From 686957deff2b65b7b60c0bdaf86ce17496e23eb6 Mon Sep 17 00:00:00 2001 From: pengzhenghao Date: Fri, 10 May 2024 14:56:29 -0700 Subject: [PATCH] 1) introduce goal-agnoistic info["obs/ego/*"], 2) rename keys in info dict --- metadrive/envs/multigoal_intersection.py | 191 +++++++++++++++++++---- 1 file changed, 160 insertions(+), 31 deletions(-) diff --git a/metadrive/envs/multigoal_intersection.py b/metadrive/envs/multigoal_intersection.py index 6c51a1ec7..2b816f292 100644 --- a/metadrive/envs/multigoal_intersection.py +++ b/metadrive/envs/multigoal_intersection.py @@ -3,9 +3,10 @@ """ from collections import defaultdict +import gymnasium as gym import numpy as np import seaborn as sns - +from metadrive.utils.math import clip, norm from metadrive import MetaDriveEnv from metadrive.component.navigation_module.node_network_navigation import NodeNetworkNavigation from metadrive.component.pg_space import ParameterSpace, Parameter, ConstantSpace, DiscreteSpace @@ -16,9 +17,115 @@ from metadrive.engine.logger import get_logger from metadrive.envs.varying_dynamics_env import VaryingDynamicsAgentManager, VaryingDynamicsConfig from metadrive.manager.base_manager import BaseManager +from metadrive.obs.state_obs import LidarStateObservation, BaseObservation, StateObservation logger = get_logger() +EGO_STATE_DIM = 5 +SIDE_DETECT = 36 +LANE_DETECT = 36 +VEHICLE_DETECT = 72 +NAVI_DIM = 10 + + +class CustomizedObservation(BaseObservation): + def __init__(self, config): + self.state_obs = StateObservation(config) + super(CustomizedObservation, self).__init__(config) + self.latest_observation = {} + + @property + def observation_space(self): + shape = (EGO_STATE_DIM + SIDE_DETECT + LANE_DETECT + VEHICLE_DETECT + NAVI_DIM, ) + return gym.spaces.Box(-1.0, 1.0, shape=shape, dtype=np.float32) + + def observe(self, vehicle): + ego = self.state_observe(vehicle) + assert ego.shape[0] == EGO_STATE_DIM + + side = self.side_detector_observe(vehicle) + assert side.shape[0] == SIDE_DETECT + + lane = self.lane_line_detector_observe(vehicle) + assert lane.shape[0] == LANE_DETECT + + veh = self.vehicle_detector_observe(vehicle) + assert veh.shape[0] == VEHICLE_DETECT + + navi = vehicle.navigation.get_navi_info() + assert len(navi) == NAVI_DIM + + obs = np.concatenate([ego, side, lane, veh, navi]) + + self.latest_observation["state"] = ego + self.latest_observation["side_detect"] = side + self.latest_observation["lane_detect"] = lane + self.latest_observation["vehicle_detect"] = veh + self.latest_observation["raw_navi"] = navi + + return obs + + def state_observe(self, vehicle): + # update out of road + info = np.zeros([EGO_STATE_DIM, ]) + + # The velocity of target vehicle + info[0] = clip((vehicle.speed_km_h + 1) / (vehicle.max_speed_km_h + 1), 0.0, 1.0) + + # Current steering + info[1] = clip((vehicle.steering / vehicle.MAX_STEERING + 1) / 2, 0.0, 1.0) + + # The normalized actions at last steps + info[2] = clip((vehicle.last_current_action[1][0] + 1) / 2, 0.0, 1.0) + info[3] = clip((vehicle.last_current_action[1][1] + 1) / 2, 0.0, 1.0) + + # Current angular acceleration (yaw rate) + heading_dir_last = vehicle.last_heading_dir + heading_dir_now = vehicle.heading + cos_beta = heading_dir_now.dot(heading_dir_last) / (norm(*heading_dir_now) * norm(*heading_dir_last)) + beta_diff = np.arccos(clip(cos_beta, 0.0, 1.0)) + yaw_rate = beta_diff / 0.1 + info[4] = clip(yaw_rate, 0.0, 1.0) + + return info + + def side_detector_observe(self, vehicle): + return np.asarray(self.engine.get_sensor("side_detector").perceive( + vehicle, + num_lasers=vehicle.config["side_detector"]["num_lasers"], + distance=vehicle.config["side_detector"]["distance"], + physics_world=vehicle.engine.physics_world.static_world, + show=vehicle.config["show_side_detector"], + ).cloud_points) + + def lane_line_detector_observe(self, vehicle): + return np.asarray(self.engine.get_sensor("lane_line_detector").perceive( + vehicle, + vehicle.engine.physics_world.static_world, + num_lasers=vehicle.config["lane_line_detector"]["num_lasers"], + distance=vehicle.config["lane_line_detector"]["distance"], + show=vehicle.config["show_lane_line_detector"], + ).cloud_points) + + def vehicle_detector_observe(self, vehicle): + cloud_points, detected_objects = self.engine.get_sensor("lidar").perceive( + vehicle, + physics_world=self.engine.physics_world.dynamic_world, + num_lasers=vehicle.config["lidar"]["num_lasers"], + distance=vehicle.config["lidar"]["distance"], + show=vehicle.config["show_lidar"], + ) + return np.asarray(cloud_points) + + def destroy(self): + """ + Clear allocated memory + """ + self.state_obs.destroy() + super(CustomizedObservation, self).destroy() + self.cloud_points = None + self.detected_objects = None + class CustomizedIntersection(InterSectionWithUTurn): PARAMETER_SPACE = ParameterSpace( @@ -123,6 +230,8 @@ def default_config(cls): ], lane_num=2, lane_width=3.5 ), + "agent_observation": CustomizedObservation, + # Even though the map will not change, the traffic flow will change. "num_scenarios": 1000, @@ -134,12 +243,14 @@ def default_config(cls): "show_navigation_arrow": False, # Turn off vehicle's own navigation module. - "side_detector": dict(num_lasers=4, distance=50), # laser num, distance + "side_detector": dict(num_lasers=SIDE_DETECT, distance=50), # laser num, distance + + "lidar": dict(num_lasers=VEHICLE_DETECT, distance=50), # To avoid goal-dependent lane detection, we use Lidar to detect distance to nearby lane lines. # Otherwise, we will ask the navigation module to provide current lane and extract the lateral # distance directly on this lane. - "lane_line_detector": dict(num_lasers=4, distance=20) + "lane_line_detector": dict(num_lasers=LANE_DETECT, distance=20) } } ) @@ -160,7 +271,9 @@ def _get_step_return(self, actions, engine_info): for goal_name in self.engine.goal_manager.goals.keys(): navi = self.engine.goal_manager.get_navigation(goal_name) navi_info = navi.get_navi_info() - i["goals/{}/obs".format(goal_name)] = np.asarray(navi_info).astype(np.float32) + i["obs/goals/{}".format(goal_name)] = np.asarray(navi_info).astype(np.float32) + for k, v in self.observations["default_agent"].latest_observation.items(): + i[f"obs/ego/{k}"] = v return o, r, tm, tc, i def _get_reset_return(self, reset_info): @@ -169,7 +282,10 @@ def _get_reset_return(self, reset_info): for goal_name in self.engine.goal_manager.goals.keys(): navi = self.engine.goal_manager.get_navigation(goal_name) navi_info = navi.get_navi_info() - i["goals/{}/obs".format(goal_name)] = np.asarray(navi_info).astype(np.float32) + i["obs/goals/{}".format(goal_name)] = np.asarray(navi_info).astype(np.float32) + for k, v in self.observations["default_agent"].latest_observation.items(): + i[f"obs/ego/{k}"] = v + return o, i def reward_function(self, vehicle_id: str): @@ -198,7 +314,7 @@ def reward_function(self, vehicle_id: str): # Compute goal-dependent reward and saved to step_info for goal_name in self.engine.goal_manager.goals.keys(): navi = self.engine.goal_manager.get_navigation(goal_name) - prefix = "goals/{}".format(goal_name) + prefix = goal_name reward = 0.0 # Get goal-dependent information @@ -226,8 +342,8 @@ def reward_function(self, vehicle_id: str): reward = -self.config["crash_vehicle_penalty"] elif vehicle.crash_object: reward = -self.config["crash_object_penalty"] - step_info[f"{prefix}/step_reward"] = reward - step_info[f"{prefix}/route_completion"] = navi.route_completion + step_info[f"reward/goals/{prefix}"] = reward + step_info[f"route_completion/goals/{prefix}"] = navi.route_completion return goal_agnostic_reward, step_info @@ -264,16 +380,15 @@ def done_function(self, vehicle_id: str): vehicle = self.agents[vehicle_id] for goal_name in self.engine.goal_manager.goals.keys(): - prefix = "goals/{}".format(goal_name) - done_info[f"{prefix}/arrive_dest"] = self._is_arrive_destination(vehicle, goal_name) + done_info[f"arrive_dest/goals/{goal_name}"] = self._is_arrive_destination(vehicle, goal_name) return done, done_info if __name__ == "__main__": config = dict( - use_render=True, - manual_control=True, + use_render=False, + manual_control=False, vehicle_config=dict(show_lidar=False, show_navi_mark=True, show_line_to_navi_mark=True), accident_prob=1.0, decision_repeat=5, @@ -284,56 +399,70 @@ def done_function(self, vehicle_id: str): o, info = env.reset() print('=======================') - print("Goal-agnostic observation shape:\n\t", o.shape) + print("Full observation shape:\n\t", o.shape) + print("Goal-agnostic observation shape:\n\t", {k: v.shape for k, v in info.items() if k.startswith("obs/ego")}) print("Observation shape for each goals: ") for k in sorted(info.keys()): - if k.startswith("goals/") and k.endswith("obs"): + if k.startswith("obs/goals/"): print(f"\t{k}: {info[k].shape}") print('=======================') + obs_recorder = defaultdict(list) + s = 0 for i in range(1, 1000000000): o, r, tm, tc, info = env.step([0, 1]) done = tm or tc s += 1 - env.render() + # env.render() env.render(mode="topdown") + for k in info.keys(): + if k.startswith("obs/goals"): + obs_recorder[k].append(info[k]) + for k, v in info.items(): - if k.startswith("goals/") and k.endswith("reward"): + if k.startswith("reward/goals"): episode_rewards[k] += v - if s % 20 == 0: - info = {k: info[k] for k in sorted(info.keys())} - print('\n===== timestep {} ====='.format(s)) - for k, v in info.items(): - if k.startswith("goals/") and not k.endswith('obs'): - print(f"{k}: {v:.2f}") - print('=======================') + # if s % 20 == 0: + # info = {k: info[k] for k in sorted(info.keys())} + # print('\n===== timestep {} ====='.format(s)) + # for k, v in info.items(): + # if k.startswith("obs/goals/"): + # print(f"{k}: {v:.2f}") + # print('=======================') if done: print('\n===== timestep {} ====='.format(s)) print("EPISODE DONE\n") print('route completion:') for k in sorted(info.keys()): - kk = k.replace("/route_completion", "") - if k.startswith("goals/") and k.endswith("route_completion"): - print(f"\t{kk}: {info[k]:.2f}") + # kk = k.replace("/route_completion", "") + if k.startswith("route_completion/goals/"): + print(f"\t{k}: {info[k]:.2f}") print('\narrive destination (success):') for k in sorted(info.keys()): - kk = k.replace("/arrive_dest", "") - if k.startswith("goals/") and k.endswith("arrive_dest"): - print(f"\t{kk}: {info[k]:.2f}") + # kk = k.replace("/arrive_dest", "") + if k.startswith("arrive_dest/goals/"): + print(f"\t{k}: {info[k]:.2f}") print('\nepisode_rewards:') for k in sorted(episode_rewards.keys()): - kk = k.replace("/step_reward", "") - print(f"\t{kk}: {episode_rewards[k]:.2f}") + # kk = k.replace("/step_reward", "") + print(f"\t{k}: {episode_rewards[k]:.2f}") episode_rewards.clear() print('=======================') if done: + + import numpy as np + + # for t in range(i): + # # avg = [v[t] for k, v in obs_recorder.items()] + # v = np.stack([v[0] for k, v in obs_recorder.items()]) + print('\n\n\n') env.reset() s = 0