-
Notifications
You must be signed in to change notification settings - Fork 19
/
appendix_1.tex
32 lines (24 loc) · 1.24 KB
/
appendix_1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
\chapter{Bayesian change point detection}
\label{appendix:appendix_1}
To estimate the location of a step change, a Bayesian change point detection algorithm based on \cite{Ruanaidh1996} and \cite{adams2007bayesian} is used in the thesis. Given a data sequence $x$ of $N$ samples with Gaussian noise added:
\begin{equation}
\centering
x_i=\begin{cases}
\mu_1 + \epsilon_i, & \text{if $i<m$}.\\
\mu_2 + \epsilon_i, & \text{otherwise}.
\end{cases}
\label{eq:app:cp:5.1}
\end{equation}
where the noise samples $\epsilon_i$ are assumed to be independent and $m$ is the step change location. The likelihood of the data is given by the joint probability of the noise samples $\epsilon_i$:
\begin{equation}
\centering
P(x|\{\mu_1\mu_2\sigma m\}) = \prod\limits_{i=1}^N P(\epsilon_i)
\label{eq:app:cp:5.2}
\end{equation}
where $\sigma$ is the standard deviation of the Gaussian noise; $\mu_1, \mu_2$ and $\sigma m$ are the known time series parameters. The probability density function for the noise samples is defined by:
\begin{equation}
\centering
P(\epsilon) = \frac{1}{\sigma \sqrt{2 \pi} } e ^{ - \frac{ (\epsilon - \mu)^2 } {2\sigma^2} }
\label{eq:app:cp:noise_pdf}
\end{equation}
\lipsum[12-17]