-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_botorch.py
34 lines (27 loc) · 1.14 KB
/
example_botorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import matplotlib.pyplot as plt
import numpy as np
from hpob_handler import HPOBHandler
from methods.botorch import GaussianProcess
from methods.random_search import RandomSearch
valid_acquisitions = ["UCB", "EI", "PM", "PI", "qEI"]
seeds = ["test0", "test1", "test2", "test3", "test4"]
acc_list = []
n_trials = 20
hpob_hdlr = HPOBHandler(root_dir="hpob-data/", mode="v3-test")
search_space_id = hpob_hdlr.get_search_spaces()[0]
dataset_id = hpob_hdlr.get_datasets(search_space_id)[0]
for acq_name in valid_acquisitions:
acc_per_method = []
for seed in seeds:
print("Using ", acq_name, " as acquisition function...")
#define the HPO method
method = GaussianProcess(acq_name=acq_name)
#evaluate the HPO method
acc = hpob_hdlr.evaluate(method, search_space_id = search_space_id,
dataset_id = dataset_id,
seed = seed,
n_trials = n_trials )
acc_per_method.append(acc)
plt.plot(np.array(acc_per_method).mean(axis=0))
plt.legend(valid_acquisitions)
plt.show()