 1: l1 is empty, l2 is empty, atom, list
((and (null? l1) (null? l2)) #t)
((and (null? l1) (atom? (car l2))) #f)
((null? l1) #f)
; case 2: l1 is atom, l2 is empty, atom, list
((and (atom? (car l1)) (null? l2)) #f)
((and (atom? (car l1)) (atom? (car l2)))
(and (eq? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2))))
((atom? (car l1)) #f)
; case 3: l1 is a list, l2 is empty, atom, list
((null? l2) #f)
((atom? (car l2)) #f)
(else
(and (eqlist? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2)))))))
; Example of eqlist?
;
(eqlist?
'(strawberry ice cream)
'(strawberry ice cream)) ; #t
(eqlist?
'(strawberry ice cream)
'(strawberry cream ice)) ; #f
(eqlist?
'(banan ((split)))
'((banana) split)) ; #f
(eqlist?
'(beef ((sausage)) (and (soda)))
'(beef ((salami)) (and (soda)))) ; #f
(eqlist?
'(beef ((sausage)) (and (soda)))
'(beef ((sausage)) (and (soda)))) ; #t
; eqlist? rewritten
;
(define eqlist2?
(lambda (l1 l2)
(cond
; case 1: l1 is empty, l2 is empty, atom, list
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
; case 2: l1 is atom, l2 is empty, atom, list
((and (atom? (car l1)) (atom? (car l2)))
(and (eq? (car l1) (car l2))
(eqlist2? (cdr l1) (cdr l2))))
((or (atom? (car l1)) (atom? (car l2)))
#f)
; case 3: l1 is a list, l2 is empty, atom, list
(else
(and (eqlist2? (car l1) (car l2))
(eqlist2? (cdr l1) (cdr l2)))))))
; Tests of eqlist2?
;
(eqlist2?
'(strawberry ice cream)
'(strawberry ice cream)) ; #t
(eqlist2?
'(strawberry ice cream)
'(strawberry cream ice)) ; #f
(eqlist2?
'(banan ((split)))
'((banana) split)) ; #f
(eqlist2?
'(beef ((sausage)) (and (soda)))
'(beef ((salami)) (and (soda)))) ; #f
(eqlist2?
'(beef ((sausage)) (and (soda)))
'(beef ((sausage)) (and (soda)))) ; #t
; The equal? function determines if two s-expressions are equal
;
(define equal??
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2))
(eq? s1 s2))
((atom? s1) #f)
((atom? s2) #f)
(else (eqlist? s1 s2)))))
; Examples of equal??
;
(equal?? 'a 'a) ; #t
(equal?? 'a 'b) ; #f
(equal?? '(a) 'a) ; #f
(equal?? '(a) '(a)) ; #t
(equal?? '(a) '(b)) ; #f
(equal?? '(a) '()) ; #f
(equal?? '() '(a)) ; #f
(equal?? '(a b c) '(a b c)) ; #t
(equal?? '(a (b c)) '(a (b c))) ; #t
(equal?? '(a ()) '(a ())) ; #t
; equal? simplified
;
(define equal2??
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2))
(eq? s1 s2))
((or (atom? s1) (atom? s2)) #f)
(else (eqlist? s1 s2)))))
; Tests of equal2??
;
(equal2?? 'a 'a) ; #t
(equal2?? 'a 'b) ; #f
(equal2?? '(a) 'a) ; #f
(equal2?? '(a) '(a)) ; #t
(equal2?? '(a) '(b)) ; #f
(equal2?? '(a) '()) ; #f
(equal2?? '() '(a)) ; #f
(equal2?? '(a b c) '(a b c)) ; #t
(equal2?? '(a (b c)) '(a (b c))) ; #t
(equal2?? '(a ()) '(a ())) ; #t
; eqlist? rewritten using equal2??
;
(define eqlist3?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
(else
(and (equal2?? (car l1) (car l2))
(equal2?? (cdr l1) (cdr l2)))))))
; Tests of eqlist3?
;
(eqlist3?
'(strawberry ice cream)
'(strawberry ice cream)) ; #t
(eqlist3?
'(strawberry ice cream)
'(strawberry cream ice)) ; #f
(eqlist3?
'(banan ((split)))
'((banana) split)) ; #f
(eqlist3?
'(beef ((sausage)) (and (soda)))
'(beef ((salami)) (and (soda)))) ; #f
(eqlist3?
'(beef ((sausage)) (and (soda)))
'(beef ((sausage)) (and (soda)))) ; #t
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The sixth commandment ;
; ;
; Simplify only after the function is correct. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; rember simplified, it now also works on s-expressions, not just atoms
;
(define rember
(lambda (s l)
(cond
((null? l) '())
((equal2?? (car l) s) (cdr l))
(else (cons (car l) (rember s (cdr l)))))))
; Example of rember
;
(rember
'(foo (bar (baz)))
'(apples (foo (bar (baz))) oranges))
;==> '(apples oranges)
;
; Go get yourself this wonderful book and have fun with these examples!
;
; Shortened URL to the book at Amazon.com: http://bit.ly/4GjWdP
;
; Sincerely,
; Peteris Krumins
; http://www.catonmat.net
;