-
Notifications
You must be signed in to change notification settings - Fork 17
/
jdcal.py
431 lines (349 loc) · 12 KB
/
jdcal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# -*- coding:utf-8 -*-
"""Functions for converting between Julian dates and calendar dates.
A function for converting Gregorian calendar dates to Julian dates, and
another function for converting Julian calendar dates to Julian dates
are defined. Two functions for the reverse calculations are also
defined.
Different regions of the world switched to Gregorian calendar from
Julian calendar on different dates. Having separate functions for Julian
and Gregorian calendars allow maximum flexibility in choosing the
relevant calendar.
All the above functions are "proleptic". This means that they work for
dates on which the concerned calendar is not valid. For example,
Gregorian calendar was not used prior to around October 1582.
Julian dates are stored in two floating point numbers (double). Julian
dates, and Modified Julian dates, are large numbers. If only one number
is used, then the precision of the time stored is limited. Using two
numbers, time can be split in a manner that will allow maximum
precision. For example, the first number could be the Julian date for
the beginning of a day and the second number could be the fractional
day. Calculations that need the latter part can now work with maximum
precision.
A function to test if a given Gregorian calendar year is a leap year is
defined.
Zero point of Modified Julian Date (MJD) and the MJD of 2000/1/1
12:00:00 are also given.
This module is based on the TPM C library, by Jeffery W. Percival. The
idea for splitting Julian date into two floating point numbers was
inspired by the IAU SOFA C library.
:author: Prasanth Nair
:contact: [email protected]
:license: BSD (https://opensource.org/licenses/bsd-license.php)
"""
from __future__ import division
from __future__ import print_function
import math
__version__ = "1.4.1"
MJD_0 = 2400000.5
MJD_JD2000 = 51544.5
def is_leap(year):
"""Leap year or not in the Gregorian calendar."""
x = year % 4
y = year % 100
z = year % 400
# Divisible by 4 and,
# either not divisible by 100 or divisible by 400.
return not x and (y or not z)
def gcal2jd(year, month, day):
"""Gregorian calendar date to Julian date.
The input and output are for the proleptic Gregorian calendar,
i.e., no consideration of historical usage of the calendar is
made.
Parameters
----------
year : int
Year as an integer.
month : int
Month as an integer.
day : int
Day as an integer.
Returns
-------
jd1, jd2: 2-element tuple of floats
When added together, the numbers give the Julian date for the
given Gregorian calendar date. The first number is always
MJD_0 i.e., 2400000.5. So the second is the MJD.
Examples
--------
>>> gcal2jd(2000,1,1)
(2400000.5, 51544.0)
>>> 2400000.5 + 51544.0 + 0.5
2451545.0
>>> year = [-4699, -2114, -1050, -123, -1, 0, 1, 123, 1678.0, 2000,
....: 2012, 2245]
>>> month = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
>>> day = [1, 12, 23, 14, 25, 16, 27, 8, 9, 10, 11, 31]
>>> x = [gcal2jd(y, m, d) for y, m, d in zip(year, month, day)]
>>> for i in x: print i
(2400000.5, -2395215.0)
(2400000.5, -1451021.0)
(2400000.5, -1062364.0)
(2400000.5, -723762.0)
(2400000.5, -679162.0)
(2400000.5, -678774.0)
(2400000.5, -678368.0)
(2400000.5, -633797.0)
(2400000.5, -65812.0)
(2400000.5, 51827.0)
(2400000.5, 56242.0)
(2400000.5, 141393.0)
Negative months and days are valid. For example, 2000/-2/-4 =>
1999/+12-2/-4 => 1999/10/-4 => 1999/9/30-4 => 1999/9/26.
>>> gcal2jd(2000, -2, -4)
(2400000.5, 51447.0)
>>> gcal2jd(1999, 9, 26)
(2400000.5, 51447.0)
>>> gcal2jd(2000, 2, -1)
(2400000.5, 51573.0)
>>> gcal2jd(2000, 1, 30)
(2400000.5, 51573.0)
>>> gcal2jd(2000, 3, -1)
(2400000.5, 51602.0)
>>> gcal2jd(2000, 2, 28)
(2400000.5, 51602.0)
Month 0 becomes previous month.
>>> gcal2jd(2000, 0, 1)
(2400000.5, 51513.0)
>>> gcal2jd(1999, 12, 1)
(2400000.5, 51513.0)
Day number 0 becomes last day of previous month.
>>> gcal2jd(2000, 3, 0)
(2400000.5, 51603.0)
>>> gcal2jd(2000, 2, 29)
(2400000.5, 51603.0)
If `day` is greater than the number of days in `month`, then it
gets carried over to the next month.
>>> gcal2jd(2000,2,30)
(2400000.5, 51604.0)
>>> gcal2jd(2000,3,1)
(2400000.5, 51604.0)
>>> gcal2jd(2001,2,30)
(2400000.5, 51970.0)
>>> gcal2jd(2001,3,2)
(2400000.5, 51970.0)
Notes
-----
The returned Julian date is for mid-night of the given date. To
find the Julian date for any time of the day, simply add time as a
fraction of a day. For example Julian date for mid-day can be
obtained by adding 0.5 to either the first part or the second
part. The latter is preferable, since it will give the MJD for the
date and time.
BC dates should be given as -(BC - 1) where BC is the year. For
example 1 BC == 0, 2 BC == -1, and so on.
Negative numbers can be used for `month` and `day`. For example
2000, -1, 1 is the same as 1999, 11, 1.
The Julian dates are proleptic Julian dates, i.e., values are
returned without considering if Gregorian dates are valid for the
given date.
The input values are truncated to integers.
"""
year = int(year)
month = int(month)
day = int(day)
a = int((month - 14) / 12.0)
jd = int((1461 * (year + 4800 + a)) / 4.0)
jd += int((367 * (month - 2 - 12 * a)) / 12.0)
x = int((year + 4900 + a) / 100.0)
jd -= int((3 * x) / 4.0)
jd += day - 2432075.5 # was 32075; add 2400000.5
jd -= 0.5 # 0 hours; above JD is for midday, switch to midnight.
return MJD_0, jd
def jd2gcal(jd1, jd2):
"""Julian date to Gregorian calendar date and time of day.
The input and output are for the proleptic Gregorian calendar,
i.e., no consideration of historical usage of the calendar is
made.
Parameters
----------
jd1, jd2: float
Sum of the two numbers is taken as the given Julian date. For
example `jd1` can be the zero point of MJD (MJD_0) and `jd2`
can be the MJD of the date and time. But any combination will
work.
Returns
-------
y, m, d, f : int, int, int, float
Four element tuple containing year, month, day and the
fractional part of the day in the Gregorian calendar. The first
three are integers, and the last part is a float.
Examples
--------
>>> jd2gcal(*gcal2jd(2000,1,1))
(2000, 1, 1, 0.0)
>>> jd2gcal(*gcal2jd(1950,1,1))
(1950, 1, 1, 0.0)
Out of range months and days are carried over to the next/previous
year or next/previous month. See gcal2jd for more examples.
>>> jd2gcal(*gcal2jd(1999,10,12))
(1999, 10, 12, 0.0)
>>> jd2gcal(*gcal2jd(2000,2,30))
(2000, 3, 1, 0.0)
>>> jd2gcal(*gcal2jd(-1999,10,12))
(-1999, 10, 12, 0.0)
>>> jd2gcal(*gcal2jd(2000, -2, -4))
(1999, 9, 26, 0.0)
>>> gcal2jd(2000,1,1)
(2400000.5, 51544.0)
>>> jd2gcal(2400000.5, 51544.0)
(2000, 1, 1, 0.0)
>>> jd2gcal(2400000.5, 51544.5)
(2000, 1, 1, 0.5)
>>> jd2gcal(2400000.5, 51544.245)
(2000, 1, 1, 0.24500000000261934)
>>> jd2gcal(2400000.5, 51544.1)
(2000, 1, 1, 0.099999999998544808)
>>> jd2gcal(2400000.5, 51544.75)
(2000, 1, 1, 0.75)
Notes
-----
The last element of the tuple is the same as
(hh + mm / 60.0 + ss / 3600.0) / 24.0
where hh, mm, and ss are the hour, minute and second of the day.
See Also
--------
gcal2jd
"""
jd1_f, jd1_i = math.modf(jd1)
jd2_f, jd2_i = math.modf(jd2)
jd_i = jd1_i + jd2_i
f = jd1_f + jd2_f
# Set JD to noon of the current date. Fractional part is the
# fraction from midnight of the current date.
if -0.5 < f < 0.5:
f += 0.5
elif f >= 0.5:
jd_i += 1
f -= 0.5
elif f <= -0.5:
jd_i -= 1
f += 1.5
ell = jd_i + 68569
n = int((4 * ell) / 146097.0)
ell -= int(((146097 * n) + 3) / 4.0)
i = int((4000 * (ell + 1)) / 1461001)
ell -= int((1461 * i) / 4.0) - 31
j = int((80 * ell) / 2447.0)
day = ell - int((2447 * j) / 80.0)
ell = int(j / 11.0)
month = j + 2 - (12 * ell)
year = 100 * (n - 49) + i + ell
return int(year), int(month), int(day), f
def jcal2jd(year, month, day):
"""Julian calendar date to Julian date.
The input and output are for the proleptic Julian calendar,
i.e., no consideration of historical usage of the calendar is
made.
Parameters
----------
year : int
Year as an integer.
month : int
Month as an integer.
day : int
Day as an integer.
Returns
-------
jd1, jd2: 2-element tuple of floats
When added together, the numbers give the Julian date for the
given Julian calendar date. The first number is always
MJD_0 i.e., 2451545.5. So the second is the MJD.
Examples
--------
>>> jcal2jd(2000, 1, 1)
(2400000.5, 51557.0)
>>> year = [-4699, -2114, -1050, -123, -1, 0, 1, 123, 1678, 2000,
...: 2012, 2245]
>>> month = [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12]
>>> day = [1, 12, 23, 14, 25, 16, 27, 8, 9, 10, 11, 31]
>>> x = [jcal2jd(y, m, d) for y, m, d in zip(year, month, day)]
>>> for i in x: print i
(2400000.5, -2395252.0)
(2400000.5, -1451039.0)
(2400000.5, -1062374.0)
(2400000.5, -723765.0)
(2400000.5, -679164.0)
(2400000.5, -678776.0)
(2400000.5, -678370.0)
(2400000.5, -633798.0)
(2400000.5, -65772.0)
(2400000.5, 51871.0)
(2400000.5, 56285.0)
Notes
-----
Unlike `gcal2jd`, negative months and days can result in incorrect
Julian dates.
"""
year = int(year)
month = int(month)
day = int(day)
jd = 367 * year
x = int((month - 9) / 7.0)
jd -= int((7 * (year + 5001 + x)) / 4.0)
jd += int((275 * month) / 9.0)
jd += day
jd += 1729777 - 2400000.5 # Return 240000.5 as first part of JD.
jd -= 0.5 # Convert midday to midnight.
return MJD_0, jd
def jd2jcal(jd1, jd2):
"""Julian calendar date for the given Julian date.
The input and output are for the proleptic Julian calendar,
i.e., no consideration of historical usage of the calendar is
made.
Parameters
----------
jd1, jd2: float
Sum of the two numbers is taken as the given Julian date. For
example `jd1` can be the zero point of MJD (MJD_0) and `jd2`
can be the MJD of the date and time. But any combination will
work.
Returns
-------
y, m, d, f : int, int, int, float
Four element tuple containing year, month, day and the
fractional part of the day in the Julian calendar. The first
three are integers, and the last part is a float.
Examples
--------
>>> jd2jcal(*jcal2jd(2000, 1, 1))
(2000, 1, 1, 0.0)
>>> jd2jcal(*jcal2jd(-4000, 10, 11))
(-4000, 10, 11, 0.0)
>>> jcal2jd(2000, 1, 1)
(2400000.5, 51557.0)
>>> jd2jcal(2400000.5, 51557.0)
(2000, 1, 1, 0.0)
>>> jd2jcal(2400000.5, 51557.5)
(2000, 1, 1, 0.5)
>>> jd2jcal(2400000.5, 51557.245)
(2000, 1, 1, 0.24500000000261934)
>>> jd2jcal(2400000.5, 51557.1)
(2000, 1, 1, 0.099999999998544808)
>>> jd2jcal(2400000.5, 51557.75)
(2000, 1, 1, 0.75)
"""
jd1_f, jd1_i = math.modf(jd1)
jd2_f, jd2_i = math.modf(jd2)
jd_i = jd1_i + jd2_i
f = jd1_f + jd2_f
# Set JD to noon of the current date. Fractional part is the
# fraction from midnight of the current date.
if -0.5 < f < 0.5:
f += 0.5
elif f >= 0.5:
jd_i += 1
f -= 0.5
elif f <= -0.5:
jd_i -= 1
f += 1.5
j = jd_i + 1402.0
k = int((j - 1) / 1461.0)
ell = j - (1461.0 * k)
n = int((ell - 1) / 365.0) - int(ell / 1461.0)
i = ell - (365.0 * n) + 30.0
j = int((80.0 * i) / 2447.0)
day = i - int((2447.0 * j) / 80.0)
i = int(j / 11.0)
month = j + 2 - (12.0 * i)
year = (4 * k) + n + i - 4716.0
return int(year), int(month), int(day), f