-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
55 lines (42 loc) · 1.62 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
from torchvision import datasets, transforms
import config
class BSDS500(Dataset):
def __init__(self):
image_folder = config.DATA_DIR / 'BSR/BSDS500/data/images'
self.image_files = list(map(str, image_folder.glob('*/*.jpg')))
def __getitem__(self, i):
image = cv2.imread(self.image_files[i], cv2.IMREAD_COLOR)
tensor = torch.from_numpy(image.transpose(2, 0, 1))
return tensor
def __len__(self):
return len(self.image_files)
class MNISTM(Dataset):
def __init__(self, train=True):
super(MNISTM, self).__init__()
self.mnist = datasets.MNIST(config.DATA_DIR / 'mnist', train=train,
download=True)
self.bsds = BSDS500()
# Fix RNG so the same images are used for blending
self.rng = np.random.RandomState(42)
def __getitem__(self, i):
digit, label = self.mnist[i]
digit = transforms.ToTensor()(digit)
bsds_image = self._random_bsds_image()
patch = self._random_patch(bsds_image)
patch = patch.float() / 255
blend = torch.abs(patch - digit)
return blend, label
def _random_patch(self, image, size=(28, 28)):
_, im_height, im_width = image.shape
x = self.rng.randint(0, im_width-size[1])
y = self.rng.randint(0, im_height-size[0])
return image[:, y:y+size[0], x:x+size[1]]
def _random_bsds_image(self):
i = self.rng.choice(len(self.bsds))
return self.bsds[i]
def __len__(self):
return len(self.mnist)