forked from tensorflow/nmt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gnmt_model.py
333 lines (280 loc) · 12 KB
/
gnmt_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""GNMT attention sequence-to-sequence model with dynamic RNN support."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from . import attention_model
from . import model_helper
from .utils import misc_utils as utils
from .utils import vocab_utils
__all__ = ["GNMTModel"]
class GNMTModel(attention_model.AttentionModel):
"""Sequence-to-sequence dynamic model with GNMT attention architecture.
"""
def __init__(self,
hparams,
mode,
iterator,
source_vocab_table,
target_vocab_table,
reverse_target_vocab_table=None,
scope=None,
extra_args=None):
self.is_gnmt_attention = (
hparams.attention_architecture in ["gnmt", "gnmt_v2"])
super(GNMTModel, self).__init__(
hparams=hparams,
mode=mode,
iterator=iterator,
source_vocab_table=source_vocab_table,
target_vocab_table=target_vocab_table,
reverse_target_vocab_table=reverse_target_vocab_table,
scope=scope,
extra_args=extra_args)
def _build_encoder(self, hparams):
"""Build a GNMT encoder."""
if hparams.encoder_type == "uni" or hparams.encoder_type == "bi":
return super(GNMTModel, self)._build_encoder(hparams)
if hparams.encoder_type != "gnmt":
raise ValueError("Unknown encoder_type %s" % hparams.encoder_type)
# Build GNMT encoder.
num_bi_layers = 1
num_uni_layers = self.num_encoder_layers - num_bi_layers
utils.print_out("# Build a GNMT encoder")
utils.print_out(" num_bi_layers = %d" % num_bi_layers)
utils.print_out(" num_uni_layers = %d" % num_uni_layers)
iterator = self.iterator
source = iterator.source
if self.time_major:
source = tf.transpose(source)
with tf.variable_scope("encoder") as scope:
dtype = scope.dtype
self.encoder_emb_inp = self.encoder_emb_lookup_fn(
self.embedding_encoder, source)
# Execute _build_bidirectional_rnn from Model class
bi_encoder_outputs, bi_encoder_state = self._build_bidirectional_rnn(
inputs=self.encoder_emb_inp,
sequence_length=iterator.source_sequence_length,
dtype=dtype,
hparams=hparams,
num_bi_layers=num_bi_layers,
num_bi_residual_layers=0, # no residual connection
)
# Build unidirectional layers
if self.extract_encoder_layers:
encoder_state, encoder_outputs = self._build_individual_encoder_layers(
bi_encoder_outputs, num_uni_layers, dtype, hparams)
else:
encoder_state, encoder_outputs = self._build_all_encoder_layers(
bi_encoder_outputs, num_uni_layers, dtype, hparams)
# Pass all encoder states to the decoder
# except the first bi-directional layer
encoder_state = (bi_encoder_state[1],) + (
(encoder_state,) if num_uni_layers == 1 else encoder_state)
return encoder_outputs, encoder_state
def _build_all_encoder_layers(self, bi_encoder_outputs,
num_uni_layers, dtype, hparams):
"""Build encoder layers all at once."""
uni_cell = model_helper.create_rnn_cell(
unit_type=hparams.unit_type,
num_units=hparams.num_units,
num_layers=num_uni_layers,
num_residual_layers=self.num_encoder_residual_layers,
forget_bias=hparams.forget_bias,
dropout=hparams.dropout,
num_gpus=self.num_gpus,
base_gpu=1,
mode=self.mode,
single_cell_fn=self.single_cell_fn)
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
uni_cell,
bi_encoder_outputs,
dtype=dtype,
sequence_length=self.iterator.source_sequence_length,
time_major=self.time_major)
# Use the top layer for now
self.encoder_state_list = [encoder_outputs]
return encoder_state, encoder_outputs
def _build_individual_encoder_layers(self, bi_encoder_outputs,
num_uni_layers, dtype, hparams):
"""Run each of the encoder layer separately, not used in general seq2seq."""
uni_cell_lists = model_helper._cell_list(
unit_type=hparams.unit_type,
num_units=hparams.num_units,
num_layers=num_uni_layers,
num_residual_layers=self.num_encoder_residual_layers,
forget_bias=hparams.forget_bias,
dropout=hparams.dropout,
num_gpus=self.num_gpus,
base_gpu=1,
mode=self.mode,
single_cell_fn=self.single_cell_fn)
encoder_inp = bi_encoder_outputs
encoder_states = []
self.encoder_state_list = [bi_encoder_outputs[:, :, :hparams.num_units],
bi_encoder_outputs[:, :, hparams.num_units:]]
with tf.variable_scope("rnn/multi_rnn_cell"):
for i, cell in enumerate(uni_cell_lists):
with tf.variable_scope("cell_%d" % i) as scope:
encoder_inp, encoder_state = tf.nn.dynamic_rnn(
cell,
encoder_inp,
dtype=dtype,
sequence_length=self.iterator.source_sequence_length,
time_major=self.time_major,
scope=scope)
encoder_states.append(encoder_state)
self.encoder_state_list.append(encoder_inp)
encoder_state = tuple(encoder_states)
encoder_outputs = self.encoder_state_list[-1]
return encoder_state, encoder_outputs
def _build_decoder_cell(self, hparams, encoder_outputs, encoder_state,
source_sequence_length):
"""Build a RNN cell with GNMT attention architecture."""
# Standard attention
if not self.is_gnmt_attention:
return super(GNMTModel, self)._build_decoder_cell(
hparams, encoder_outputs, encoder_state, source_sequence_length)
# GNMT attention
attention_option = hparams.attention
attention_architecture = hparams.attention_architecture
num_units = hparams.num_units
infer_mode = hparams.infer_mode
dtype = tf.float32
if self.time_major:
memory = tf.transpose(encoder_outputs, [1, 0, 2])
else:
memory = encoder_outputs
if (self.mode == tf.contrib.learn.ModeKeys.INFER and
infer_mode == "beam_search"):
memory, source_sequence_length, encoder_state, batch_size = (
self._prepare_beam_search_decoder_inputs(
hparams.beam_width, memory, source_sequence_length,
encoder_state))
else:
batch_size = self.batch_size
attention_mechanism = self.attention_mechanism_fn(
attention_option, num_units, memory, source_sequence_length, self.mode)
cell_list = model_helper._cell_list( # pylint: disable=protected-access
unit_type=hparams.unit_type,
num_units=num_units,
num_layers=self.num_decoder_layers,
num_residual_layers=self.num_decoder_residual_layers,
forget_bias=hparams.forget_bias,
dropout=hparams.dropout,
num_gpus=self.num_gpus,
mode=self.mode,
single_cell_fn=self.single_cell_fn,
residual_fn=gnmt_residual_fn
)
# Only wrap the bottom layer with the attention mechanism.
attention_cell = cell_list.pop(0)
# Only generate alignment in greedy INFER mode.
alignment_history = (self.mode == tf.contrib.learn.ModeKeys.INFER and
infer_mode != "beam_search")
attention_cell = tf.contrib.seq2seq.AttentionWrapper(
attention_cell,
attention_mechanism,
attention_layer_size=None, # don't use attention layer.
output_attention=False,
alignment_history=alignment_history,
name="attention")
if attention_architecture == "gnmt":
cell = GNMTAttentionMultiCell(
attention_cell, cell_list)
elif attention_architecture == "gnmt_v2":
cell = GNMTAttentionMultiCell(
attention_cell, cell_list, use_new_attention=True)
else:
raise ValueError(
"Unknown attention_architecture %s" % attention_architecture)
if hparams.pass_hidden_state:
decoder_initial_state = tuple(
zs.clone(cell_state=es)
if isinstance(zs, tf.contrib.seq2seq.AttentionWrapperState) else es
for zs, es in zip(
cell.zero_state(batch_size, dtype), encoder_state))
else:
decoder_initial_state = cell.zero_state(batch_size, dtype)
return cell, decoder_initial_state
def _get_infer_summary(self, hparams):
if hparams.infer_mode == "beam_search":
return tf.no_op()
elif self.is_gnmt_attention:
return attention_model._create_attention_images_summary(
self.final_context_state[0])
else:
return super(GNMTModel, self)._get_infer_summary(hparams)
class GNMTAttentionMultiCell(tf.nn.rnn_cell.MultiRNNCell):
"""A MultiCell with GNMT attention style."""
def __init__(self, attention_cell, cells, use_new_attention=False):
"""Creates a GNMTAttentionMultiCell.
Args:
attention_cell: An instance of AttentionWrapper.
cells: A list of RNNCell wrapped with AttentionInputWrapper.
use_new_attention: Whether to use the attention generated from current
step bottom layer's output. Default is False.
"""
cells = [attention_cell] + cells
self.use_new_attention = use_new_attention
super(GNMTAttentionMultiCell, self).__init__(cells, state_is_tuple=True)
def __call__(self, inputs, state, scope=None):
"""Run the cell with bottom layer's attention copied to all upper layers."""
if not tf.contrib.framework.nest.is_sequence(state):
raise ValueError(
"Expected state to be a tuple of length %d, but received: %s"
% (len(self.state_size), state))
with tf.variable_scope(scope or "multi_rnn_cell"):
new_states = []
with tf.variable_scope("cell_0_attention"):
attention_cell = self._cells[0]
attention_state = state[0]
cur_inp, new_attention_state = attention_cell(inputs, attention_state)
new_states.append(new_attention_state)
for i in range(1, len(self._cells)):
with tf.variable_scope("cell_%d" % i):
cell = self._cells[i]
cur_state = state[i]
if self.use_new_attention:
cur_inp = tf.concat([cur_inp, new_attention_state.attention], -1)
else:
cur_inp = tf.concat([cur_inp, attention_state.attention], -1)
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
return cur_inp, tuple(new_states)
def gnmt_residual_fn(inputs, outputs):
"""Residual function that handles different inputs and outputs inner dims.
Args:
inputs: cell inputs, this is actual inputs concatenated with the attention
vector.
outputs: cell outputs
Returns:
outputs + actual inputs
"""
def split_input(inp, out):
out_dim = out.get_shape().as_list()[-1]
inp_dim = inp.get_shape().as_list()[-1]
return tf.split(inp, [out_dim, inp_dim - out_dim], axis=-1)
actual_inputs, _ = tf.contrib.framework.nest.map_structure(
split_input, inputs, outputs)
def assert_shape_match(inp, out):
inp.get_shape().assert_is_compatible_with(out.get_shape())
tf.contrib.framework.nest.assert_same_structure(actual_inputs, outputs)
tf.contrib.framework.nest.map_structure(
assert_shape_match, actual_inputs, outputs)
return tf.contrib.framework.nest.map_structure(
lambda inp, out: inp + out, actual_inputs, outputs)