-
Notifications
You must be signed in to change notification settings - Fork 0
/
vis.py
285 lines (249 loc) · 9.69 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from typing import Any, Optional, Sequence, Union
import attr
import cv2
import ipywidgets
import matplotlib
import numpy as np
import pythreejs
import torch
from IPython.display import display
from matplotlib import pyplot as plt
from torch_utils import to_np
ArrayLike = Union[np.ndarray, torch.Tensor, Sequence[Union[int, float, Sequence[Any]]]]
def _to_hwc(x):
if x.shape[0] == 3:
return x.transpose(1, 2, 0)
elif x.shape[2] == 3:
return x
else:
raise ValueError(x.shape)
def plot_rgb(rgb, ax=None):
rgb = _to_hwc(to_np(rgb))
if np.issubdtype(rgb.dtype, np.floating):
rgb = rgb.astype(np.float32)
if ax is None:
plt.imshow(rgb)
else:
ax.imshow(rgb)
def plot_mask(
mask: ArrayLike,
c: Optional[Union[str, ArrayLike]] = None,
edgecolor: Optional[Union[str, ArrayLike]] = None,
alpha: float = 0.7,
linewidth: float = 0.5,
ax: Optional[Any] = None,
) -> Any:
"""Overlay the given mask on the given ax (or the current plt.gca()).
Parameters
----------
mask: array of shape H x W, of dtype bool, uint8 or floating.
If the mask dtype is bool or uint8, the mask corresponds to all the non-zero elements.
If it's a float, we plot a colormap wherever the entries are finite.
c: Optional[Union[str, Sequence[int, int, int]]]
Color to use for the mask, specified as a string, or as an RGB triplet (see matplotly docs).
edgecolor: Optional[Union[str, Sequence[int, int, int]]]
Color to use for the edge of the mask (same type as c above). If not provided, edges are not plotted.
alpha: float
Transparency of the mask.
linewidth: flot
Width of the mask edge, if plotted.
ax: Optional[Any]
If provided, plot the mask on this axis. Otherwise, they are obtained with plt.gca().
Returns
-------
The mask image, in case we need it for plotting colorbars.
"""
if ax is None:
ax = plt.gca()
if c is None:
c = np.random.uniform(0.2, 1.0, size=3)
elif isinstance(c, str):
c = matplotlib.colors.to_rgb(c)
else:
assert len(c) == 3
mask = to_np(mask)
h, w = mask.shape
colored_mask = np.zeros([h, w, 4], dtype=np.float32)
if mask.dtype == np.bool or mask.dtype == np.uint8:
colored_mask[mask.astype(np.bool_)] = (*c, alpha)
elif np.issubdtype(mask.dtype, np.floating):
m = np.isfinite(mask)
colored_mask[m] = plt.get_cmap()(mask[m])
colored_mask[..., -1] = m * alpha
else:
raise NotImplementedError(mask.dtype)
im = ax.imshow(colored_mask)
if edgecolor is not None:
contours, _ = cv2.findContours(
mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_TC89_KCOS
)
for pts in contours:
ax.plot(*pts.reshape(-1, 2).T, c=edgecolor, linewidth=linewidth)
return im
@attr.s(frozen=True, kw_only=True, repr=False)
class SceneBuilder:
scene: pythreejs.Scene = attr.ib()
renderer: pythreejs.Renderer = attr.ib()
flip_xz: bool = attr.ib()
# TODO: these should get handled by the caller who wants them
extra_widgets: list[ipywidgets.Widget] = attr.ib(factory=list)
@classmethod
def create(
cls,
height: int,
width: int,
background_color: str = "black",
flip_xz: bool = True,
) -> "SceneBuilder":
"""Create an empty scene.
This will include a camera, orbit controls, and ambient lighting, but no geometry.
"""
camera = pythreejs.PerspectiveCamera(
fov=90, aspect=width / height, position=[1, 0, 0], up=[0, 0, 1]
)
orbit_controls = pythreejs.OrbitControls(controlling=camera)
scene = pythreejs.Scene(
children=[camera, orbit_controls, pythreejs.AmbientLight(color="#FFFFFF")],
background=background_color,
)
renderer = pythreejs.Renderer(
scene=scene,
camera=camera,
controls=[orbit_controls],
width=width,
height=height,
)
return cls(scene=scene, renderer=renderer, flip_xz=flip_xz)
@classmethod
def from_point_map(
cls,
xyz: ArrayLike,
rgb: ArrayLike,
size: float = 0.001,
flip_xz: bool = True,
render_size: tuple[int, int] = (800, 600),
) -> "SceneBuilder":
"""Create a new scene from a point map and image.
Parameters
----------
xyz : ArrayLike
Points in 3d. Shape(h,w,3) or (3.h,w).
rgb : ArrayLike
The image corresponding to `xyz`. Should have the same shape.
size : float, optional
The size of the plotted points.
max_pts : Optional[int], optional
If given, downsample the point cloud so that we have at most this many points.
flip_xz : bool, optional
It is often convenient to flip these axes so that the initial viewpoint is more closely aligned to 2D image visualizations.
TODO (nikhil): do we actually need this? should be fixable by positioning the camera better.
render_size : Tuple[int, int]
The size of the rendered visualization in pixels (width, height).
"""
xyz = _to_hwc(to_np(xyz)) # shape(h,w,3), numpy array
rgb = _to_hwc(to_np(rgb)) # shape(h,w,3), numpy array
if rgb.dtype == np.uint8:
rgb = rgb.astype(np.float32) / 255.0
assert xyz.shape == rgb.shape, (xyz.shape, rgb.shape)
xyz, rgb = xyz.reshape(-1, 3), rgb.reshape(-1, 3)
builder = cls.create(
height=render_size[1], width=render_size[0], flip_xz=flip_xz
)
builder.add_points(points=xyz, color=rgb, size=size)
# Update the camera pose to something sensible
center, maximums = xyz.mean(0), xyz.max(0)
if builder.flip_xz:
center, maximums = center * [-1, 1, -1], maximums * [-1, 1, -1]
builder.renderer.camera.near = 1e-3
builder.renderer.camera.position = tuple(
center + [0, abs(maximums[1]), abs(maximums[2]) * 1.5]
)
builder.renderer.camera.lookAt(tuple(center))
# Update the orbit controls so the center of rotation is at the center of the point map.
for controls in builder.renderer.controls:
if isinstance(controls, pythreejs.OrbitControls):
controls.target = tuple(center)
else:
raise NotImplementedError(type(controls))
# Add a slider to control the point size.
# Ideally this should happen outside of SceneBuilder
points_geom = builder.scene.children[-1]
assert isinstance(points_geom, pythreejs.Points), type(points_geom)
slider = ipywidgets.FloatSlider(
value=size, min=0.0, max=size * 10, step=size / 100
)
ipywidgets.jslink((slider, "value"), (points_geom.material, "size"))
builder.extra_widgets.append(
ipywidgets.HBox([ipywidgets.Label("Point size:"), slider])
)
return builder
def add_line_segments(
self,
points: ArrayLike,
color: Union[str, ArrayLike] = "red",
point_size: float = 0.001,
thickness: float = 1.0,
) -> "SceneBuilder":
"""Add line segments connecting a list of points to the scene.
Parameters
----------
points : ArrayLike
Shape (n, 3).
Lines will be drawn using `add_lines()` between `points[i]` and `points[i + 1]`.
Points will be drawn at each point using `add_points()`.
color : Union[str, ArrayLike]
point_size : float
Passed as `size` to `add_points()`.
thickness : float, optional
Passed as `thickness` to `add_lines()`.
Returns
-------
SceneBuilder
"""
points = to_np(points)
if points.ndim != 2 or points.shape[-1] != 3:
raise ValueError("Expected points of shape (-1, 3)!")
self.add_lines(points[:-1], points[1:], thickness=thickness, color=color)
self.add_points(points, color=color, size=point_size)
return self
def add_points(
self,
points: ArrayLike,
color: Union[str, ArrayLike] = "red",
size: float = 0.001,
) -> "SceneBuilder":
"""Add points to the scene.
Parameters
----------
points : np.ndarray
Points in 3D. Shape(..., 3).
color : Union[str, np.ndarray]
Plot `points` using this color. It can be:
- A named color that `matplotlib.colors` can understand (e.g. "red" or "blue").
- A hex code (e.g. "#ff0033").
- A single color expressed as a sequence of 3 floats.
- An array of the same shape as `points`.
size : float
"""
points = to_np(points)
if self.flip_xz:
points = points * [-1, 1, -1]
if isinstance(color, str):
color = matplotlib.colors.to_rgb(color)
color = np.broadcast_to(to_np(color), points.shape)
mask = np.isfinite(points).all(-1)
points = points[mask]
color = color[mask]
geometry = pythreejs.BufferGeometry(
attributes=dict(
position=pythreejs.BufferAttribute(
points.astype(np.float32), normalized=False
),
color=pythreejs.BufferAttribute(color.astype(np.float32)),
)
)
material = pythreejs.PointsMaterial(vertexColors="VertexColors", size=size)
self.scene.add(pythreejs.Points(geometry=geometry, material=material))
return self
def show(self) -> None:
display(ipywidgets.VBox([self.renderer, *self.extra_widgets]))