-
Notifications
You must be signed in to change notification settings - Fork 0
/
misc.tex
60 lines (49 loc) · 2.13 KB
/
misc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
\chapter{Misc}
%\label{chap:misc}
% https://github.com/mitmath/matrixcalc
\section{Math}
\subsection{Derivative of a Quadratic Form}
\label{sec:derivative-quadratic-form}
The derivative of the quadratic form $x^\top A x$ is to be intended as the linear form $\nabla f(\bs{x})$ satisfying in the limit
\begin{equation*}
f(\bs{x}+\delta\bs{x}) - f(\bs{x}) = \nabla f(\bs{x}) \delta x
\end{equation*}
of the scalar function $f:\mathbb{R}^n\rightarrow \mathbb{R}$.
When applied to the quadratic form $x^\top A x$, one obtains
\begin{equation}
\label{eq:derivative-quadratic-form}
\begin{aligned}
& (x+\delta x)^\top A(x+\delta x) - x^\top Ax = \delta x^\top Ax + x^\top A\delta x \\
&= x^\top A^\top \delta x + x^\top A\delta x = x^\top\left(A^\top + A\right)\delta x
\end{aligned}
\end{equation}
where we have used the fact that the transpose of a real number coincides with the number.
Since this is a linear form in $v$, the vector is implicity intended and dropped and the result is usually given as $x^\top\left(A + A^\top\right)$.
% \section{Terminology}
% \label{sec:terminology}
% \subsubsection{Controllability and Observability/Detectability}
% \label{sec:controllability}
% Given the linear system
% \begin{equation*}
% \begin{aligned}
% x^+ = Ax + Bu \\
% y = Cx + Du
% \end{aligned}
% \end{equation*}
% the system is controllable if
% Controllability is usually given in terms of the matrix
% \begin{equation*}
% \mathcal{C} =
% \begin{bmatrix}
% A & BA & B^2A & \ldots & B^{n-1}A
% \end{bmatrix}
% \end{equation*}
% being full rank. Computing $\mathcal{C}$ rank is misleading and unfortunately, I feel it was not sufficiently strongly remarked in class:
% \begin{itemize}
% \item The rank is calculated by counting how many singular values of $\mathcal{C}$ are below a certain threshold. The threshold is usually set to be a multiple of the minimum resolution of a floating point number. Usually adding some noise to the matrix elements (or order $10^{-10}$ for Float64) makes the matrix full rank.
% \item Even computing the SVD
% \end{itemize}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "notes"
%%% End: