The functions in this section are undocumented. If you know what any of them mean and can help us to document, fix, and/or improve the code, please contact the maintainers.
julia> stein1(x, 1)
41
julia> srand(1) #set seed
julia> x2=rnorm(21); #suppose additional 21 data points were collected.
julia> stein2(x, x2)
df: 19
estimate: 0.8441066102423266
confint: [-3.65043, 5.33865]
statistic: 2.516970580783766
crit: 2.093024054408309
pval: 0.020975586092444765
Extension of Stein's method based on the trimmed mean.
julia> stein1_tr(x, 0.2)
89
julia> stein2_tr(x, x2)
Extension of the 2nd stage of Stein's method based on the trimmed mean
Statistic: 3.154993
Critical value: 2.200985
This function is able to handle multiple dependent groups. Suppose that the original dataset contained 4 dependent groups and the sample size is 5 (xold
), and we collected more data (xnew
).
julia> srand(2)
julia> xnew = rand(6, 4)
julia> xold = reshape(x, 5, 4)
julia> stein2_tr(xold, xnew)
Extension of the 2nd stage of Stein's method based on the trimmed mean
Statistic Group 1 Group 2 Statistic
1 2 -0.933245
1 3 0.291014
1 4 -0.949618
2 3 1.212577
2 4 -0.608510
3 4 -0.649426
Critical value: 10.885867
Compute adaptive kernel density estimate for univariate data (See Silverman, 1986)
julia> akerd(x, title="Lognormal Distribution", xlab="x", ylab="Density")
julia> srand(10)
julia> x3=rnorm(100, 1, 2);
julia> akerd(x3, title="Normal Distribution; mu=1, sd=2", xlab="x", ylab="Density", color="red", plottype="dash")
This function is adapted from Andrew Hayes' SPSS macro, which evaluates indirect/mediation effects via percentile bootstrap and the Sobel Test.
julia> srand(1)
julia> m = randn(20); #Mediator
julia> srand(2)
julia> y = randn(20) + 2.0; #Outcome variable
julia> indirectTest(y, x, m) #5000 bootstrap samples by default
TESTS OF INDIRECT EFFECT
Sample size: 20
Number of bootstrap samples: 5000
DIRECT AND TOTAL EFFECTS
Estimate Std.Error t value Pr(>|t|)
b(YX): 0.125248 0.087729 1.427664 0.170508
b(MX): 0.082156 0.106198 0.773611 0.449202
b(YM.X): 0.140675 0.089359 1.574264 0.133852
b(YX.M): -0.187775 0.195111 -0.962402 0.349338
INDIRECT EFFECT AND SIGNIFICANCE USING NORMAL DISTRIBUTION
Estimate Std.Error z score CI lo CI hi Pr(>|z|)
Sobel: -0.015427 0.019161 -0.805126 -0.052981 0.022128 0.420747
BOOTSTRAP RESULTS OF INDIRECT EFFECT
Estimate Std.Error CI lo CI hi P value
Effect: -0.048598 0.084280 -0.298647 0.019394 0.420800
if we add plotit=true
, we get a kernel density plot of the effects derived from bootstrap samples:
A heteroscedastic one-way ANOVA for trimmed means using a generalization of Welch's method. When tr=0
, the function conducts a heteroscedastic 1-way ANOVA without trimming.
There are two ways to specify data for the function:
- A two dimensional array where each column represents a group. Hence, a 10 X 3 array means that a one way ANOVA will be performed on 3 groups. This also means equal sample sizes amongst the groups.
- A vector containing the outcome variable and another vector containing group information.
Two examples are shown below to demonstrate the two ways of specifying data:
#Data in two dimensional array form
#Prepare data
julia> srand(12)
julia> m2 = reshape(sort(randn(30)), 10, 3);
julia> t1way(m2)
Heteroscedastic one-way ANOVA for trimmed means
using a generalization of Welch's method.
Sample size: 10 10 10
Degrees of freedom: 2.00 8.25
Statistic: 20.955146
p value: 0.000583
#Data in vector form
julia> srand(12)
julia> m3 = sort(randn(30));
julia> group = rep(1:3, [8,12,10]); #Unequal sample sizes: n1 = 8, n2 = 12, n3 = 10
julia> t1way(m3, group)
Heteroscedastic one-way ANOVA for trimmed means
using a generalization of Welch's method.
Sample size: 8 12 10
Degrees of freedom: 2.00 8.11
Statistic: 28.990510
p value: 0.000202
Compute a (1-α) confidence interval for the trimmed mean using a bootstrap percentile t method. The default amount of trimming is tr=.2. side=true, indicates the symmetric two-sided method. side=false yields an equal-tailed confidence interval. NOTE: p.value is reported when side=true only.
julia> trimcibt(x, nboot=5000)
Bootstrap .95 confidence interval for the trimmed mean
using a bootstrap percentile t method
Estimate: 1.292180
Statistic: 3.469611
Confidence interval: 0.292162 2.292199
p value: 0.022600