Project page: https://mengyuest.github.io/SIGNet/
This is the implementation of our paper:
Y. Meng, Y. Lu, A. Raj, S. Sunarjo, R. Guo, T. Javidi, G. Bansal, D. Bharadia. "SIGNet: Semantic Instance Aided Unsupervised 3D Geometry Perception", (CVPR), 2019. [arXiv pdf]
The code is build upon GeoNet
- Ubuntu 16.04, python3, tensorflow-gpu 1.10.1 (test on GTX 1080Ti and RTX 2080Ti with CUDA 9.0)
- Better to use virtual environment. For the rest of dependencies, please run
pip3 install -r requirements.txt
) - Download ground truth depth and our models from https://drive.google.com/open?id=19BFkrfODd3N5IKQJJgqp-pXjbHeYrFf1 (put the
models
folder directly under the project directory) - Download KITTI evaluation dataset from https://drive.google.com/open?id=1kYNKqIhArAD03WNr4_FZCYRRWo0WT31P (move it two levels upon the project directory, i.e.
mv -f data ../../data
)
- Run
bash run_all_tests.sh
then wait for 2~4 minutes. Results are related to Table 1 ~ Table 4 in our paper.
Training on KITTI
- Follow the Data preparation instructions from GeoNet.
- Prepare for semantic lables (semantic-level: DeeplabV3+, instance-level: Mask-RCNN)
- Quick training: run
bash run_depth_train.sh config/foobar.cfg
wherefoobar.cfg
is the configuration filename you need to specify. - Logs will be saved in
${CHECKPOINT_DIR}/logs/
defined infoobar.cfg
file