From 1559f5acb49b8413fcd5eaa1a4768d5fb309b5d4 Mon Sep 17 00:00:00 2001 From: Hu Yongle <2065545849@qq.com> Date: Sat, 26 Oct 2024 16:43:13 +0800 Subject: [PATCH] fix build --- GaloisRamification/GaloisRamification.lean | 4 ++-- GaloisRamification/Hilbert's_Ramification_Theory.lean | 2 +- lakefile.lean | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/GaloisRamification/GaloisRamification.lean b/GaloisRamification/GaloisRamification.lean index ab06f33..1b28349 100644 --- a/GaloisRamification/GaloisRamification.lean +++ b/GaloisRamification/GaloisRamification.lean @@ -14,9 +14,9 @@ set_option autoImplicit false /-! -# Ramification theory in Galois extensions of number fields +# Ramification theory in Galois extensions of Dedekind domains -In this file, we discuss the ramification theory in Galois extensions of number fields, which is +In this file, we discuss the ramification theory in Galois extensions of Dedekind domains, which is also called Hilbert's Ramification Theory. ## Main definitions and results diff --git a/GaloisRamification/Hilbert's_Ramification_Theory.lean b/GaloisRamification/Hilbert's_Ramification_Theory.lean index 7e58205..1f74a95 100644 --- a/GaloisRamification/Hilbert's_Ramification_Theory.lean +++ b/GaloisRamification/Hilbert's_Ramification_Theory.lean @@ -1,7 +1,7 @@ /- Copyright (c) 2023 Hu Yongle. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. -Authors: Hu Yongle +Authors: Hu Yongle, Jiedong Jiang -/ import Mathlib.Tactic import Mathlib.NumberTheory.NumberField.Norm diff --git a/lakefile.lean b/lakefile.lean index 66735ef..fe0b4d1 100644 --- a/lakefile.lean +++ b/lakefile.lean @@ -7,11 +7,11 @@ package "GaloisRamification" where ⟨`pp.unicode.fun, true⟩ -- pretty-prints `fun a ↦ b` ] -- add any additional package configuration options here - version := v!"0.1.0" require mathlib from git "https://github.com/leanprover-community/mathlib4.git" +@[default_target] lean_lib «GaloisRamification» where -- add library configuration options here