forked from sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
caption.py
218 lines (171 loc) · 8.19 KB
/
caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import torch.nn.functional as F
import numpy as np
import json
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import skimage.transform
import argparse
from scipy.misc import imread, imresize
from PIL import Image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def caption_image_beam_search(encoder, decoder, image_path, word_map, beam_size=3):
"""
Reads an image and captions it with beam search.
:param encoder: encoder model
:param decoder: decoder model
:param image_path: path to image
:param word_map: word map
:param beam_size: number of sequences to consider at each decode-step
:return: caption, weights for visualization
"""
k = beam_size
vocab_size = len(word_map)
# Read image and process
img = imread(image_path)
if len(img.shape) == 2:
img = img[:, :, np.newaxis]
img = np.concatenate([img, img, img], axis=2)
img = imresize(img, (256, 256))
img = img.transpose(2, 0, 1)
img = img / 255.
img = torch.FloatTensor(img).to(device)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([normalize])
image = transform(img) # (3, 256, 256)
# Encode
image = image.unsqueeze(0) # (1, 3, 256, 256)
encoder_out = encoder(image) # (1, enc_image_size, enc_image_size, encoder_dim)
enc_image_size = encoder_out.size(1)
encoder_dim = encoder_out.size(3)
# Flatten encoding
encoder_out = encoder_out.view(1, -1, encoder_dim) # (1, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# We'll treat the problem as having a batch size of k
encoder_out = encoder_out.expand(k, num_pixels, encoder_dim) # (k, num_pixels, encoder_dim)
# Tensor to store top k previous words at each step; now they're just <start>
k_prev_words = torch.LongTensor([[word_map['<start>']]] * k).to(device) # (k, 1)
# Tensor to store top k sequences; now they're just <start>
seqs = k_prev_words # (k, 1)
# Tensor to store top k sequences' scores; now they're just 0
top_k_scores = torch.zeros(k, 1).to(device) # (k, 1)
# Tensor to store top k sequences' alphas; now they're just 1s
seqs_alpha = torch.ones(k, 1, enc_image_size, enc_image_size).to(device) # (k, 1, enc_image_size, enc_image_size)
# Lists to store completed sequences, their alphas and scores
complete_seqs = list()
complete_seqs_alpha = list()
complete_seqs_scores = list()
# Start decoding
step = 1
h, c = decoder.init_hidden_state(encoder_out)
# s is a number less than or equal to k, because sequences are removed from this process once they hit <end>
while True:
embeddings = decoder.embedding(k_prev_words).squeeze(1) # (s, embed_dim)
awe, alpha = decoder.attention(encoder_out, h) # (s, encoder_dim), (s, num_pixels)
alpha = alpha.view(-1, enc_image_size, enc_image_size) # (s, enc_image_size, enc_image_size)
gate = decoder.sigmoid(decoder.f_beta(h)) # gating scalar, (s, encoder_dim)
awe = gate * awe
h, c = decoder.decode_step(torch.cat([embeddings, awe], dim=1), (h, c)) # (s, decoder_dim)
scores = decoder.fc(h) # (s, vocab_size)
scores = F.log_softmax(scores, dim=1)
# Add
scores = top_k_scores.expand_as(scores) + scores # (s, vocab_size)
# For the first step, all k points will have the same scores (since same k previous words, h, c)
if step == 1:
top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s)
else:
# Unroll and find top scores, and their unrolled indices
top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True) # (s)
# Convert unrolled indices to actual indices of scores
prev_word_inds = top_k_words / vocab_size # (s)
next_word_inds = top_k_words % vocab_size # (s)
# Add new words to sequences, alphas
seqs = torch.cat([seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1)
seqs_alpha = torch.cat([seqs_alpha[prev_word_inds], alpha[prev_word_inds].unsqueeze(1)],
dim=1) # (s, step+1, enc_image_size, enc_image_size)
# Which sequences are incomplete (didn't reach <end>)?
incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if
next_word != word_map['<end>']]
complete_inds = list(set(range(len(next_word_inds))) - set(incomplete_inds))
# Set aside complete sequences
if len(complete_inds) > 0:
complete_seqs.extend(seqs[complete_inds].tolist())
complete_seqs_alpha.extend(seqs_alpha[complete_inds].tolist())
complete_seqs_scores.extend(top_k_scores[complete_inds])
k -= len(complete_inds) # reduce beam length accordingly
# Proceed with incomplete sequences
if k == 0:
break
seqs = seqs[incomplete_inds]
seqs_alpha = seqs_alpha[incomplete_inds]
h = h[prev_word_inds[incomplete_inds]]
c = c[prev_word_inds[incomplete_inds]]
encoder_out = encoder_out[prev_word_inds[incomplete_inds]]
top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1)
# Break if things have been going on too long
if step > 50:
break
step += 1
i = complete_seqs_scores.index(max(complete_seqs_scores))
seq = complete_seqs[i]
alphas = complete_seqs_alpha[i]
return seq, alphas
def visualize_att(image_path, seq, alphas, rev_word_map, smooth=True):
"""
Visualizes caption with weights at every word.
Adapted from paper authors' repo: https://github.com/kelvinxu/arctic-captions/blob/master/alpha_visualization.ipynb
:param image_path: path to image that has been captioned
:param seq: caption
:param alphas: weights
:param rev_word_map: reverse word mapping, i.e. ix2word
:param smooth: smooth weights?
"""
image = Image.open(image_path)
image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)
words = [rev_word_map[ind] for ind in seq]
for t in range(len(words)):
if t > 50:
break
plt.subplot(np.ceil(len(words) / 5.), 5, t + 1)
plt.text(0, 1, '%s' % (words[t]), color='black', backgroundcolor='white', fontsize=12)
plt.imshow(image)
current_alpha = alphas[t, :]
if smooth:
alpha = skimage.transform.pyramid_expand(current_alpha.numpy(), upscale=24, sigma=8)
else:
alpha = skimage.transform.resize(current_alpha.numpy(), [14 * 24, 14 * 24])
if t == 0:
plt.imshow(alpha, alpha=0)
else:
plt.imshow(alpha, alpha=0.8)
plt.set_cmap(cm.Greys_r)
plt.axis('off')
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Show, Attend, and Tell - Tutorial - Generate Caption')
parser.add_argument('--img', '-i', help='path to image')
parser.add_argument('--model', '-m', help='path to model')
parser.add_argument('--word_map', '-wm', help='path to word map JSON')
parser.add_argument('--beam_size', '-b', default=5, type=int, help='beam size for beam search')
parser.add_argument('--dont_smooth', dest='smooth', action='store_false', help='do not smooth alpha overlay')
args = parser.parse_args()
# Load model
checkpoint = torch.load(args.model, map_location=str(device))
decoder = checkpoint['decoder']
decoder = decoder.to(device)
decoder.eval()
encoder = checkpoint['encoder']
encoder = encoder.to(device)
encoder.eval()
# Load word map (word2ix)
with open(args.word_map, 'r') as j:
word_map = json.load(j)
rev_word_map = {v: k for k, v in word_map.items()} # ix2word
# Encode, decode with attention and beam search
seq, alphas = caption_image_beam_search(encoder, decoder, args.img, word_map, args.beam_size)
alphas = torch.FloatTensor(alphas)
# Visualize caption and attention of best sequence
visualize_att(args.img, seq, alphas, rev_word_map, args.smooth)