-
Notifications
You must be signed in to change notification settings - Fork 0
/
opl3emu.pas
1093 lines (955 loc) · 34.8 KB
/
opl3emu.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this file; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
// OPL3 EMULATOR
// Based on NukedOPL3 1.6 by Nuke.YKT (Alexey Khokholov)
// Special thanks to insane/Altair for initial C to Pascal conversion
//
unit OPL3EMU;
{$S-,Q-,R-,V-,B-,X+}
{$PACKRECORDS 1}
interface
procedure OPL3EMU_init;
procedure OPL3EMU_WriteReg(reg: Word; data: Byte);
procedure OPL3EMU_PollProc(p_data: pDword; var ch_table);
implementation
const
LOG_SIN_VAL: array[0..255] of Word = (
$859,$6c3,$607,$58b,$52e,$4e4,$4a6,$471,$443,$41a,$3f5,$3d3,$3b5,$398,$37e,$365,
$34e,$339,$324,$311,$2ff,$2ed,$2dc,$2cd,$2bd,$2af,$2a0,$293,$286,$279,$26d,$261,
$256,$24b,$240,$236,$22c,$222,$218,$20f,$206,$1fd,$1f5,$1ec,$1e4,$1dc,$1d4,$1cd,
$1c5,$1be,$1b7,$1b0,$1a9,$1a2,$19b,$195,$18f,$188,$182,$17c,$177,$171,$16b,$166,
$160,$15b,$155,$150,$14b,$146,$141,$13c,$137,$133,$12e,$129,$125,$121,$11c,$118,
$114,$10f,$10b,$107,$103,$0ff,$0fb,$0f8,$0f4,$0f0,$0ec,$0e9,$0e5,$0e2,$0de,$0db,
$0d7,$0d4,$0d1,$0cd,$0ca,$0c7,$0c4,$0c1,$0be,$0bb,$0b8,$0b5,$0b2,$0af,$0ac,$0a9,
$0a7,$0a4,$0a1,$09f,$09c,$099,$097,$094,$092,$08f,$08d,$08a,$088,$086,$083,$081,
$07f,$07d,$07a,$078,$076,$074,$072,$070,$06e,$06c,$06a,$068,$066,$064,$062,$060,
$05e,$05c,$05b,$059,$057,$055,$053,$052,$050,$04e,$04d,$04b,$04a,$048,$046,$045,
$043,$042,$040,$03f,$03e,$03c,$03b,$039,$038,$037,$035,$034,$033,$031,$030,$02f,
$02e,$02d,$02b,$02a,$029,$028,$027,$026,$025,$024,$023,$022,$021,$020,$01f,$01e,
$01d,$01c,$01b,$01a,$019,$018,$017,$017,$016,$015,$014,$014,$013,$012,$011,$011,
$010,$00f,$00f,$00e,$00d,$00d,$00c,$00c,$00b,$00a,$00a,$009,$009,$008,$008,$007,
$007,$007,$006,$006,$005,$005,$005,$004,$004,$004,$003,$003,$003,$002,$002,$002,
$002,$001,$001,$001,$001,$001,$001,$001,$000,$000,$000,$000,$000,$000,$000,$000);
EXP_VAL: array[0..255] of Word = (
$000,$003,$006,$008,$00b,$00e,$011,$014,$016,$019,$01c,$01f,$022,$025,$028,$02a,
$02d,$030,$033,$036,$039,$03c,$03f,$042,$045,$048,$04b,$04e,$051,$054,$057,$05a,
$05d,$060,$063,$066,$069,$06c,$06f,$072,$075,$078,$07b,$07e,$082,$085,$088,$08b,
$08e,$091,$094,$098,$09b,$09e,$0a1,$0a4,$0a8,$0ab,$0ae,$0b1,$0b5,$0b8,$0bb,$0be,
$0c2,$0c5,$0c8,$0cc,$0cf,$0d2,$0d6,$0d9,$0dc,$0e0,$0e3,$0e7,$0ea,$0ed,$0f1,$0f4,
$0f8,$0fb,$0ff,$102,$106,$109,$10c,$110,$114,$117,$11b,$11e,$122,$125,$129,$12c,
$130,$134,$137,$13b,$13e,$142,$146,$149,$14d,$151,$154,$158,$15c,$160,$163,$167,
$16b,$16f,$172,$176,$17a,$17e,$181,$185,$189,$18d,$191,$195,$199,$19c,$1a0,$1a4,
$1a8,$1ac,$1b0,$1b4,$1b8,$1bc,$1c0,$1c4,$1c8,$1cc,$1d0,$1d4,$1d8,$1dc,$1e0,$1e4,
$1e8,$1ec,$1f0,$1f5,$1f9,$1fd,$201,$205,$209,$20e,$212,$216,$21a,$21e,$223,$227,
$22b,$230,$234,$238,$23c,$241,$245,$249,$24e,$252,$257,$25b,$25f,$264,$268,$26d,
$271,$276,$27a,$27f,$283,$288,$28c,$291,$295,$29a,$29e,$2a3,$2a8,$2ac,$2b1,$2b5,
$2ba,$2bf,$2c4,$2c8,$2cd,$2d2,$2d6,$2db,$2e0,$2e5,$2e9,$2ee,$2f3,$2f8,$2fd,$302,
$306,$30b,$310,$315,$31a,$31f,$324,$329,$32e,$333,$338,$33d,$342,$347,$34c,$351,
$356,$35b,$360,$365,$36a,$370,$375,$37a,$37f,$384,$38a,$38f,$394,$399,$39f,$3a4,
$3a9,$3ae,$3b4,$3b9,$3bf,$3c4,$3c9,$3cf,$3d4,$3da,$3df,$3e4,$3ea,$3ef,$3f5,$3fa);
MULT_VAL: array[0..15] of Byte = (1,2,4,6,8,10,12,14,16,18,20,20,24,24,30,30);
KSL_VAL: array[0..15] of Byte = (0,32,40,45,48,51,53,55,56,58,59,60,61,62,63,64);
KSL_SHIFT: array[0..3] of Byte = (8,1,2,0);
SL_VAL: array[0..15] of Byte = (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,31);
VIB_SHIFT: array[0..7] of Byte = (3,1,0,1,3,1,0,1);
VIB_S_SHIFT: array[0..7] of Shortint = (1,1,1,1,-1,-1,-1,-1);
EG_IDX: array[0..15] of Byte =(0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2);
EG_SHIFT: array[0..15] of Shortint = (0,11,10,9,8,7,6,5,4,3,2,1,0,0,-1,-2);
EG_VAL: array[0..2,0..3,0..7] of Byte = (((0,0,0,0,0,0,0,0),(0,0,0,0,0,0,0,0),(0,0,0,0,0,0,0,0),(0,0,0,0,0,0,0,0)),
((0,1,0,1,0,1,0,1),(0,1,0,1,1,1,0,1),(0,1,1,1,0,1,1,1),(0,1,1,1,1,1,1,1)),
((1,1,1,1,1,1,1,1),(2,2,1,1,1,1,1,1),(2,2,1,1,2,2,1,1),(2,2,2,2,2,2,1,1)));
CH_5BIT_MASK: array[0..31] of Byte = (1,2,3,4,5,6,0,0,7,8,9,10,11,12,0,0,13,14,15,16,17,18,0,0,0,0,0,0,0,0,0,0);
CH_SLOT_IDX: array[0..17] of Byte = (0,1,2,6,7,8,12,13,14,18,19,20,24,25,26,30,31,32);
CH_4OP_MASK: array[0..17] of Byte = (4,5,6,1,2,3,0,0,0,13,14,15,10,11,12,0,0,0);
CH_4OP_IDX: array[0..5] of Byte = (0,1,2,9,10,11);
CH_MAPPING: array[0..17] of Byte = (
3,0, // 2OP | 4OP #1
4,1, // 2OP | 4OP #2
5,2, // 2OP | 4OP #3
6, // 2OP | RHYTHM: BD
7, // 2OP | RHYTHM: HH + SD
8, // 2OP | RHYTHM: TT + TC
12,9, // 2OP | 4OP #4
13,10, // 2OP | 4OP #5
14,11, // 2OP | 4OP #6
15, // 2OP
16, // 2OP
17); // 2OP
NOISE_HASH_VAL = $306600;
NOISE_XOR = $800302;
WORD_NULL = WORD(NOT 0);
type
OPL3_CHAN_TYPE = (CH_2OP,CH_4OP_1,CH_4OP_2,CH_RHYTHM);
EG_GEN_STATE = (EG_OFF,EG_ATTACK,EG_DECAY,EG_SUSTAIN,EG_RELEASE);
CHAN_PTR_TABLE = array[0..17] of pDword;
P_OPL3_CHIP = ^OPL3_CHIP;
P_OPL3_SLOT = ^OPL3_SLOT;
P_OPL3_CHAN = ^OPL3_CHAN;
OPL3_SLOT = Record
p_chan: P_OPL3_CHAN;
p_chip: P_OPL3_CHIP;
p_mod: pSmallint;
p_trem: pByte;
fb_out,
prev_out,
output: Smallint;
pg_phase: Dword;
eg_state: EG_GEN_STATE;
eg_rout,
eg_out: Smallint;
eg_inc,
eg_rate,
eg_ksl: Byte;
reg_vib,
reg_type,
reg_ksr,
reg_mult,
reg_ksl,
reg_tl,
reg_ar,
reg_dr,
reg_sl,
reg_rr,
reg_wf,
key: Byte;
end;
OPL3_CHAN = Record
p_slot: array[0..1] of P_OPL3_SLOT;
p_chan: P_OPL3_CHAN;
p_chip: P_OPL3_CHIP;
p_out: array[0..3] of ^Smallint;
ch_type: OPL3_CHAN_TYPE;
fnum: Word;
block,
fb,
con,
alg,
ksr: Byte;
out_l,
out_r: Word;
end;
OPL3_CHIP = Record
chan: array[0..17] of OPL3_CHAN;
slot: array[0..35] of OPL3_SLOT;
timer: Word;
nts_bit,
dva_bit,
dvb_bit: 0..1;
rhy_flag: Byte;
trem_dir: 0..1;
trem_pos,
trem_val,
vib_pos: Byte;
noise: Dword;
output: array[0..1] of Longint;
out_l: array[0..17] of Smallint;
out_r: array[0..17] of Smallint;
out_null: Smallint;
end;
var
opl3: OPL3_CHIP;
function limit_value(value,lo_bound,hi_bound: Longint): Longint;
begin
If (value > hi_bound) then
value := hi_bound
else If (value < lo_bound) then
value := lo_bound;
limit_value := value;
end;
function envelope_calc_sin(wf: Byte; phase: Word; eg_out: Smallint): Smallint;
var
output,
level,
invert: Word;
begin
phase := phase AND $3ff;
output := 0;
invert := 0;
Case wf of
// Sine
0: begin
If (phase AND $200 <> 0) then
invert := NOT invert;
If (phase AND $100 <> 0) then
output := LOG_SIN_VAL[(phase AND $0ff) XOR $0ff]
else output := LOG_SIN_VAL[phase and $0ff];
end;
// Half-Sine
1: begin
If (phase AND $200 <> 0) then
output := $1000
else If (phase AND $100 <> 0) then
output := LOG_SIN_VAL[(phase AND $0ff) xor $0ff]
else output := LOG_SIN_VAL[phase AND $0ff];
end;
// Abs-Sine
2: begin
If (phase AND $100 <> 0) then
output := LOG_SIN_VAL[(phase AND $0ff) XOR $0ff]
else output := LOG_SIN_VAL[phase AND $0ff];
end;
// Pulse-Sine
3: begin
If (phase AND $100 <> 0) then
output := $1000
else output := LOG_SIN_VAL[phase AND $0ff];
end;
// Sine (EPO)
4: begin
If (phase AND $300 = $100) then
invert := NOT invert;
If (phase AND $200 <> 0) then
output := $1000
else If (phase AND $80 <> 0) then
output := LOG_SIN_VAL[((phase XOR $0ff) SHL 1) AND $0ff]
else output := LOG_SIN_VAL[(phase SHL 1) AND $0ff];
end;
// Abs-Sine (EPO)
5: begin
If (phase AND $200 <> 0) then
output := $1000
else If (phase AND $80 <> 0) then
output := LOG_SIN_VAL[((phase XOR $0ff) SHL 1) AND $0ff]
else output := LOG_SIN_VAL[(phase SHL 1) AND $0ff];
end;
// Square
6: begin
If (phase AND $200 <> 0) then
invert := WORD_NULL;
output := 0;
end;
// Derived Square
7: begin
If (phase AND $200 <> 0) then
begin
invert := NOT invert;
phase := (phase AND $1ff) XOR $1ff;
end;
output := phase SHL 3;
end;
end;
level := limit_value(output + (eg_out SHL 3),0,$1fff);
envelope_calc_sin := SMALLINT(((EXP_VAL[(level AND $0ff) XOR $0ff] OR $400) SHL 1) SHR
(level SHR 8)) XOR invert;
end;
function envelope_calc_rate(p_slot: P_OPL3_SLOT; reg_rate: Byte): Byte;
var
rate: Byte;
begin
If (reg_rate = 0) then
begin
envelope_calc_rate := 0;
EXIT;
end;
rate := (reg_rate SHL 2);
If (p_slot^.reg_ksr <> 0) then
Inc(rate,p_slot^.p_chan^.ksr)
else
Inc(rate,(p_slot^.p_chan^.ksr SHR 2));
envelope_calc_rate := limit_value(rate,0,60);
end;
procedure envelope_update_ksl(p_slot: P_OPL3_SLOT);
var
ksl: Smallint;
begin
ksl := (KSL_VAL[p_slot^.p_chan^.fnum SHR 6] SHL 2) -
(8 - p_slot^.p_chan^.block) SHL 5;
p_slot^.eg_ksl := limit_value(ksl,0,255);
end;
procedure envelope_update_rate(p_slot: P_OPL3_SLOT);
begin
Case p_slot^.eg_state of
EG_OFF: p_slot^.eg_rate := 0;
EG_ATTACK: p_slot^.eg_rate := envelope_calc_rate(p_slot,p_slot^.reg_ar);
EG_DECAY: p_slot^.eg_rate := envelope_calc_rate(p_slot,p_slot^.reg_dr);
EG_SUSTAIN,
EG_RELEASE: p_slot^.eg_rate := envelope_calc_rate(p_slot,p_slot^.reg_rr);
end;
end;
procedure envelope_calc(p_slot: P_OPL3_SLOT);
var
rate_hi,
rate_lo: Byte;
begin
rate_hi := p_slot^.eg_rate SHR 2;
rate_lo := p_slot^.eg_rate AND 3;
// calculate increment step for output
If (EG_SHIFT[rate_hi] > 0) then
begin
If ((p_slot^.p_chip^.timer AND ((1 SHL EG_SHIFT[rate_hi]) - 1)) = 0) then
p_slot^.eg_inc := EG_VAL[EG_IDX[rate_hi],rate_lo,
((p_slot^.p_chip^.timer) SHR EG_SHIFT[rate_hi]) AND 7]
else
p_slot^.eg_inc := 0;
end
else
p_slot^.eg_inc := EG_VAL[EG_IDX[rate_hi],rate_lo,
p_slot^.p_chip^.timer AND 7] SHL Abs(EG_SHIFT[rate_hi]);
p_slot^.eg_out := p_slot^.eg_rout +
p_slot^.reg_tl SHL 2 +
p_slot^.eg_ksl SHR KSL_SHIFT[p_slot^.reg_ksl] +
p_slot^.p_trem^; // apply LFO tremolo
Case p_slot^.eg_state of
EG_OFF:
p_slot^.eg_rout := $1ff;
EG_ATTACK:
If (p_slot^.eg_rout <> 0) then
begin
Inc(p_slot^.eg_rout,((NOT p_slot^.eg_rout) * p_slot^.eg_inc) SHR 3);
limit_value(p_slot^.eg_rout,0,$1ff);
end
else
begin
// continue with decay if max. level is reached
p_slot^.eg_state := EG_DECAY;
envelope_update_rate(p_slot);
end;
EG_DECAY:
If (p_slot^.eg_rout < SMALLINT(p_slot^.reg_sl) SHL 4) then
Inc(p_slot^.eg_rout,p_slot^.eg_inc)
else
begin
// sustain level was reached
p_slot^.eg_state := EG_SUSTAIN;
envelope_update_rate(p_slot);
end;
EG_SUSTAIN,
EG_RELEASE:
If (p_slot^.eg_state = EG_SUSTAIN) and
(p_slot^.reg_type <> 0) then
// sustain phase
else
If (p_slot^.eg_rout < $1ff) then
Inc(p_slot^.eg_rout,p_slot^.eg_inc)
else
begin
// switch off generator if min. level is reached
p_slot^.eg_state := EG_OFF;
p_slot^.eg_rout := $1ff;
envelope_update_rate(p_slot);
end;
end;
end;
procedure eg_key_on_off(p_slot: P_OPL3_SLOT; key_on: Boolean);
begin
If key_on then
begin
If (p_slot^.key = 0) then
begin
p_slot^.eg_state := EG_ATTACK;
envelope_update_rate(p_slot);
If (p_slot^.eg_rate SHR 2 = $0f) then
begin
p_slot^.eg_state := EG_DECAY;
envelope_update_rate(p_slot);
p_slot^.eg_rout := 0;
end;
p_slot^.pg_phase := 0;
end;
If (p_slot^.p_chan^.ch_type <> CH_RHYTHM) then
p_slot^.key := p_slot^.key OR 1
else
p_slot^.key := p_slot^.key OR 2;
If (p_slot^.reg_ar = 0) then
begin
// faked decay prevents restart of envelope if AR=0
p_slot^.eg_state := EG_DECAY;
Inc(p_slot^.eg_rout);
end;
end
else
// key off
If (p_slot^.key <> 0) then
begin
If (p_slot^.p_chan^.ch_type <> CH_RHYTHM) then
p_slot^.key := p_slot^.key AND $0fe
else
p_slot^.key := p_slot^.key AND $0fd;
If (p_slot^.key = 0) then
begin
p_slot^.eg_state := EG_RELEASE;
envelope_update_rate(p_slot);
end;
end;
end;
procedure pg_generate(p_slot: P_OPL3_SLOT);
var
fnum: Word;
fnum_hi: Byte;
begin
fnum := p_slot^.p_chan^.fnum;
If (p_slot^.reg_vib <> 0) then
begin
// apply LFO vibrato
fnum_hi := fnum SHR (7 + VIB_SHIFT[(p_slot^.p_chip^.timer SHR 10) AND 7] +
(1 - p_slot^.p_chip^.dvb_bit));
Inc(fnum,fnum_hi * VIB_S_SHIFT[(p_slot^.p_chip^.timer SHR 10) AND 7]);
end;
Inc(p_slot^.pg_phase,(((fnum SHL p_slot^.p_chan^.block) SHR 1) *
MULT_VAL[p_slot^.reg_mult]) SHR 1);
end;
procedure update_lfo_eg_ksr_mult(p_slot: P_OPL3_SLOT; data: Byte);
begin
// assign LFO tremolo
If ((data SHR 7) AND 1 <> 0) then
p_slot^.p_trem := @p_slot^.p_chip^.trem_val
else p_slot^.p_trem := @p_slot^.p_chip^.out_null;
p_slot^.reg_vib := (data SHR 6) AND 1;
p_slot^.reg_type := (data SHR 5) AND 1;
p_slot^.reg_ksr := (data SHR 4) AND 1;
p_slot^.reg_mult := data AND $0f;
envelope_update_rate(p_slot);
end;
procedure update_ksl_tl(p_slot: P_OPL3_SLOT; data: Byte);
begin
p_slot^.reg_ksl := (data SHR 6) AND 3;
p_slot^.reg_tl := data AND $3f;
envelope_update_ksl(p_slot);
end;
procedure update_ar_dr(p_slot: P_OPL3_SLOT; data: Byte);
begin
p_slot^.reg_ar := (data SHR 4) AND $0f;
p_slot^.reg_dr := data AND $0f;
envelope_update_rate(p_slot);
end;
procedure update_sl_rr(p_slot: P_OPL3_SLOT; data: Byte);
begin
p_slot^.reg_sl := SL_VAL[(data SHR 4) AND $0f];
p_slot^.reg_rr := data AND $0f;
envelope_update_rate(p_slot);
end;
procedure slot_generate(p_slot: P_OPL3_SLOT; phase: Word);
begin
If (phase = WORD_NULL) then
phase := WORD(p_slot^.pg_phase SHR 9) + p_slot^.p_mod^;
p_slot^.output := envelope_calc_sin(p_slot^.reg_wf,phase,p_slot^.eg_out);
end;
procedure slot_calc_fb(p_slot: P_OPL3_SLOT);
begin
If (p_slot^.p_chan^.fb <> 0) then
p_slot^.fb_out := (p_slot^.prev_out + p_slot^.output) SHR
(9 - p_slot^.p_chan^.fb)
else
p_slot^.fb_out := 0;
p_slot^.prev_out := p_slot^.output;
end;
procedure chan_set_alg(p_chan: P_OPL3_CHAN);
begin
Case p_chan^.ch_type of
CH_2OP:
Case (p_chan^.alg AND 1) of
0: begin
// FM
p_chan^.p_slot[0]^.p_mod := @p_chan^.p_slot[0]^.fb_out;
p_chan^.p_slot[1]^.p_mod := @p_chan^.p_slot[0]^.output;
p_chan^.p_out[0] := @p_chan^.p_slot[1]^.output;
p_chan^.p_out[1] := @p_chan^.p_chip^.out_null;
p_chan^.p_out[2] := @p_chan^.p_chip^.out_null;
p_chan^.p_out[3] := @p_chan^.p_chip^.out_null;
end;
1: begin
// AM
p_chan^.p_slot[0]^.p_mod := @p_chan^.p_slot[0]^.fb_out;
p_chan^.p_slot[1]^.p_mod := @p_chan^.p_chip^.out_null;
p_chan^.p_out[0] := @p_chan^.p_slot[0]^.output;
p_chan^.p_out[1] := @p_chan^.p_slot[1]^.output;
p_chan^.p_out[2] := @p_chan^.p_chip^.out_null;
p_chan^.p_out[3] := @p_chan^.p_chip^.out_null;
end;
end;
CH_4OP_2:
begin
p_chan^.p_chan^.p_out[0] := @p_chan^.p_chip^.out_null;
p_chan^.p_chan^.p_out[1] := @p_chan^.p_chip^.out_null;
p_chan^.p_chan^.p_out[2] := @p_chan^.p_chip^.out_null;
p_chan^.p_chan^.p_out[3] := @p_chan^.p_chip^.out_null;
Case (p_chan^.alg AND 3) of
0: begin
// FM-FM
p_chan^.p_chan^.p_slot[0]^.p_mod := @p_chan^.p_chan^.p_slot[0]^.fb_out;
p_chan^.p_chan^.p_slot[1]^.p_mod := @p_chan^.p_chan^.p_slot[0]^.output;
p_chan^.p_slot[0]^.p_mod := @p_chan^.p_chan^.p_slot[1]^.output;
p_chan^.p_slot[1]^.p_mod := @p_chan^.p_slot[0]^.output;
p_chan^.p_out[0] := @p_chan^.p_slot[1]^.output;
p_chan^.p_out[1] := @p_chan^.p_chip^.out_null;
p_chan^.p_out[2] := @p_chan^.p_chip^.out_null;
p_chan^.p_out[3] := @p_chan^.p_chip^.out_null;
end;
1: begin
// FM-AM
p_chan^.p_chan^.p_slot[0]^.p_mod := @p_chan^.p_chan^.p_slot[0]^.fb_out;
p_chan^.p_chan^.p_slot[1]^.p_mod := @p_chan^.p_chan^.p_slot[0]^.output;
p_chan^.p_slot[0]^.p_mod := @p_chan^.p_chip^.out_null;
p_chan^.p_slot[1]^.p_mod := @p_chan^.p_slot[0]^.output;
p_chan^.p_out[0] := @p_chan^.p_chan^.p_slot[1]^.output;
p_chan^.p_out[1] := @p_chan^.p_slot[1]^.output;
p_chan^.p_out[2] := @p_chan^.p_chip^.out_null;
p_chan^.p_out[3] := @p_chan^.p_chip^.out_null;
end;
2: begin
// AM-AM
p_chan^.p_chan^.p_slot[0]^.p_mod := @p_chan^.p_chan^.p_slot[0]^.fb_out;
p_chan^.p_chan^.p_slot[1]^.p_mod := @p_chan^.p_chip^.out_null;
p_chan^.p_slot[0]^.p_mod := @p_chan^.p_chan^.p_slot[1]^.output;
p_chan^.p_slot[1]^.p_mod := @p_chan^.p_slot[0]^.output;
p_chan^.p_out[0] := @p_chan^.p_chan^.p_slot[0]^.output;
p_chan^.p_out[1] := @p_chan^.p_slot[1]^.output;
p_chan^.p_out[2] := @p_chan^.p_chip^.out_null;
p_chan^.p_out[3] := @p_chan^.p_chip^.out_null;
end;
3: begin
// AM-FM
p_chan^.p_chan^.p_slot[0]^.p_mod := @p_chan^.p_chan^.p_slot[0]^.fb_out;
p_chan^.p_chan^.p_slot[1]^.p_mod := @p_chan^.p_chip^.out_null;
p_chan^.p_slot[0]^.p_mod := @p_chan^.p_chan^.p_slot[1]^.output;
p_chan^.p_slot[1]^.p_mod := @p_chan^.p_chip^.out_null;
p_chan^.p_out[0] := @p_chan^.p_chan^.p_slot[0]^.output;
p_chan^.p_out[1] := @p_chan^.p_slot[0]^.output;
p_chan^.p_out[2] := @p_chan^.p_slot[1]^.output;
p_chan^.p_out[3] := @p_chan^.p_chip^.out_null;
end;
end;
end;
CH_RHYTHM:
Case (p_chan^.alg AND 1) of
0: begin
// FM
p_chan^.p_slot[0]^.p_mod := @p_chan^.p_slot[0]^.fb_out;
p_chan^.p_slot[1]^.p_mod := @p_chan^.p_slot[0]^.output;
end;
1: begin
// AM
p_chan^.p_slot[0]^.p_mod := @p_chan^.p_slot[0]^.fb_out;
p_chan^.p_slot[1]^.p_mod := @p_chan^.p_chip^.out_null;
end;
end;
end;
end;
procedure chan_update_rhythm(p_chip: P_OPL3_CHIP; data: Byte);
begin
p_chip^.rhy_flag := data AND $3f;
If (p_chip^.rhy_flag AND $20 <> 0) then
begin
// BD
p_chip^.chan[6].ch_type := CH_RHYTHM;
p_chip^.chan[6].p_out[0] := @p_chip^.chan[6].p_slot[1]^.output;
p_chip^.chan[6].p_out[1] := @p_chip^.chan[6].p_slot[1]^.output;
p_chip^.chan[6].p_out[2] := @p_chip^.out_null;
p_chip^.chan[6].p_out[3] := @p_chip^.out_null;
chan_set_alg(@p_chip^.chan[6]);
eg_key_on_off(p_chip^.chan[6].p_slot[0],p_chip^.rhy_flag AND $10 <> 0);
eg_key_on_off(p_chip^.chan[6].p_slot[1],p_chip^.rhy_flag AND $10 <> 0);
// HH + SD
p_chip^.chan[7].ch_type := CH_RHYTHM;
p_chip^.chan[7].p_out[0] := @p_chip^.chan[7].p_slot[0]^.output;
p_chip^.chan[7].p_out[1] := @p_chip^.chan[7].p_slot[0]^.output;
p_chip^.chan[7].p_out[2] := @p_chip^.chan[7].p_slot[1]^.output;
p_chip^.chan[7].p_out[3] := @p_chip^.chan[7].p_slot[1]^.output;
eg_key_on_off(p_chip^.chan[7].p_slot[0],p_chip^.rhy_flag AND 1 <> 0);
eg_key_on_off(p_chip^.chan[7].p_slot[1],p_chip^.rhy_flag AND 8 <> 0);
// TT + TC
p_chip^.chan[8].ch_type := CH_RHYTHM;
p_chip^.chan[8].p_out[0] := @p_chip^.chan[8].p_slot[0]^.output;
p_chip^.chan[8].p_out[1] := @p_chip^.chan[8].p_slot[0]^.output;
p_chip^.chan[8].p_out[2] := @p_chip^.chan[8].p_slot[1]^.output;
p_chip^.chan[8].p_out[3] := @p_chip^.chan[8].p_slot[1]^.output;
eg_key_on_off(p_chip^.chan[8].p_slot[0],p_chip^.rhy_flag AND 4 <> 0);
eg_key_on_off(p_chip^.chan[8].p_slot[1],p_chip^.rhy_flag AND 2 <> 0);
end
else
begin
// reset chan. 6/7/8 to 2OP
p_chip^.chan[6].ch_type := CH_2OP;
chan_set_alg(@p_chip^.chan[6]);
p_chip^.chan[7].ch_type := CH_2OP;
chan_set_alg(@p_chip^.chan[7]);
p_chip^.chan[8].ch_type := CH_2OP;
chan_set_alg(@p_chip^.chan[8]);
end;
end;
procedure update_fnum_block_ksr(p_chan: P_OPL3_CHAN; data: Byte; msb_flag: Boolean);
begin
If (p_chan^.ch_type = CH_4OP_2) then
EXIT;
If msb_flag then
begin
// update upper bits
p_chan^.fnum := (p_chan^.fnum AND $300) OR data;
p_chan^.ksr := (p_chan^.block SHL 1) OR
((p_chan^.fnum SHR (9 - p_chan^.p_chip^.nts_bit)) AND 1);
end
else
begin
// update lower bits
p_chan^.fnum := (p_chan^.fnum AND $0ff) OR
((data AND 3) SHL 8);
p_chan^.block := (data shr 2) AND 7;
p_chan^.ksr := (p_chan^.block SHL 1) OR
((p_chan^.fnum SHR (9 - p_chan^.p_chip^.nts_bit)) AND 1);
end;
envelope_update_ksl(p_chan^.p_slot[0]);
envelope_update_ksl(p_chan^.p_slot[1]);
envelope_update_rate(p_chan^.p_slot[0]);
envelope_update_rate(p_chan^.p_slot[1]);
If (p_chan^.ch_type = CH_4OP_1) then
begin
p_chan^.p_chan^.fnum := p_chan^.fnum;
p_chan^.p_chan^.ksr := p_chan^.ksr;
If msb_flag then
p_chan^.p_chan^.block := p_chan^.block;
envelope_update_ksl(p_chan^.p_chan^.p_slot[0]);
envelope_update_ksl(p_chan^.p_chan^.p_slot[1]);
envelope_update_rate(p_chan^.p_chan^.p_slot[0]);
envelope_update_rate(p_chan^.p_chan^.p_slot[1]);
end;
end;
procedure update_fb_con(p_chan: P_OPL3_CHAN; data: Byte);
begin
p_chan^.fb := (data AND $0e) SHR 1;
p_chan^.con := data AND 1;
p_chan^.alg := p_chan^.con;
Case p_chan^.ch_type of
CH_2OP,
CH_RHYTHM:
chan_set_alg(p_chan);
CH_4OP_1:
begin
p_chan^.p_chan^.alg := 4 OR
(p_chan^.con SHL 1) OR
(p_chan^.p_chan^.con);
chan_set_alg(p_chan^.p_chan);
end;
CH_4OP_2:
begin
p_chan^.alg := 4 OR
(p_chan^.p_chan^.con SHL 1) OR
(p_chan^.con);
chan_set_alg(p_chan);
end;
end;
// trigger output to left
If ((data SHR 4) AND 1 <> 0) then
p_chan^.out_l := WORD_NULL
else p_chan^.out_l := 0;
// trigger output to right
If ((data SHR 5) AND 1 <> 0) then
p_chan^.out_r := WORD_NULL
else p_chan^.out_r := 0;
end;
procedure generate_rhythm_slots(p_chip: P_OPL3_CHIP);
var
p_slot: P_OPL3_SLOT;
phase,phase_lo,phase_hi,phase_bit: Word;
procedure calc_phase_slot7_slot8;
begin
phase_lo := (p_chip^.chan[7].p_slot[0]^.pg_phase SHR 9) AND $3ff;
phase_hi := (p_chip^.chan[8].p_slot[1]^.pg_phase SHR 9) AND $3ff;
If ((phase_lo AND 8) OR
(((phase_lo SHR 5) XOR phase_lo) AND 4) OR
(((phase_hi SHR 2) XOR phase_hi) AND 8) <> 0) then
phase_bit := 1
else
phase_bit := 0;
end;
begin
// BD
p_slot := p_chip^.chan[6].p_slot[0];
slot_generate(p_slot,WORD(p_slot^.pg_phase SHR 9) + (p_slot^.p_mod^));
p_slot := p_chip^.chan[6].p_slot[1];
slot_generate(p_slot,WORD(p_slot^.pg_phase SHR 9) + (p_slot^.p_mod^));
// HH
p_slot := p_chip^.chan[7].p_slot[0];
calc_phase_slot7_slot8;
phase := (phase_bit SHL 9) OR
WORD($34 SHL ((phase_bit XOR (p_chip^.noise AND 1) SHL 1)));
slot_generate(p_slot,phase);
// TT
p_slot := p_chip^.chan[8].p_slot[0];
slot_generate(p_slot,WORD(p_slot^.pg_phase SHR 9));
// SD
p_slot := p_chip^.chan[7].p_slot[1];
calc_phase_slot7_slot8;
phase := ($100 SHL ((phase_lo SHR 8) AND 1)) XOR
WORD((p_chip^.noise AND 1) SHL 8);
slot_generate(p_slot,phase);
// TC
p_slot := p_chip^.chan[8].p_slot[1];
phase := $100 OR (phase_bit SHL 9);
slot_generate(p_slot,phase);
end;
procedure update_key(p_chan: P_OPL3_CHAN; key_on: Boolean);
begin
Case p_chan^.ch_type of
CH_2OP,
CH_4OP_1,
CH_RHYTHM:
begin
eg_key_on_off(p_chan^.p_slot[0],key_on);
eg_key_on_off(p_chan^.p_slot[1],key_on);
If (p_chan^.ch_type = CH_4OP_1) then
begin
eg_key_on_off(p_chan^.p_chan^.p_slot[0],key_on);
eg_key_on_off(p_chan^.p_chan^.p_slot[1],key_on);
end;
end;
end;
end;
procedure chan_update_4op(p_chip: P_OPL3_CHIP; data: Byte);
var
bit_num: Byte;
begin
For bit_num := 0 to 5 do
If ((data SHR bit_num) AND 1 <> 0) then
begin
// set chan. to 4OP
p_chip^.chan[CH_4OP_IDX[bit_num]].ch_type := CH_4OP_1;
p_chip^.chan[CH_4OP_IDX[bit_num]+3].ch_type := CH_4OP_2;
end
else
begin
// reset chan. to 2OP
p_chip^.chan[CH_4OP_IDX[bit_num]].ch_type := CH_2OP;
p_chip^.chan[CH_4OP_IDX[bit_num]+3].ch_type := CH_2OP;
end;
end;
function chip_generate(p_chip: P_OPL3_CHIP): Dword;
var
slot_num: Byte;
accm: Smallint;
lr_mix: array[0..1] of Smallint;
begin
// generate slot data
For slot_num := 0 to 35 do
begin
slot_calc_fb(@p_chip^.slot[slot_num]);
pg_generate(@p_chip^.slot[slot_num]);
envelope_calc(@p_chip^.slot[slot_num]);
slot_generate(@p_chip^.slot[slot_num],WORD_NULL);
end;
// rhythm mode
If (p_chip^.rhy_flag AND $20 <> 0) then
generate_rhythm_slots(p_chip);
// update channel mixer
lr_mix[1] := limit_value(p_chip^.output[1],-$7fff,$7fff);
lr_mix[0] := limit_value(p_chip^.output[0],-$7fff,$7fff);
p_chip^.output[0] := 0;
p_chip^.output[1] := 0;
// left output
For slot_num := 0 to 17 do
begin
accm := p_chip^.chan[slot_num].p_out[0]^ +
p_chip^.chan[slot_num].p_out[1]^ +
p_chip^.chan[slot_num].p_out[2]^ +
p_chip^.chan[slot_num].p_out[3]^;
Inc(p_chip^.output[0],SMALLINT(accm AND p_chip^.chan[slot_num].out_l));
p_chip^.out_l[slot_num] := SMALLINT(accm AND p_chip^.chan[slot_num].out_l);
end;
// right output
For slot_num := 0 to 17 do
begin
accm := p_chip^.chan[slot_num].p_out[0]^ +
p_chip^.chan[slot_num].p_out[1]^ +
p_chip^.chan[slot_num].p_out[2]^ +
p_chip^.chan[slot_num].p_out[3]^;
Inc(p_chip^.output[1],SMALLINT(accm AND p_chip^.chan[slot_num].out_r));
p_chip^.out_r[slot_num] := SMALLINT(accm AND p_chip^.chan[slot_num].out_r);
end;
// update LFO tremolo
If (p_chip^.timer AND $3f = $3f) then
begin
If (p_chip^.trem_dir = 0) then
begin
If (p_chip^.trem_pos < 105) then
Inc(p_chip^.trem_pos)
else
begin
Dec(p_chip^.trem_pos);
p_chip^.trem_dir := 1;
end
end
else
begin
If (p_chip^.trem_pos > 0) then
Dec(p_chip^.trem_pos)
else
begin
Inc(p_chip^.trem_pos);
p_chip^.trem_dir := 0;
end;
end;
p_chip^.trem_val := (p_chip^.trem_pos SHR 2) SHR
((1 - p_chip^.dva_bit) SHL 1);
end;
// update noise generator
If (p_chip^.noise AND 1 <> 0) then
p_chip^.noise := p_chip^.noise XOR NOISE_XOR;
p_chip^.noise := p_chip^.noise SHR 1;
Inc(p_chip^.timer);
chip_generate := (WORD(lr_mix[1]) SHL 16) OR WORD(lr_mix[0]);
end;
procedure OPL3EMU_init;
var
slot_num,
chan_num: Byte;
begin
// initialize slot data
For slot_num := 0 to 35 do
begin
opl3.slot[slot_num].p_chip := @opl3;
opl3.slot[slot_num].p_mod := @opl3.out_null;
opl3.slot[slot_num].eg_rout := $1ff;
opl3.slot[slot_num].eg_out := $1ff;
opl3.slot[slot_num].eg_state := EG_OFF;
opl3.slot[slot_num].p_trem := @opl3.out_null;
end;
// initialize chan. data
For chan_num := 0 to 17 do
begin
opl3.out_l[chan_num] := 0;
opl3.out_r[chan_num] := 0;
opl3.chan[chan_num].out_l := WORD_NULL;
opl3.chan[chan_num].out_r := WORD_NULL;
opl3.chan[chan_num].p_chip := @opl3;
opl3.chan[chan_num].ch_type := CH_2OP;
opl3.chan[chan_num].p_out[0] := @opl3.out_null;
opl3.chan[chan_num].p_out[1] := @opl3.out_null;
opl3.chan[chan_num].p_out[2] := @opl3.out_null;
opl3.chan[chan_num].p_out[3] := @opl3.out_null;
opl3.chan[chan_num].p_slot[0] := @opl3.slot[CH_SLOT_IDX[chan_num]];
opl3.chan[chan_num].p_slot[1] := @opl3.slot[CH_SLOT_IDX[chan_num]+3];
opl3.slot[CH_SLOT_IDX[chan_num]].p_chan := @opl3.chan[chan_num];
opl3.slot[CH_SLOT_IDX[chan_num]+3].p_chan := @opl3.chan[chan_num];
If (CH_4OP_MASK[chan_num] <> 0) then
opl3.chan[chan_num].p_chan := @opl3.chan[PRED(CH_4OP_MASK[chan_num])];
chan_set_alg(@opl3.chan[chan_num]);
end;
// initialize chip data
opl3.noise := NOISE_HASH_VAL;
opl3.timer := 0;
opl3.nts_bit := 0;
opl3.dva_bit := 0;
opl3.dvb_bit := 0;
opl3.rhy_flag := 0;
opl3.vib_pos := 0;
opl3.trem_dir := 0;
opl3.trem_pos := 0;
opl3.trem_val := 0;
opl3.output[0] := 0;
opl3.output[1] := 0;
end;
procedure OPL3EMU_WriteReg(reg: Word; data: Byte);
var
reg_hi,
reg_lo: Byte;
begin
reg := reg AND $1ff;
reg_hi := (reg SHR 8) AND 1;
reg_lo := reg AND $0ff;
Case reg_lo of
// misc. registers
$01..$08:
If (reg_hi <> 0) then
begin
If (reg_lo AND $0f = 4) then
// 4OP con. sel.
chan_update_4op(@opl3,data);
end
else If (reg_lo AND $0f = 8) then
// bit 'NTS'
// 0 -> LSB for key is bit 10 of Fnum
// 1 -> LSB for key is bit 9 of Fnum
opl3.nts_bit := (data SHR 6) AND 1;
// AM/VIB/EGT/KSR/MULT
$20..$35: