This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained. All commands should be launched from the root directory.
We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook croco-stereo-flow-demo.ipynb
.
Before running it, please download the trained models with:
bash stereoflow/download_model.sh crocostereo.pth
bash stereoflow/download_model.sh crocoflow.pth
Put the datasets used for training/evaluation in ./data/stereoflow
(or update the paths at the top of stereoflow/datasets_stereo.py
and stereoflow/datasets_flow.py
).
Please find below on the file structure should look for each dataset:
FlyingChairs
./data/stereoflow/FlyingChairs/
└───chairs_split.txt
└───data/
└─── ...
MPI-Sintel
./data/stereoflow/MPI-Sintel/
└───training/
│ └───clean/
│ └───final/
│ └───flow/
└───test/
└───clean/
└───final/
SceneFlow (including FlyingThings)
./data/stereoflow/SceneFlow/
└───Driving/
│ └───disparity/
│ └───frames_cleanpass/
│ └───frames_finalpass/
└───FlyingThings/
│ └───disparity/
│ └───frames_cleanpass/
│ └───frames_finalpass/
│ └───optical_flow/
└───Monkaa/
└───disparity/
└───frames_cleanpass/
└───frames_finalpass/
TartanAir
./data/stereoflow/TartanAir/
└───abandonedfactory/
│ └───.../
└───abandonedfactory_night/
│ └───.../
└───.../
Booster
./data/stereoflow/booster_gt/
└───train/
└───balanced/
└───Bathroom/
└───Bedroom/
└───...
CREStereo
./data/stereoflow/crenet_stereo_trainset/
└───stereo_trainset/
└───crestereo/
└───hole/
└───reflective/
└───shapenet/
└───tree/
ETH3D Two-view Low-res
./data/stereoflow/eth3d_lowres/
└───test/
│ └───lakeside_1l/
│ └───...
└───train/
│ └───delivery_area_1l/
│ └───...
└───train_gt/
└───delivery_area_1l/
└───...
KITTI 2012
./data/stereoflow/kitti-stereo-2012/
└───testing/
│ └───colored_0/
│ └───colored_1/
└───training/
└───colored_0/
└───colored_1/
└───disp_occ/
└───flow_occ/
KITTI 2015
./data/stereoflow/kitti-stereo-2015/
└───testing/
│ └───image_2/
│ └───image_3/
└───training/
└───image_2/
└───image_3/
└───disp_occ_0/
└───flow_occ/
Middlebury
./data/stereoflow/middlebury
└───2005/
│ └───train/
│ └───Art/
│ └───...
└───2006/
│ └───Aloe/
│ └───Baby1/
│ └───...
└───2014/
│ └───Adirondack-imperfect/
│ └───Adirondack-perfect/
│ └───...
└───2021/
│ └───data/
│ └───artroom1/
│ └───artroom2/
│ └───...
└───MiddEval3_F/
└───test/
│ └───Australia/
│ └───...
└───train/
└───Adirondack/
└───...
Spring
./data/stereoflow/spring/
└───test/
│ └───0003/
│ └───...
└───train/
└───0001/
└───...
The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark.
# Download the model
bash stereoflow/download_model.sh crocostereo.pth
# Middlebury v3 submission
python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9
# Training command that was used, using checkpoint-last.pth
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/
# or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus:
torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/
For evaluation of validation set, we also provide the model trained on the subtrain
subset of the training sets.
# Download the model
bash stereoflow/download_model.sh crocostereo_subtrain.pth
# Evaluation on validation sets
python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9
# Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/
Model for ETH3D
The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss.# Download the model
bash stereoflow/download_model.sh crocostereo_eth3d.pth
# ETH3D submission
python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9
# Training command that was used
python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/
Main model finetuned on Kitti
# Download the model
bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth
# Kitti submission
python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9
# Training that was used
python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5
Main model finetuned on Spring
# Download the model
bash stereoflow/download_model.sh crocostereo_finetune_spring.pth
# Spring submission
python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9
# Training command that was used
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/
Smaller models
To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the--pretrained
argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth
, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth
.
The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets. It was used for our submission to the MPI-Sintel benchmark.
# Download the model
bash stereoflow/download_model.sh crocoflow.pth
# Evaluation
python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9
# Sintel submission
python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9
# Training command that was used, with checkpoint-best.pth
python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/
Main model finetuned on Kitti
# Download the model
bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth
# Kitti submission
python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99
# Training that was used, with checkpoint-last.pth
python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/
Main model finetuned on Spring
# Download the model
bash stereoflow/download_model.sh crocoflow_finetune_spring.pth
# Spring submission
python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9
# Training command that was used, with checkpoint-last.pth
python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/
Smaller models
To train CroCo-Flow with smaller CroCo pretrained models, simply replace the--pretrained
argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth
, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth
.