forked from FlorianMarquardt/machine-learning-for-physicists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
06_LSTM_simpleExamples_clean.py
358 lines (215 loc) · 8.92 KB
/
06_LSTM_simpleExamples_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# coding: utf-8
# # Simple LSTM examples
# Example code for the lecture series "Machine Learning for Physicists" by Florian Marquardt
#
# Lecture 6
#
# See https://machine-learning-for-physicists.org and the current course website linked there!
# This notebook shows how to:
# - train a recurrent (LSTM) network
#
# In[12]:
# Import keras library. Also import some of the layers, so we do not need to
# write things like "layers.Dense", but can just write "Dense" instead
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
# Import the numpy library for matrix manipulations etc.
from numpy import *
# Set up the graphics by importing the matplotlib plotting library
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['figure.dpi']=300 # highres display
# # Recall-Net
# A net that can recall a number (that it has been told before), when asked to do so!
# In[13]:
def init_memory_net():
global rnn, timesteps
rnn = Sequential()
# note: batch_input_shape is (batchsize,timesteps,data_dim)
rnn.add(LSTM(5, batch_input_shape=(None, timesteps, 3), return_sequences=True))
rnn.add(LSTM(2, return_sequences=True))
rnn.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
# In[14]:
def produce_batch():
global batchsize, timesteps
observations=zeros([batchsize,timesteps,3])
desired_output=zeros([batchsize,timesteps,2])
tell_position=random.randint(int(timesteps/2),size=batchsize)
ask_position=int(timesteps/2)+1+random.randint(int(timesteps/2)-1,size=batchsize)
# mark input-slot 0 with 1 at the tell_position:
observations[range(batchsize),tell_position,0]=1
# write the value to be memorized into input-slot 1
memorize_numbers=random.random(batchsize)
observations[range(batchsize),tell_position,1]=memorize_numbers
# mark input-slot 2 with 1 at the ask_position
observations[range(batchsize),ask_position,2]=1
desired_output[range(batchsize),ask_position,0]=memorize_numbers
return(observations,desired_output)
# In[18]:
timesteps=20
init_memory_net()
batchsize=1
test_observations,test_target=produce_batch()
batchsize=20
epochs=300
test_output=zeros([timesteps,epochs])
for k in range(epochs):
input_observations,output_targets=produce_batch()
rnn.train_on_batch(input_observations,output_targets)
test_output[:,k]=rnn.predict_on_batch(test_observations)[0,:,0]
print("epoch: ", k, " deviation: ", "{:1.3f}".format(sum((test_output[:,k]-test_target[0,:,0])**2)), end=" \r")
# In[19]:
fig=plt.figure(figsize=(7,5))
plt.imshow(test_output,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
# In[20]:
batchsize=30
test_observations,test_target=produce_batch()
test_output=zeros([batchsize,timesteps])
test_output[:,:]=rnn.predict_on_batch(test_observations)[:,:,0]
fig=plt.figure(figsize=(3,2))
plt.imshow(test_target[:,:,0],vmax=1.0,vmin=0.0,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
fig=plt.figure(figsize=(3,2))
plt.imshow(test_output,vmax=1.0,vmin=0.0,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
print("Deviation: ", sum((test_output-test_target[:,:,0])**2))
# In[21]:
def produce_batch_tell_ask_twice():
global batchsize, timesteps
observations=zeros([batchsize,timesteps,3])
desired_output=zeros([batchsize,timesteps,2])
tell_position=random.randint(int(timesteps/2),size=batchsize)
ask_position=int(timesteps/2)+1+random.randint(int(timesteps/4)-2,size=batchsize)
ask_position2=ask_position+1+random.randint(int(timesteps/4)-2,size=batchsize)
# mark input-slot 0 with 1 at the tell_position:
observations[range(batchsize),tell_position,0]=1
# write the value to be memorized into input-slot 1
memorize_numbers=random.random(batchsize)
observations[range(batchsize),tell_position,1]=memorize_numbers
# mark input-slot 2 with 1 at the ask_position
observations[range(batchsize),ask_position,2]=1
observations[range(batchsize),ask_position2,2]=1
desired_output[range(batchsize),ask_position,0]=memorize_numbers
desired_output[range(batchsize),ask_position2,0]=memorize_numbers
return(observations,desired_output)
# In[22]:
batchsize=30
test_observations,test_target=produce_batch_tell_ask_twice()
test_output=zeros([batchsize,timesteps])
test_output[:,:]=rnn.predict_on_batch(test_observations)[:,:,0]
fig=plt.figure(figsize=(4,3))
plt.imshow(test_target[:,:,0],vmax=1.0,vmin=0.0,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
fig=plt.figure(figsize=(4,3))
plt.imshow(test_output,vmax=1.0,vmin=0.0,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
print("Deviation: ", sum((test_output-test_target[:,:,0])**2))
# In[23]:
def init_memory_net_powerful():
global rnn, batchsize, timesteps
rnn = Sequential()
# note: batch_input_shape is (batchsize,timesteps,data_dim)
rnn.add(LSTM(20, batch_input_shape=(None, timesteps, 3), return_sequences=True))
rnn.add(LSTM(2, return_sequences=True))
rnn.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
# In[25]:
init_memory_net_powerful()
timesteps=20
batchsize=1
test_observations,test_target=produce_batch()
batchsize=20
epochs=300
test_output=zeros([timesteps,epochs])
for k in range(epochs):
input_observations,output_targets=produce_batch()
rnn.train_on_batch(input_observations,output_targets)
test_output[:,k]=rnn.predict_on_batch(test_observations)[0,:,0]
print("\r epoch: ", k, " deviation: ", sum((test_output[:,k]-test_target[0,:,0])**2), end="")
# In[26]:
fig=plt.figure(figsize=(10,7))
plt.imshow(test_output,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
# In[27]:
batchsize=30
test_observations,test_target=produce_batch()
test_output=zeros([batchsize,timesteps])
test_output[:,:]=rnn.predict_on_batch(test_observations)[:,:,0]
fig=plt.figure(figsize=(5,4))
plt.imshow(test_target[:,:,0],vmax=1.0,vmin=0.0,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
fig=plt.figure(figsize=(5,4))
plt.imshow(test_output,vmax=1.0,vmin=0.0,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
print("Deviation: ", sum((test_output-test_target[:,:,0])**2))
# # Countdown-Net
# A net that counts down: At some random time, it is told a number, and then it outputs a 'one' after this number of steps!
# In[28]:
def init_count_net():
global rnn, batchsize, timesteps
global firstLSTMlayer
rnn = Sequential()
# note: batch_input_shape is (batchsize,timesteps,data_dim)
firstLSTMlayer=LSTM(2, batch_input_shape=(None, timesteps, 2), return_sequences=True)
rnn.add(firstLSTMlayer)
rnn.add(LSTM(2, return_sequences=True))
rnn.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
# In[29]:
def produce_batch_counting():
global batchsize, timesteps
observations=zeros([batchsize,timesteps,2])
desired_output=zeros([batchsize,timesteps,2])
tell_position=random.randint(int(timesteps/2),size=batchsize)
count_position=random.randint(int(timesteps/2)-1,size=batchsize)
expect_position=tell_position+count_position
# mark input-slot 0 with 1 at the tell_position:
observations[range(batchsize),tell_position,0]=1
# write the counter value
observations[range(batchsize),tell_position,1]=count_position
desired_output[range(batchsize),expect_position,0]=1
return(observations,desired_output)
# In[31]:
timesteps=20
init_count_net()
batchsize=1
test_observations,test_target=produce_batch_counting()
batchsize=20
epochs=300
test_output=zeros([timesteps,epochs])
for k in range(epochs):
input_observations,output_targets=produce_batch_counting()
rnn.train_on_batch(input_observations,output_targets)
test_output[:,k]=rnn.predict_on_batch(test_observations)[0,:,0]
print("epoch: ", k, " deviation: ", "{:1.3f}".format(sum((test_output[:,k]-test_target[0,:,0])**2)), end=" \r")
# In[32]:
fig=plt.figure(figsize=(7,5))
plt.imshow(test_output,origin='lower',interpolation='nearest',aspect='auto')
plt.colorbar()
plt.show()
# Now: try to inspect output of LSTM neurons at intermediate times. This is also a nice example of how to use some smart keras functionality.
# In[36]:
from tensorflow.keras import Model
# get a function that represents the mapping from the
# network inputs to the neuron output values of the first LSTM layer:
neuron_values = Model([rnn.inputs], [firstLSTMlayer.output])
# In[37]:
batchsize=1
test_observations,test_target=produce_batch_counting()
# In[38]:
print(test_observations)
# In[42]:
the_values=neuron_values.predict_on_batch([test_observations])
# In[43]:
shape(the_values)
# In[45]:
plt.imshow(the_values[0,:,:],interpolation='nearest',origin='lower',aspect='auto')
plt.colorbar()
plt.show()