A Benchmark for Interpreting Grounded Instructions for Everyday Tasks
Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk,
Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, Dieter Fox
CVPR 2020
ALFRED (Action Learning From Realistic Environments and Directives), is a new benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks. Long composition rollouts with non-reversible state changes are among the phenomena we include to shrink the gap between research benchmarks and real-world applications.
For the latest updates, see: askforalfred.com
Clone repo:
$ git clone https://github.com/askforalfred/alfred.git alfred
$ export ALFRED_ROOT=$(pwd)/alfred
Install requirements:
$ virtualenv -p $(which python3) --system-site-packages alfred_env # or whichever package manager you prefer
$ source alfred_env/bin/activate
$ cd $ALFRED_ROOT
$ pip install --upgrade pip
$ pip install -r requirements.txt
Download Trajectory JSONs and Resnet feats (~17GB):
$ cd $ALFRED_ROOT/data
$ sh download_data.sh json_feat
Train models:
$ cd $ALFRED_ROOT
$ python models/train/train_seq2seq.py --data data/json_feat_2.1.0 --model seq2seq_im_mask --dout exp/model:{model},name:pm_and_subgoals_01 --splits data/splits/oct21.json --gpu --batch 8 --pm_aux_loss_wt 0.1 --subgoal_aux_loss_wt 0.1
- Dataset: Downloading full dataset, Folder structure, JSON structure.
- Models: Training and Evaluation, File structure, Pre-trained models.
- Data Generation: Generation, Replay Checks, Data Augmentation (high-res, depth, segementation masks etc).
- FAQ: Frequently Asked Questions.
- Python 3
- PyTorch 1.1.0
- Torchvision 0.3.0
- AI2THOR 2.1.0
See requirements.txt for all prerequisites
Tested on:
- GPU - GTX 1080 Ti (12GB)
- CPU - Intel Xeon (Quad Core)
- RAM - 16GB
- OS - Ubuntu 16.04
Run your model on test seen and unseen sets, and create an action-sequence dump of your agent:
$ cd $ALFRED_ROOT
$ python models/eval/leaderboard.py --model_path <model_path>/model.pth --model models.model.seq2seq_im_mask --data data/json_feat_2.1.0 --gpu --num_threads 5
This will create a JSON file, e.g. task_results_20191218_081448_662435.json
, inside the <model_path>
folder. Submit this JSON here: AI2 ALFRED Leaderboard. For rules and restrictions, see the getting started page.
Install Docker and NVIDIA Docker.
Build the image:
$ python scripts/docker_build.py
Start a container:
$ python scripts/docker_run.py
source ~/alfred_env/bin/activate
cd $ALFRED_ROOT
Modify docker_build.py and docker_run.py to your needs.
ALFRED can be setup on headless machines like AWS or GoogleCloud instances.
The main requirement is that you have access to a GPU machine that supports OpenGL rendering. Run the startx.py script
to examine the GPU devices on the host, generate a xorg.conf file, and then start X. You should be able to run AI2THOR normally for evaluation purposes.
By default, the :0.0
display will be used, but if you are running on a machine with more than one GPU, you can address
these by modifying the screen component of the display. So :0.0
refers to the first device, :0.1
the second and so on.
Also, checkout this guide: Setting up THOR on Google Cloud
If you find the dataset or code useful, please cite:
@inproceedings{ALFRED20,
title ={{ALFRED: A Benchmark for Interpreting Grounded
Instructions for Everyday Tasks}},
author={Mohit Shridhar and Jesse Thomason and Daniel Gordon and Yonatan Bisk and
Winson Han and Roozbeh Mottaghi and Luke Zettlemoyer and Dieter Fox},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2020},
url = {https://arxiv.org/abs/1912.01734}
}
MIT License
07/04/2020:
- Updated download links. Switched from Google Cloud to AWS. Old download links will be deactivated.
28/03/2020:
- Updated the mask-interaction API to use IoU scores instead of max pixel count for selecting objects.
- Results table in the paper will be updated with new numbers.
Questions or issues? Contact [email protected]