diff --git a/.env.example b/.env.example index b4a7191656..7e8e2933aa 100644 --- a/.env.example +++ b/.env.example @@ -1,6 +1,5 @@ ALLOWED_HOSTS='.localhost, 127.0.0.1, [::1]' SECRET_KEY=2gr6ud88x=(p855_5nbj_+7^bw-iz&n7ldqv%94mjaecl+b9=4 -DJANGO_DATABASE_KEY=default DJANGO_DATABASE_URL=postgres://mathesar:mathesar@mathesar_db:5432/mathesar_django MATHESAR_DATABASES=(mathesar_tables|postgresql://mathesar:mathesar@mathesar_db:5432/mathesar) ## Uncomment the setting below to put Mathesar in 'demo mode' diff --git a/.github/workflows/deploy-docs.yml b/.github/workflows/deploy-docs.yml index ffcff23422..95ca879c5d 100644 --- a/.github/workflows/deploy-docs.yml +++ b/.github/workflows/deploy-docs.yml @@ -13,6 +13,6 @@ jobs: - uses: actions/setup-python@v4 with: python-version: 3.x - - run: pip install mkdocs-material mkdocs-redirects + - run: pip install -r ./docs/requirements.txt - working-directory: ./docs run: mkdocs gh-deploy --strict --force diff --git a/.github/workflows/github-repo-stats.yml b/.github/workflows/github-repo-stats.yml new file mode 100644 index 0000000000..2272b51983 --- /dev/null +++ b/.github/workflows/github-repo-stats.yml @@ -0,0 +1,20 @@ +# Stores GitHub repo stats daily, to overcome the 14-day limitation of GitHub's built-in traffic statistics. +name: github-repo-stats + +on: + schedule: + # Run this once per day, towards the end of the day for keeping the most + # recent data point most meaningful (hours are interpreted in UTC). + - cron: "0 23 * * *" + workflow_dispatch: # Allow for running this manually. + +jobs: + j1: + name: github-repo-stats + runs-on: ubuntu-latest + steps: + - name: run-ghrs + # Use latest release. + uses: jgehrcke/github-repo-stats@RELEASE + with: + ghtoken: ${{secrets.MATHESAR_ORG_GITHUB_TOKEN}} diff --git a/.github/workflows/run-pytest.yml b/.github/workflows/run-pytest.yml index 00a147d19e..05c4fd2fd3 100644 --- a/.github/workflows/run-pytest.yml +++ b/.github/workflows/run-pytest.yml @@ -26,7 +26,7 @@ jobs: run: sudo chown -R 1000:1000 . - name: Build the stack - run: docker-compose --profile test up --build -d + run: docker compose -f docker-compose.yml -f docker-compose.dev.yml up --build -d test-service - name: Create coverage directory run: docker exec mathesar_service_test mkdir coverage_report diff --git a/.github/workflows/test-docs.yml b/.github/workflows/test-docs.yml index f0bac9dd2c..9356c734a6 100644 --- a/.github/workflows/test-docs.yml +++ b/.github/workflows/test-docs.yml @@ -16,6 +16,6 @@ jobs: - uses: actions/setup-python@v4 with: python-version: 3.x - - run: pip install mkdocs-material mkdocs-redirects + - run: pip install -r ./docs/requirements.txt - working-directory: ./docs run: mkdocs build --strict diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index ed84dddd1c..1e543ea7d6 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -43,7 +43,7 @@ We highly recommend joining our [Matrix community](https://wiki.mathesar.org/en/ - Refer to our **[Developer Guide](./DEVELOPER_GUIDE.md)** for questions about the code. - Make sure to follow our [front end code standards](./mathesar_ui/STANDARDS.md) and [API standards](./mathesar/api/STANDARDS.md) where applicable. - If you are not familiar with GitHub or pull requests, please follow [GitHub's "Hello World" guide](https://guides.github.com/activities/hello-world/) first. Make sure to commit your changes on a new git branch named after the ticket you claimed. Base that new branch on our `develop` branch. - - Commit early, commit often. Write good commit messages. Try to keep pull requests small if possible, since it makes review easier. + - Commit early, commit often. Write [good commit messages](https://gist.github.com/robertpainsi/b632364184e70900af4ab688decf6f53). Try to keep pull requests small if possible, since it makes review easier. - If you expect your work to last longer than 1 week, open a draft pull request for your in-progress work. 1. **Open a PR.** diff --git a/Dockerfile b/Dockerfile index 95104e7f3e..b8b6ac4963 100644 --- a/Dockerfile +++ b/Dockerfile @@ -24,3 +24,4 @@ COPY . . RUN sudo npm install -g npm-force-resolutions RUN cd mathesar_ui && npm install --unsafe-perm && npm run build EXPOSE 8000 3000 6006 +ENTRYPOINT ["./run.sh"] diff --git a/README.md b/README.md index 62653dd212..8d8b088cb4 100644 --- a/README.md +++ b/README.md @@ -24,6 +24,7 @@ You can use Mathesar to build **data models**, **enter data**, and even **build **Table of Contents** +- [Sponsors](#sponsors) - [Status](#status) - [Join our community!](#join-our-community) - [Screenshots](#screenshots) @@ -36,6 +37,24 @@ You can use Mathesar to build **data models**, **enter data**, and even **build +## Sponsors +Our top sponsors! Become a sponsor on [GitHub](https://github.com/sponsors/centerofci) or [Open Collective](https://opencollective.com/mathesar). + + + + + + + +
+ + Thingylabs GmbH +
+ Thingylabs GmbH +
+
+
+ ## Status - [x] **Public Alpha**: You can install and deploy Mathesar on your server. Go easy on us! - [ ] **Public Beta**: Stable and feature-rich enough to implement in production diff --git a/config/settings/common_settings.py b/config/settings/common_settings.py index 1c738d0a72..2a473aa7ae 100644 --- a/config/settings/common_settings.py +++ b/config/settings/common_settings.py @@ -93,7 +93,7 @@ def pipe_delim(pipe_string): db_key: db_url(url_string) for db_key, url_string in decouple_config('MATHESAR_DATABASES', cast=Csv(pipe_delim)) } -DATABASES[decouple_config('DJANGO_DATABASE_KEY')] = decouple_config('DJANGO_DATABASE_URL', cast=db_url) +DATABASES[decouple_config('DJANGO_DATABASE_KEY', default="default")] = decouple_config('DJANGO_DATABASE_URL', cast=db_url) for db_key, db_dict in DATABASES.items(): # Engine can be '.postgresql' or '.postgresql_psycopg2' diff --git a/conftest.py b/conftest.py index 7bb979ce1e..5d27e3100f 100644 --- a/conftest.py +++ b/conftest.py @@ -12,6 +12,7 @@ from db.engine import add_custom_types_to_ischema_names, create_engine as sa_create_engine from db.types import install +from db.sql import install as sql_install from db.schemas.operations.drop import drop_schema as drop_sa_schema from db.schemas.operations.create import create_schema as create_sa_schema from db.schemas.utils import get_schema_oid_from_name, get_schema_name_from_oid @@ -73,6 +74,7 @@ def __create_db(db_name): create_database(engine.url) created_dbs.add(db_name) # Our default testing database has our types and functions preinstalled. + sql_install.install(engine) install.install_mathesar_on_database(engine) engine.dispose() return db_name @@ -208,7 +210,7 @@ def _create_schema(schema_name, engine, schema_mustnt_exist=True): if schema_mustnt_exist: assert schema_name not in created_schemas logger.debug(f'creating {schema_name}') - create_sa_schema(schema_name, engine) + create_sa_schema(schema_name, engine, if_not_exists=True) schema_oid = get_schema_oid_from_name(schema_name, engine) db_name = engine.url.database created_schemas_in_this_engine = created_schemas.setdefault(db_name, {}) diff --git a/db/columns/operations/alter.py b/db/columns/operations/alter.py index a35f381cb0..d5f2625a76 100644 --- a/db/columns/operations/alter.py +++ b/db/columns/operations/alter.py @@ -4,6 +4,7 @@ from sqlalchemy.exc import DataError, InternalError, ProgrammingError from psycopg2.errors import InvalidTextRepresentation, InvalidParameterValue, StringDataRightTruncation, RaiseException, SyntaxError +from db import connection as db_conn from db.columns.defaults import NAME, NULLABLE from db.columns.exceptions import InvalidDefaultError, InvalidTypeError, InvalidTypeOptionError from db.columns.operations.select import ( @@ -283,21 +284,31 @@ def _batch_alter_table_rename_columns(table_oid, column_data_list, connection, e def batch_alter_table_drop_columns(table_oid, column_data_list, connection, engine): - table = reflect_table_from_oid( - table_oid, - engine, - connection_to_use=connection, - # TODO reuse metadata - metadata=get_empty_metadata(), - ) - ctx = MigrationContext.configure(connection) - op = Operations(ctx) - with op.batch_alter_table(table.name, schema=table.schema) as batch_op: - for column_data in column_data_list: - column_attnum = column_data.get('attnum') - if column_attnum is not None and column_data.get('delete') is not None: - name = get_column_name_from_attnum(table_oid, column_attnum, engine=engine, metadata=get_empty_metadata(), connection_to_use=connection) - batch_op.drop_column(name) + """ + Drop the given columns from the given table. + + Args: + table_oid: OID of the table whose columns we'll drop. + column_data_list: List of dictionaries describing columns to alter. + connection: the connection (if any) to use with the database. + engine: the SQLAlchemy engine to use with the database. + + Returns: + A string of the command that was executed. + """ + columns_to_drop = [ + int(col['attnum']) for col in column_data_list + if col.get('attnum') is not None and col.get('delete') is not None + ] + + if connection is not None and columns_to_drop: + return db_conn.execute_msar_func_with_psycopg2_conn( + connection, 'drop_columns', int(table_oid), *columns_to_drop + ) + elif columns_to_drop: + return db_conn.execute_msar_func_with_engine( + engine, 'drop_columns', int(table_oid), *columns_to_drop + ) def batch_update_columns(table_oid, engine, column_data_list): diff --git a/db/columns/operations/drop.py b/db/columns/operations/drop.py index 1bb41875c6..8e2910bb45 100644 --- a/db/columns/operations/drop.py +++ b/db/columns/operations/drop.py @@ -1,18 +1,19 @@ -from alembic.migration import MigrationContext -from alembic.operations import Operations - -from db.columns.operations.select import get_column_name_from_attnum -from db.tables.operations.select import reflect_table_from_oid -from db.metadata import get_empty_metadata +"""The function in this module wraps SQL functions that drop columns.""" +from db import connection as db_conn def drop_column(table_oid, column_attnum, engine): - # TODO reuse metadata - metadata = get_empty_metadata() - table = reflect_table_from_oid(table_oid, engine, metadata=metadata) - column_name = get_column_name_from_attnum(table_oid, column_attnum, engine, metadata=metadata) - column = table.columns[column_name] - with engine.begin() as conn: - ctx = MigrationContext.configure(conn) - op = Operations(ctx) - op.drop_column(table.name, column.name, schema=table.schema) + """ + Drop the given columns from the given table. + + Args: + table_oid: OID of the table whose columns we'll drop. + column_attnum: The attnums of the columns to drop. + engine: SQLAlchemy engine object for connecting. + + Returns: + Returns a string giving the command that was run. + """ + return db_conn.execute_msar_func_with_engine( + engine, 'drop_columns', table_oid, column_attnum + ).fetchone()[0] diff --git a/db/connection.py b/db/connection.py new file mode 100644 index 0000000000..2b546256d3 --- /dev/null +++ b/db/connection.py @@ -0,0 +1,47 @@ +from sqlalchemy import text +import psycopg + + +def execute_msar_func_with_engine(engine, func_name, *args): + """ + Execute an msar function using an SQLAlchemy engine. + + This is temporary scaffolding. + + Args: + engine: an SQLAlchemy engine for connecting to a DB + func_name: The unqualified msar function name (danger; not sanitized) + *args: The list of parameters to pass + """ + conn_str = str(engine.url) + with psycopg.connect(conn_str) as conn: + # Returns a cursor + return conn.execute( + f"SELECT msar.{func_name}({','.join(['%s']*len(args))})", + args + ) + + +def execute_msar_func_with_psycopg2_conn(conn, func_name, *args): + """ + Execute an msar function using an SQLAlchemy engine. + + This is *extremely* temporary scaffolding. + + Args: + conn: a psycopg2 connection (from an SQLAlchemy engine) + func_name: The unqualified msar function name (danger; not sanitized) + *args: The list of parameters to pass + """ + args_str = ", ".join([str(arg) for arg in args]) + args_str = f"{args_str}" + stmt = text(f"SELECT msar.{func_name}({args_str})") + # Returns a cursor + return conn.execute(stmt) + + +def load_file_with_engine(engine, file_handle): + """Run an SQL script from a file, using psycopg.""" + conn_str = str(engine.url) + with psycopg.connect(conn_str) as conn: + conn.execute(file_handle.read()) diff --git a/db/constants.py b/db/constants.py index 2edcdae86b..efc7a2504d 100644 --- a/db/constants.py +++ b/db/constants.py @@ -3,3 +3,6 @@ ID_ORIGINAL = "id_original" INFERENCE_SCHEMA = f"{MATHESAR_PREFIX}inference_schema" COLUMN_NAME_TEMPLATE = 'Column ' # auto generated column name 'Column 1' (no undescore) +MSAR_PUBLIC = 'msar' +MSAR_PRIVAT = f"__{MSAR_PUBLIC}" +MSAR_VIEWS = f"{MSAR_PUBLIC}_views" diff --git a/db/constraints/operations/drop.py b/db/constraints/operations/drop.py index 31ba9fe59e..c2f4807098 100644 --- a/db/constraints/operations/drop.py +++ b/db/constraints/operations/drop.py @@ -1,9 +1,19 @@ -from alembic.migration import MigrationContext -from alembic.operations import Operations +from db.connection import execute_msar_func_with_engine -def drop_constraint(table_name, schema, engine, constraint_name): - with engine.begin() as conn: - ctx = MigrationContext.configure(conn) - op = Operations(ctx) - op.drop_constraint(constraint_name, table_name, schema=schema) +def drop_constraint(table_name, schema_name, engine, constraint_name): + """ + Drop a constraint. + + Args: + table_name: The name of the table that has the constraint to be dropped. + schema_name: The name of the schema where the table with constraint to be dropped resides. + engine: SQLAlchemy engine object for connecting. + constraint_name: The name of constraint to be dropped. + + Returns: + Returns a string giving the command that was run. + """ + return execute_msar_func_with_engine( + engine, 'drop_constraint', schema_name, table_name, constraint_name + ).fetchone()[0] diff --git a/db/identifiers.py b/db/identifiers.py index 7d9a175fdd..2b2b7395a5 100644 --- a/db/identifiers.py +++ b/db/identifiers.py @@ -1,6 +1,9 @@ import hashlib +POSTGRES_IDENTIFIER_SIZE_LIMIT = 63 + + def truncate_if_necessary(identifier): """ Takes an identifier and returns it, truncating it, if it is too long. The truncated version @@ -30,9 +33,13 @@ def truncate_if_necessary(identifier): def is_identifier_too_long(identifier): - postgres_identifier_size_limit = 63 + # TODO we should support POSTGRES_IDENTIFIER_SIZE_LIMIT here; + # Our current limit due to an unknown bug that manifests at least + # when importing CSVs seems to be 57 bytes. Here we're setting it even + # lower just in case. + our_temporary_identifier_size_limit = 48 size = _get_size_of_identifier_in_bytes(identifier) - return size > postgres_identifier_size_limit + return size > our_temporary_identifier_size_limit def _get_truncation_hash(identifier): diff --git a/db/install.py b/db/install.py index 8a15429bdd..43440b398d 100644 --- a/db/install.py +++ b/db/install.py @@ -2,7 +2,8 @@ from sqlalchemy.exc import OperationalError from db import engine -from db.types import install +from db.sql import install as sql_install +from db.types import install as types_install def install_mathesar( @@ -16,7 +17,8 @@ def install_mathesar( try: user_db_engine.connect() print(f"Installing Mathesar on preexisting PostgreSQL database {database_name} at host {hostname}...") - install.install_mathesar_on_database(user_db_engine) + sql_install.install(user_db_engine) + types_install.install_mathesar_on_database(user_db_engine) user_db_engine.dispose() except OperationalError: database_created = _create_database( @@ -29,7 +31,8 @@ def install_mathesar( ) if database_created: print(f"Installing Mathesar on PostgreSQL database {database_name} at host {hostname}...") - install.install_mathesar_on_database(user_db_engine) + sql_install.install(user_db_engine) + types_install.install_mathesar_on_database(user_db_engine) user_db_engine.dispose() else: print(f"Skipping installing on DB with key {database_name}.") diff --git a/db/schemas/operations/alter.py b/db/schemas/operations/alter.py index ab1089f290..e6b345720f 100644 --- a/db/schemas/operations/alter.py +++ b/db/schemas/operations/alter.py @@ -1,41 +1,44 @@ -from sqlalchemy import text -from sqlalchemy.schema import DDLElement -from sqlalchemy.ext import compiler - +from db.connection import execute_msar_func_with_engine SUPPORTED_SCHEMA_ALTER_ARGS = {'name', 'description'} -class RenameSchema(DDLElement): - def __init__(self, schema, rename_to): - self.schema = schema - self.rename_to = rename_to +def rename_schema(schema_name, engine, rename_to): + """ + Rename an existing schema. + Args: + schema_name: Name of the schema to change. + engine: SQLAlchemy engine object for connecting. + rename_to: New schema name. -@compiler.compiles(RenameSchema) -def compile_rename_schema(element, compiler, **_): - return 'ALTER SCHEMA "%s" RENAME TO "%s"' % ( - element.schema, - element.rename_to - ) + Returns: + Returns a string giving the command that was run. + """ + if rename_to == schema_name: + return + return execute_msar_func_with_engine( + engine, 'rename_schema', schema_name, rename_to + ).fetchone()[0] -def rename_schema(schema, engine, rename_to): +def comment_on_schema(schema_name, engine, comment): """ - This method renames a Postgres schema. - """ - if rename_to == schema: - return - with engine.begin() as connection: - connection.execute(RenameSchema(schema, rename_to)) + Change description of a schema. + Args: + schema_name: The name of the schema whose comment we will + change. + comment: The new comment. Any quotes or special characters must + be escaped. + engine: SQLAlchemy engine object for connecting. -def comment_on_schema(schema, engine, comment): - # Not using the DDLElement since the examples from the docs are - # vulnerable to SQL injection attacks. - comment_command = text(f'COMMENT ON SCHEMA "{schema}" IS :c') - with engine.begin() as conn: - conn.execute(comment_command, {'c': comment}) + Returns: + Returns a string giving the command that was run. + """ + return execute_msar_func_with_engine( + engine, 'comment_on_schema', schema_name, comment + ).fetchone()[0] def alter_schema(name, engine, update_data): diff --git a/db/schemas/operations/create.py b/db/schemas/operations/create.py index ee2ae181a8..a079ec2cd3 100644 --- a/db/schemas/operations/create.py +++ b/db/schemas/operations/create.py @@ -1,16 +1,26 @@ -from sqlalchemy.schema import CreateSchema - -from db.schemas.utils import get_all_schemas from db.schemas.operations.alter import comment_on_schema +from db.connection import execute_msar_func_with_engine -def create_schema(schema, engine, comment=None): +def create_schema(schema_name, engine, comment=None, if_not_exists=False): """ - This method creates a Postgres schema. + Creates a schema. + + Args: + schema_name: Name of the schema to create. + engine: SQLAlchemy engine object for connecting. + comment: The new comment. Any quotes or special characters must + be escaped. + if_not_exists: Whether to ignore an error if the schema does + exist. + + Returns: + Returns a string giving the command that was run. """ - if schema not in get_all_schemas(engine): - with engine.begin() as connection: - connection.execute(CreateSchema(schema)) + result = execute_msar_func_with_engine( + engine, 'create_schema', schema_name, if_not_exists + ).fetchone()[0] - if comment is not None: - comment_on_schema(schema, engine, comment) + if comment: + comment_on_schema(schema_name, engine, comment) + return result diff --git a/db/schemas/operations/drop.py b/db/schemas/operations/drop.py index 698870c191..2b78e60a49 100644 --- a/db/schemas/operations/drop.py +++ b/db/schemas/operations/drop.py @@ -1,22 +1,20 @@ -from psycopg2.errors import DependentObjectsStillExist -from sqlalchemy.schema import DropSchema -from sqlalchemy.exc import InternalError +from db.connection import execute_msar_func_with_engine -from db.schemas.utils import get_all_schemas - -def drop_schema(schema, engine, cascade=False, if_exists=False): - """ - This method deletes a Postgres schema. +def drop_schema(schema_name, engine, cascade=False, if_exists=False): """ - if if_exists and schema not in get_all_schemas(engine): - return + Drop a schema. - with engine.begin() as connection: - try: - connection.execute(DropSchema(schema, cascade=cascade)) - except InternalError as e: - if isinstance(e.orig, DependentObjectsStillExist): - raise e.orig - else: - raise e + Args: + schema_name: Name of the schema to drop. + engine: SQLAlchemy engine object for connecting. + cascade: Whether to drop the dependent objects. + if_exists: Whether to ignore an error if the schema doesn't + exist. + + Returns: + Returns a string giving the command that was run. + """ + return execute_msar_func_with_engine( + engine, 'drop_schema', schema_name, cascade, if_exists + ).fetchone()[0] diff --git a/db/schemas/operations/select.py b/db/schemas/operations/select.py index b9c242902e..2a40e8666c 100644 --- a/db/schemas/operations/select.py +++ b/db/schemas/operations/select.py @@ -7,7 +7,17 @@ TYPES_SCHEMA = types.base.SCHEMA TEMP_INFER_SCHEMA = constants.INFERENCE_SCHEMA -EXCLUDED_SCHEMATA = [TYPES_SCHEMA, TEMP_INFER_SCHEMA, "information_schema"] +MSAR_PUBLIC = constants.MSAR_PUBLIC +MSAR_PRIVAT = constants.MSAR_PRIVAT +MSAR_VIEWS = constants.MSAR_VIEWS +EXCLUDED_SCHEMATA = [ + "information_schema", + MSAR_PRIVAT, + MSAR_PUBLIC, + MSAR_VIEWS, + TEMP_INFER_SCHEMA, + TYPES_SCHEMA, +] def reflect_schema(engine, name=None, oid=None, metadata=None): diff --git a/db/sql/0_msar.sql b/db/sql/0_msar.sql new file mode 100644 index 0000000000..c702f87dbf --- /dev/null +++ b/db/sql/0_msar.sql @@ -0,0 +1,822 @@ +/* +This script defines a number of functions to be used for manipulating database objects (tables, +columns, schemas) using Data Definition Language style queries. + +These are the schemas where the new functions will generally live: + + __msar: These functions aren't designed to be used except by other Mathesar functions. + Generally need preformatted strings as input, won't do quoting, etc. + msar: These functions are designed to be used more easily. They'll format strings, quote + identifiers, and so on. + +The reason they're so abbreviated is to avoid namespace clashes, and also because making them longer +would make using them quite tedious, since they're everywhere. + +The functions should each be overloaded to accept at a minimum the 'fixed' ID of a given object, as +well as its name identifer(s). + +- Schemas should be identified by one of the following: + - OID, or + - Name +- Tables should be identified by one of the following: + - OID, or + - Schema, Name pair (unquoted) +- Columns should be identified by one of the following: + - OID, ATTNUM pair, or + - Schema, Table Name, Column Name triple (unquoted), or + - Table OID, Column Name pair (optional). + +Note that these identification schemes apply to the public-facing functions in the `msar` namespace, +not necessarily the internal `__msar` functions. + +NAMING CONVENTIONS + +Because function signatures are used informationally in command-generated tables, horizontal space +needs to be conserved. As a compromise between readability and terseness, we use the following +conventions in variable naming: + +schema -> sch +table -> tab +column -> col +constraint -> con +object -> obj +relation -> rel + +Textual names will have the suffix _name, and numeric identifiers will have the suffix _id. + +So, the OID of a table will be tab_id and the name of a column will be col_name. The attnum of a +column will be col_id. + +Generally, we'll use snake_case for legibility and to avoid collisions with internal PostgreSQL +naming conventions. + +*/ + +CREATE SCHEMA IF NOT EXISTS __msar; +CREATE SCHEMA IF NOT EXISTS msar; + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- GENERAL DDL FUNCTIONS +-- +-- Functions in this section are quite general, and are the basis of the others. +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.exec_ddl(command text) RETURNS text AS $$/* +Execute the given command, returning the command executed. + +Not useful for SELECTing from tables. Most useful when you're performing DDL. + +Args: + command: Raw string that will be executed as a command. +*/ +BEGIN + EXECUTE command; + RETURN command; +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +__msar.exec_ddl(command_template text, arguments variadic anyarray) RETURNS text AS $$/* +Execute a templated command, returning the command executed. + +The template is given in the first argument, and all further arguments are used to fill in the +template. Not useful for SELECTing from tables. Most useful when you're performing DDL. + +Args: + command_template: Raw string that will be executed as a command. + arguments: arguments that will be used to fill in the template. +*/ +DECLARE formatted_command TEXT; +BEGIN + formatted_command := format(command_template, VARIADIC arguments); + RETURN __msar.exec_ddl(formatted_command); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- INFO FUNCTIONS +-- +-- Functions in this section get information about a given schema, table or column. +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION __msar.get_schema_name(sch_id oid) RETURNS TEXT AS $$/* +Return the name for a given schema, quoted as appropriate. + +The schema *must* be in the pg_namespace table to use this function. + +Args: + sch_id: The OID of the schema. +*/ +BEGIN + RETURN sch_id::regnamespace::text; +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.get_fully_qualified_object_name(sch_name text, obj_name text) RETURNS text AS $$/* +Return the fully-qualified, properly quoted, name for a given database object (e.g., table). + +Args: + sch_name: The schema of the object, unquoted. + obj_name: The name of the object, unqualified and unquoted. +*/ +BEGIN + RETURN format('%s.%s', quote_ident(sch_name), quote_ident(obj_name)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +__msar.get_relation_name(rel_id oid) RETURNS text AS $$/* +Return the name for a given relation (e.g., table), qualified or quoted as appropriate. + +In cases where the relation is already included in the search path, the returned name will not be +fully-qualified. + +The relation *must* be in the pg_class table to use this function. + +Args: + rel_id: The OID of the relation. +*/ +BEGIN + RETURN rel_id::regclass::text; +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.get_relation_oid(sch_name text, rel_name text) RETURNS oid AS $$/* +Return the OID for a given relation (e.g., table). + +The relation *must* be in the pg_class table to use this function. + +Args: + sch_name: The schema of the relation, unquoted. + rel_name: The name of the relation, unqualified and unquoted. +*/ +BEGIN + RETURN msar.get_fully_qualified_object_name(sch_name, rel_name)::regclass::oid; +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.get_column_name(rel_id oid, col_id integer) RETURNS text AS $$/* +Return the name for a given column in a given relation (e.g., table). + +More precisely, this function returns the name of attributes of any relation appearing in the +pg_class catalog table (so you could find attributes of indices with this function). + +Args: + rel_id: The OID of the relation. + col_id: The attnum of the column in the relation. +*/ +BEGIN + RETURN quote_ident(attname::text) FROM pg_attribute WHERE attrelid=rel_id AND attnum=col_id; +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.is_pkey_col(rel_id oid, col_id integer) RETURNS boolean AS $$/* +Return whether the given column is in the primary key of the given relation (e.g., table). + +Args: + rel_id: The OID of the relation. + col_id: The attnum of the column in the relation. +*/ +BEGIN + RETURN ARRAY[col_attnum::smallint] <@ conkey FROM pg_constraint WHERE conrelid=rel_id; +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.get_cast_function_name(target_type regtype) RETURNS text AS $$/* +Return a string giving the appropriate name of the casting function for the target_type. + +Currently set up to duplicate the logic in our python casting function builder. This will be +changed. Given a qualified, potentially capitalized type name, we +- Remove the namespace (schema), +- Replace any white space in the type name with underscores, +- Replace double quotes in the type name (e.g., the "char" type) with '_double_quote_' +- Use the prepped type name in the name `mathesar_types.cast_to_%s`. + +Args: + target_type: This should be a type that exists. +*/ +DECLARE target_type_prepped text; +BEGIN + -- TODO: Come up with a way to build these names that is more robust against collisions. + WITH unqualifier AS ( + SELECT x[array_upper(x, 1)] unqualified_type + FROM regexp_split_to_array(target_type::text, '\.') x + ), unspacer AS( + SELECT replace(unqualified_type, ' ', '_') unspaced_type + FROM unqualifier + ) + SELECT replace(unspaced_type, '"', '_double_quote_') + FROM unspacer + INTO target_type_prepped; + RETURN format('mathesar_types.cast_to_%s', target_type_prepped); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.get_constraint_name(con_id oid) RETURNS text AS $$/* +Return the quoted constraint name of the correponding constraint oid. + +Args: + con_id: The OID of the constraint. +*/ +BEGIN + RETURN quote_ident(conname::text) FROM pg_constraint WHERE pg_constraint.oid = con_id; +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- ALTER SCHEMA FUNCTIONS +-- +-- Functions in this section should always involve 'ALTER SCHEMA'. +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + + +-- Rename schema ----------------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.rename_schema(old_sch_name text, new_sch_name text) RETURNS TEXT AS $$/* +Change a schema's name, returning the command executed. + +Args: + old_sch_name: A properly quoted original schema name + new_sch_name: A properly quoted new schema name +*/ +DECLARE + cmd_template text; +BEGIN + cmd_template := 'ALTER SCHEMA %s RENAME TO %s'; + RETURN __msar.exec_ddl(cmd_template, old_sch_name, new_sch_name); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.rename_schema(old_sch_name text, new_sch_name text) RETURNS TEXT AS $$/* +Change a schema's name, returning the command executed. + +Args: + old_sch_name: An unquoted original schema name + new_sch_name: An unquoted new schema name +*/ +BEGIN + RETURN __msar.rename_schema(quote_ident(old_sch_name), quote_ident(new_sch_name)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION msar.rename_schema(sch_id oid, new_sch_name text) RETURNS TEXT AS $$/* +Change a schema's name, returning the command executed. + +Args: + sch_id: The OID of the original schema + new_sch_name: An unquoted new schema name +*/ +BEGIN + RETURN __msar.rename_schema(__msar.get_sch_name(sch_id), quote_ident(new_sch_name)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +-- Comment on schema ------------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.comment_on_schema(sch_name text, comment_ text) RETURNS TEXT AS $$/* +Change the description of a schema, returning command executed. + +Args: + sch_name: The quoted name of the schema whose comment we will change. + comment_: The new comment. Any quotes or special characters must be escaped. +*/ +DECLARE + cmd_template text; +BEGIN + cmd_template := 'COMMENT ON SCHEMA %s IS %s'; + RETURN __msar.exec_ddl(cmd_template, sch_name, comment_); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.comment_on_schema(sch_name text, comment_ text) RETURNS TEXT AS $$/* +Change the description of a schema, returning command executed. + +Args: + sch_name: The quoted name of the schema whose comment we will change. + comment_: The new comment. Any quotes or special characters must be escaped. +*/ +BEGIN + RETURN __msar.comment_on_schema(quote_ident(sch_name), quote_literal(comment_)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION msar.comment_on_schema(sch_id oid, comment_ text) RETURNS TEXT AS $$/* +Change the description of a schema, returning command executed. + +Args: + sch_id: The OID of the schema. + comment_: The new comment. Any quotes or special characters must be escaped. +*/ +BEGIN + RETURN __msar.comment_on_schema(__msar.get_sch_name(sch_id), quote_literal(comment_)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- CREATE SCHEMA FUNCTIONS +-- +-- Create a schema. +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + + +-- Create schema ----------------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.create_schema(sch_name text, if_not_exists boolean) RETURNS TEXT AS $$/* +Create a schema, returning the command executed. + +Args: + sch_name: A properly quoted name of the schema to be created + if_not_exists: Whether to ignore an error if the schema does exist +*/ +DECLARE + cmd_template text; +BEGIN + IF if_not_exists + THEN + cmd_template := 'CREATE SCHEMA IF NOT EXISTS %s'; + ELSE + cmd_template := 'CREATE SCHEMA %s'; + END IF; + RETURN __msar.exec_ddl(cmd_template, sch_name); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.create_schema(sch_name text, if_not_exists boolean) RETURNS TEXT AS $$/* +Create a schema, returning the command executed. + +Args: + sch_name: An unquoted name of the schema to be created + if_not_exists: Whether to ignore an error if the schema does exist +*/ +BEGIN + RETURN __msar.create_schema(quote_ident(sch_name), if_not_exists); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- DROP SCHEMA FUNCTIONS +-- +-- Drop a schema. +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + + +-- Drop schema ------------------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.drop_schema(sch_name text, cascade_ boolean, if_exists boolean) RETURNS TEXT AS $$/* +Drop a schema, returning the command executed. + +Args: + sch_name: A properly quoted name of the schema to be dropped + cascade_: Whether to drop dependent objects. + if_exists: Whether to ignore an error if the schema doesn't exist +*/ +DECLARE + cmd_template text; +BEGIN + IF if_exists + THEN + cmd_template := 'DROP SCHEMA IF EXISTS %s'; + ELSE + cmd_template := 'DROP SCHEMA %s'; + END IF; + IF cascade_ + THEN + cmd_template = cmd_template || ' CASCADE'; + END IF; + RETURN __msar.exec_ddl(cmd_template, sch_name); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_schema(sch_id oid, cascade_ boolean, if_exists boolean) RETURNS TEXT AS $$/* +Drop a schema, returning the command executed. + +Args: + sch_id: The OID of the schema to drop + cascade_: Whether to drop dependent objects. + if_exists: Whether to ignore an error if the schema doesn't exist +*/ +BEGIN + RETURN __msar.drop_schema(__msar.get_sch_name(sch_id), cascade_, if_exists); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_schema(sch_name text, cascade_ boolean, if_exists boolean) RETURNS TEXT AS $$/* +Drop a schema, returning the command executed. + +Args: + sch_name: An unqoted name of the schema to be dropped + cascade_: Whether to drop dependent objects. + if_exists: Whether to ignore an error if the schema doesn't exist +*/ +BEGIN + RETURN __msar.drop_schema(quote_ident(sch_name), cascade_, if_exists); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- ALTER TABLE FUNCTIONS +-- +-- Functions in this section should always involve 'ALTER TABLE'. +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + + +-- Rename table ------------------------------------------------------------------------------------ + +CREATE OR REPLACE FUNCTION +__msar.rename_table(old_tab_name text, new_tab_name text) RETURNS text AS $$/* +Change a table's name, returning the command executed. + +Args: + old_tab_name: properly quoted, qualified table name + new_tab_name: properly quoted, unqualified table name +*/ +BEGIN + RETURN __msar.exec_ddl( + 'ALTER TABLE %s RENAME TO %s', old_tab_name, new_tab_name + ); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.rename_table(tab_id oid, new_tab_name text) RETURNS text AS $$/* +Change a table's name, returning the command executed. + +Args: + tab_id: the OID of the table whose name we want to change + new_tab_name: unquoted, unqualified table name +*/ +BEGIN + RETURN __msar.rename_table(__msar.get_relation_name(tab_id), quote_ident(new_tab_name)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.rename_table(sch_name text, old_tab_name text, new_tab_name text) RETURNS text AS $$/* +Change a table's name, returning the command executed. + +Args: + sch_name: unquoted schema name where the table lives + old_tab_name: unquoted, unqualified original table name + new_tab_name: unquoted, unqualified new table name +*/ +DECLARE fullname text; +BEGIN + fullname := msar.get_fully_qualified_object_name(sch_name, old_tab_name); + RETURN __msar.rename_table(fullname, quote_ident(new_tab_name)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +-- Comment on table -------------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.comment_on_table(tab_name text, comment_ text) RETURNS text AS $$/* +Change the description of a table, returning command executed. + +Args: + tab_name: The qualified, quoted name of the table whose comment we will change. + comment_: The new comment. Any quotes or special characters must be escaped. +*/ +BEGIN + RETURN __msar.exec_ddl('COMMENT ON TABLE %s IS ''%s''', tab_name, comment_); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.comment_on_table(tab_id oid, comment_ text) RETURNS text AS $$/* +Change the description of a table, returning command executed. + +Args: + tab_id: The OID of the table whose comment we will change. + comment_: The new comment. Any quotes or special characters must be escaped. +*/ +BEGIN + RETURN __msar.comment_on_table(__msar.get_relation_name(tab_id), comment_); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.comment_on_table(sch_name text, tab_name text, comment_ text) RETURNS text AS $$/* +Change the description of a table, returning command executed. + +Args: + sch_name: The schema of the table whose comment we will change. + tab_name: The name of the table whose comment we will change. + comment_: The new comment. Any quotes or special characters must be escaped. +*/ +DECLARE qualified_tab_name text; +BEGIN + qualified_tab_name := msar.get_fully_qualified_object_name(sch_name, tab_name); + RETURN __msar.comment_on_table(qualified_tab_name, comment_); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +-- Alter Table: LEFT IN PYTHON (for now) ----------------------------------------------------------- + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- ALTER TABLE FUNCTIONS: Column operations +-- +-- Functions in this section should always involve 'ALTER TABLE', and one or more columns +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + +-- Update table primary key sequence to latest ----------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.update_pk_sequence_to_latest(tab_name text, col_name text) RETURNS text AS $$/* +Update the primary key sequence to the maximum of the primary key column, plus one. + +Args: + tab_name: Fully-qualified, quoted table name + col_name: The column name of the primary key. +*/ +BEGIN + RETURN __msar.exec_ddl( + 'SELECT ' + || 'setval(' + || 'pg_get_serial_sequence(''%1$s'', ''%2$s''), coalesce(max(%2$s) + 1, 1), false' + || ') ' + || 'FROM %1$s', + tab_name, col_name + ); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.update_pk_sequence_to_latest(tab_id oid, col_id integer) RETURNS text AS $$/* +Update the primary key sequence to the maximum of the primary key column, plus one. + +Args: + tab_id: The OID of the table whose primary key sequence we'll update. + col_id: The attnum of the primary key column. +*/ +DECLARE tab_name text; +DECLARE col_name text; +BEGIN + tab_name := __msar.get_relation_name(tab_id); + col_name := msar.get_column_name(tab_id, col_id); + RETURN __msar.update_pk_sequence_to_latest(tab_name, col_name); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.update_pk_sequence_to_latest(sch_name text, tab_name text, col_name text) RETURNS text AS $$/* +Update the primary key sequence to the maximum of the primary key column, plus one. + +Args: + sch_name: The schema where the table whose primary key sequence we'll update lives. + tab_name: The table whose primary key sequence we'll update. + col_name: The name of the primary key column. +*/ +DECLARE qualified_tab_name text; +BEGIN + qualified_tab_name := msar.get_fully_qualified_object_name(sch_name, tab_name); + RETURN __msar.update_pk_sequence_to_latest(qualified_tab_name, quote_ident(col_name)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +-- Drop columns from table ------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.drop_columns(tab_name text, col_names variadic text[]) RETURNS text AS $$/* +Drop the given columns from the given table. + +Args: + tab_name: Fully-qualified, quoted table name. + col_names: The column names to be dropped, quoted. +*/ +DECLARE column_drops text; +BEGIN + SELECT string_agg(format('DROP COLUMN %s', col), ', ') + FROM unnest(col_names) AS col + INTO column_drops; + RETURN __msar.exec_ddl('ALTER TABLE %s %s', tab_name, column_drops); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_columns(tab_id oid, col_ids variadic integer[]) RETURNS text AS $$/* +Drop the given columns from the given table. + +Args: + tab_id: OID of the table whose columns we'll drop. + col_ids: The attnums of the columns to drop. +*/ +DECLARE col_names text[]; +BEGIN + SELECT array_agg(quote_ident(attname)) + FROM pg_attribute + WHERE attrelid=tab_id AND ARRAY[attnum::integer] <@ col_ids + INTO col_names; + RETURN __msar.drop_columns(__msar.get_relation_name(tab_id), variadic col_names); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_columns(sch_name text, tab_name text, col_names variadic text[]) RETURNS text AS $$/* +Drop the given columns from the given table. + +Args: + sch_name: The schema where the table whose columns we'll drop lives, unquoted. + tab_name: The table whose columns we'll drop, unquoted and unqualified. + col_names: The columns to drop, unquoted. +*/ +DECLARE prepared_col_names text[]; +DECLARE fully_qualified_tab_name text; +BEGIN + SELECT array_agg(quote_ident(col)) FROM unnest(col_names) AS col INTO prepared_col_names; + fully_qualified_tab_name := msar.get_fully_qualified_object_name(sch_name, tab_name); + RETURN __msar.drop_columns(fully_qualified_tab_name, variadic prepared_col_names); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- MATHESAR DROP TABLE FUNCTIONS +-- +-- Drop a table. +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + +-- Drop table -------------------------------------------------------------------------------- + +CREATE OR REPLACE FUNCTION +__msar.drop_table(tab_name text, cascade_ boolean, if_exists boolean) RETURNS text AS $$/* +Drop a table, returning the command executed. + +Args: + tab_name: The qualified, quoted name of the table we will drop. + cascade_: Whether to add CASCADE. + if_exists_: Whether to ignore an error if the table doesn't exist +*/ +DECLARE + cmd_template TEXT; +BEGIN + IF if_exists + THEN + cmd_template := 'DROP TABLE IF EXISTS %s'; + ELSE + cmd_template := 'DROP TABLE %s'; + END IF; + IF cascade_ + THEN + cmd_template = cmd_template || ' CASCADE'; + END IF; + RETURN __msar.exec_ddl(cmd_template, tab_name); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_table(tab_id oid, cascade_ boolean, if_exists boolean) RETURNS text AS $$/* +Drop a table, returning the command executed. + +Args: + tab_id: The OID of the table to drop + cascade_: Whether to drop dependent objects. + if_exists_: Whether to ignore an error if the table doesn't exist +*/ +BEGIN + RETURN __msar.drop_table(__msar.get_relation_name(tab_id), cascade_, if_exists); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_table(sch_name text, tab_name text, cascade_ boolean, if_exists boolean) + RETURNS text AS $$/* +Drop a table, returning the command executed. + +Args: + sch_name: The schema of the table to drop. + tab_name: The name of the table to drop. + cascade_: Whether to drop dependent objects. + if_exists_: Whether to ignore an error if the table doesn't exist +*/ +DECLARE qualified_tab_name text; +BEGIN + qualified_tab_name := msar.get_fully_qualified_object_name(sch_name, tab_name); + RETURN __msar.drop_table(qualified_tab_name, cascade_, if_exists); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- MATHESAR DROP CONSTRAINT FUNCTIONS +-- +-- Drop a constraint. +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- + +-- Drop constraint --------------------------------------------------------------------------------- + + +CREATE OR REPLACE FUNCTION +__msar.drop_constraint(tab_name text, con_name text) RETURNS text AS $$/* +Drop a constraint, returning the command executed. + +Args: + tab_name: A qualified & quoted name of the table that has the constraint to be dropped. + con_name: Name of the constraint to drop, properly quoted. +*/ +BEGIN + RETURN __msar.exec_ddl( + 'ALTER TABLE %s DROP CONSTRAINT %s', tab_name, con_name + ); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_constraint(sch_name text, tab_name text, con_name text) RETURNS text AS $$/* +Drop a constraint, returning the command executed. + +Args: + sch_name: The name of the schema where the table with constraint to be dropped resides, unquoted. + tab_name: The name of the table that has the constraint to be dropped, unquoted. + con_name: Name of the constraint to drop, unquoted. +*/ +BEGIN + RETURN __msar.drop_constraint( + msar.get_fully_qualified_object_name(sch_name, tab_name), quote_ident(con_name) + ); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_constraint(tab_id oid, con_id oid) RETURNS TEXT AS $$/* +Drop a constraint, returning the command executed. + +Args: + tab_id: OID of the table that has the constraint to be dropped. + con_id: OID of the constraint to be dropped. +*/ +BEGIN + RETURN __msar.drop_constraint( + __msar.get_relation_name(tab_id), msar.get_constraint_name(con_id) + ); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; diff --git a/db/sql/1_msar_joinable_tables.sql b/db/sql/1_msar_joinable_tables.sql new file mode 100644 index 0000000000..96e255a4fd --- /dev/null +++ b/db/sql/1_msar_joinable_tables.sql @@ -0,0 +1,137 @@ +/* +This script sets up a framework for determining which tables are joinable to a given table +automatically. + +A table is 'joinable' to another in this context if it can be reached by following a sequence of +foreign key links from the original table. + +This is NOT YET USED in the python layer. + +A Join Path is an array of arrays of arrays: + +[ + [[L_oid0, L_attnum0], [R_oid0, R_attnum0]], + [[L_oid1, L_attnum1], [R_oid1, R_attnum1]], + [[L_oid2, L_attnum2], [R_oid2, R_attnum2]], + ... +] + +Here, [L_oidN, L_attnumN] represents the left column of a join, and [R_oidN, R_attnumN] the right. + +A Foreign Key path gives the same information in a different form: +[ + [constraint_id0, reversed], + [constraint_id1, reversed], +] + +In this form, `constraint_idN` is a foreign key constraint, and `reversed` is a boolean giving +whether to travel from referrer to referant (when False) or from referant to referrer (when True). +*/ + + +CREATE TYPE mathesar_types.joinable_tables AS ( + base integer, -- The OID of the table from which the paths start + target integer, -- The OID of the table where the paths end + join_path jsonb, -- A JSONB array of arrays of arrays + fkey_path jsonb, + depth integer, + multiple_results boolean +); + + +CREATE OR REPLACE FUNCTION +msar.get_joinable_tables(max_depth integer) RETURNS SETOF mathesar_types.joinable_tables AS $$/* +This function returns a table of mathesar_types.joinable_tables objects, giving paths to various +joinable tables. + +Args: + max_depth: This controls how far to search for joinable tables. + +The base and target are OIDs of a base table, and a target table that can be +joined by some combination of joins along single-column foreign key column +restrictions in either way. +*/ +WITH RECURSIVE symmetric_fkeys AS ( + SELECT + c.oid fkey_oid, + c.conrelid::INTEGER left_rel, + c.confrelid::INTEGER right_rel, + c.conkey[1]::INTEGER left_col, + c.confkey[1]::INTEGER right_col, + false multiple_results, + false reversed + FROM pg_constraint c + WHERE c.contype='f' and array_length(c.conkey, 1)=1 +UNION ALL + SELECT + c.oid fkey_oid, + c.confrelid::INTEGER left_rel, + c.conrelid::INTEGER right_rel, + c.confkey[1]::INTEGER left_col, + c.conkey[1]::INTEGER right_col, + true multiple_results, + true reversed + FROM pg_constraint c + WHERE c.contype='f' and array_length(c.conkey, 1)=1 +), + +search_fkey_graph( + left_rel, right_rel, left_col, right_col, depth, join_path, fkey_path, multiple_results +) AS ( + SELECT + sfk.left_rel, + sfk.right_rel, + sfk.left_col, + sfk.right_col, + 1, + jsonb_build_array( + jsonb_build_array( + jsonb_build_array(sfk.left_rel, sfk.left_col), + jsonb_build_array(sfk.right_rel, sfk.right_col) + ) + ), + jsonb_build_array(jsonb_build_array(sfk.fkey_oid, sfk.reversed)), + sfk.multiple_results + FROM symmetric_fkeys sfk +UNION ALL + SELECT + sfk.left_rel, + sfk.right_rel, + sfk.left_col, + sfk.right_col, + sg.depth + 1, + join_path || jsonb_build_array( + jsonb_build_array( + jsonb_build_array(sfk.left_rel, sfk.left_col), + jsonb_build_array(sfk.right_rel, sfk.right_col) + ) + ), + fkey_path || jsonb_build_array(jsonb_build_array(sfk.fkey_oid, sfk.reversed)), + sg.multiple_results OR sfk.multiple_results + FROM symmetric_fkeys sfk, search_fkey_graph sg + WHERE + sfk.left_rel=sg.right_rel + AND depth -1) != jsonb_build_array( + jsonb_build_array(sfk.right_rel, sfk.right_col), + jsonb_build_array(sfk.left_rel, sfk.left_col) + ) +), output_cte AS ( + SELECT + (join_path#>'{0, 0, 0}')::INTEGER base, + (join_path#>'{-1, -1, 0}')::INTEGER target, + join_path, + fkey_path, + depth, + multiple_results + FROM search_fkey_graph +) +SELECT * FROM output_cte; +$$ LANGUAGE sql; + + +CREATE OR REPLACE FUNCTION +msar.get_joinable_tables(max_depth integer, table_id oid) RETURNS + SETOF mathesar_types.joinable_tables AS $$ + SELECT * FROM msar.get_joinable_tables(max_depth) WHERE base=table_id +$$ LANGUAGE sql; diff --git a/db/sql/2_msar_views.sql b/db/sql/2_msar_views.sql new file mode 100644 index 0000000000..1b9e608880 --- /dev/null +++ b/db/sql/2_msar_views.sql @@ -0,0 +1,116 @@ +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +-- MATHESAR VIEW FUNCTIONS +-- +-- This file depends on `msar.sql` ! +-- +-- A Mathesar view is essentially a reflection of a user table, but with names changed for easy look +-- ups. +-- * The view name is derived algorithmically from the user table's OID using +-- `msar.get_mathesar_view_name`, giving the name `mv12345`, where 12345 is the table OID. +-- * The view's columns' names are derived algorithmically from the attnums of the columns in the +-- view, with a column having attnum 3 getting the name `c3`. +-- +-- Functions and triggers in this file are used to create a Mathesar view whenever a table is +-- created or in any way altered in the database (where the triggers are installed). They also +-- provide a convenient way to set up such a view for an already-existing table or drop +-- such a view. +-- +-- This file creates a schema `msar_views` where internal mathesar views will be stored. +-- +-- For naming conventions, see 0_msar.sql +---------------------------------------------------------------------------------------------------- +---------------------------------------------------------------------------------------------------- +CREATE SCHEMA IF NOT EXISTS msar_views; + + +CREATE OR REPLACE FUNCTION +msar.get_mathesar_view_name(tab_id oid) RETURNS text AS $$/* +Given a table OID, return the name of the special Mathesar view tracking it. + +Args: + tab_id: The OID of the table whose associated view we want to name. +*/ +BEGIN + RETURN msar.get_fully_qualified_object_name('msar_views', format('mv%s', tab_id)); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + + +CREATE OR REPLACE FUNCTION +msar.create_mathesar_view(tab_id oid) RETURNS text AS $$/* +Create a view of named mv tracking the table with OID . + +Args: + tab_id: This is the OID of the table we want to track. + +*/ +DECLARE view_name text; +DECLARE view_cols text; +BEGIN + view_name := msar.get_mathesar_view_name(tab_id); + SELECT string_agg(format('%s AS c%s', quote_ident(attname), attnum), ', ') + FROM pg_attribute + WHERE attrelid=tab_id AND attnum>0 AND NOT attisdropped + INTO view_cols; + RETURN __msar.exec_ddl( + 'CREATE OR REPLACE VIEW %s AS SELECT %s FROM %s', + view_name, view_cols, __msar.get_relation_name(tab_id) + ); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + +CREATE OR REPLACE FUNCTION +__msar.create_mathesar_view() RETURNS event_trigger AS $$/* +This function should not be called directly. +*/ +DECLARE ddl_command record; +BEGIN + FOR ddl_command IN SELECT * FROM pg_event_trigger_ddl_commands() + LOOP + IF ddl_command.object_type='table' AND upper(ddl_command.command_tag)<>'DROP TABLE' + THEN + PERFORM msar.create_mathesar_view(ddl_command.objid); + END IF; + END LOOP; +END; +$$ LANGUAGE plpgsql; + +DROP EVENT TRIGGER IF EXISTS create_mathesar_view; + +CREATE EVENT TRIGGER create_mathesar_view ON ddl_command_end + EXECUTE FUNCTION __msar.create_mathesar_view(); + + +CREATE OR REPLACE FUNCTION +msar.drop_mathesar_view(tab_id oid) RETURNS text AS $$/* +Drop the Mathesar view tracking the given table. + +Args: + tab_id: This is the OID of the table being tracked by the view we'll drop. +*/ +DECLARE view_name text; +BEGIN + view_name := msar.get_mathesar_view_name(tab_id); + RETURN __msar.exec_ddl('DROP VIEW IF EXISTS %s', view_name); +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; + + +CREATE OR REPLACE FUNCTION +msar.drop_mathesar_view(sch_name text, tab_name text) RETURNS text AS $$/* +Drop the Mathesar view tracking the given table. + +Args: + sch_name: This is the schema of the table being tracked by the view we'll drop. + tab_name: This is the name of the table being tracked by the view we'll drop. +*/ +DECLARE tab_id oid; +BEGIN + tab_id := msar.get_relation_oid(sch_name, tab_name); + RETURN msar.drop_mathesar_view(tab_id); +EXCEPTION WHEN undefined_table THEN + RETURN 'NO SUCH TABLE'; +END; +$$ LANGUAGE plpgsql RETURNS NULL ON NULL INPUT; diff --git a/db/sql/install.py b/db/sql/install.py new file mode 100644 index 0000000000..2a7d60d519 --- /dev/null +++ b/db/sql/install.py @@ -0,0 +1,11 @@ +import os +from db.connection import load_file_with_engine + +FILE_DIR = os.path.abspath(os.path.dirname(__file__)) +MSAR_SQL = os.path.join(FILE_DIR, '0_msar.sql') + + +def install(engine): + """Install SQL pieces using the given engine.""" + with open(MSAR_SQL) as file_handle: + load_file_with_engine(engine, file_handle) diff --git a/db/tables/operations/alter.py b/db/tables/operations/alter.py index 5d37c48d91..7ecb160163 100644 --- a/db/tables/operations/alter.py +++ b/db/tables/operations/alter.py @@ -1,33 +1,44 @@ -from alembic.migration import MigrationContext -from alembic.operations import Operations -from sqlalchemy import func, select, text - +"""The functions in this module wrap SQL functions that use `ALTER TABLE`.""" from db import constants +from db import connection as db_conn from db.columns.operations.alter import batch_update_columns -from db.tables.operations.select import reflect_table -from db.metadata import get_empty_metadata -from db.utils import execute_statement SUPPORTED_TABLE_ALTER_ARGS = {'name', 'columns', 'description'} def rename_table(name, schema, engine, rename_to): - # TODO reuse metadata - table = reflect_table(name, schema, engine, metadata=get_empty_metadata()) - if rename_to == table.name: - return - with engine.begin() as conn: - ctx = MigrationContext.configure(conn) - op = Operations(ctx) - op.rename_table(table.name, rename_to, schema=table.schema) + """ + Change a table's name, returning the command executed. + + Args: + name: original table name + schema: schema where the table lives + engine: SQLAlchemy engine object for connecting. + rename_to: new table name + """ + if name == rename_to: + result = None + else: + result = db_conn.execute_msar_func_with_engine( + engine, 'rename_table', schema, name, rename_to + ).fetchone()[0] + return result def comment_on_table(name, schema, engine, comment): - # Not using the DDLElement since the examples from the docs are - # vulnerable to SQL injection attacks. - comment_command = text(f'COMMENT ON TABLE "{schema}"."{name}" IS :c') - with engine.begin() as conn: - conn.execute(comment_command, {'c': comment}) + """ + Change the description of a table, returning command executed. + + Args: + name: The name of the table whose comment we will change. + schema: The schema of the table whose comment we will change. + engine: SQLAlchemy engine object for connecting. + comment: The new comment. Any quotes or special characters must + be escaped. + """ + return db_conn.execute_msar_func_with_engine( + engine, 'comment_on_table', schema, name, comment + ).fetchone()[0] def alter_table(table_name, table_oid, schema, engine, update_data): @@ -40,23 +51,31 @@ def alter_table(table_name, table_oid, schema, engine, update_data): def update_pk_sequence_to_latest(engine, table, connection=None): - _preparer = engine.dialect.identifier_preparer - quoted_table_name = _preparer.quote(table.schema) + "." + _preparer.quote(table.name) - update_pk_sequence_stmt = func.setval( - # `pg_get_serial_sequence needs a string of the Table name - func.pg_get_serial_sequence( - quoted_table_name, - table.c[constants.ID].name - ), - # If the table can be empty, start from 1 instead of using Null - func.coalesce( - func.max(table.c[constants.ID]) + 1, - 1 - ), - # Set the sequence to use the last value of the sequence - # Setting is_called field to false, meaning that the next nextval will not advance the sequence before returning a value. - # We need to do it as our default coalesce value is 1 instead of 0 - # Refer the postgres docs https://www.postgresql.org/docs/current/functions-sequence.html - False - ) - execute_statement(engine, select(update_pk_sequence_stmt), connection_to_use=connection) + """ + Update the primary key sequence to the current maximum. + + This way, the next value inserted will use the next value in the + sequence, avoiding collisions. + + Args: + table_id: The OID of the table whose primary key sequence we'll + update. + col_attnum: The attnum of the primary key column. + """ + schema = table.schema or 'public' + name = table.name + column = table.c[constants.ID].name + if connection is not None: + # The quote wrangling here is temporary; due to SQLAlchemy's query + # builder. + db_conn.execute_msar_func_with_psycopg2_conn( + connection, + 'update_pk_sequence_to_latest', + f"'{schema}'", + f"'{name}'", + f"'{column}'", + ).fetchone()[0] + else: + db_conn.execute_msar_func_with_engine( + engine, 'update_pk_sequence_to_latest', schema, name, column + ).fetchone()[0] diff --git a/db/tables/operations/create.py b/db/tables/operations/create.py index 0627ad256a..67f824ae3e 100644 --- a/db/tables/operations/create.py +++ b/db/tables/operations/create.py @@ -14,7 +14,7 @@ def create_mathesar_table(name, schema, columns, engine, metadata=None, comment= table. """ columns = init_mathesar_table_column_list_with_defaults(columns) - create_schema(schema, engine) + create_schema(schema, engine, if_not_exists=True) # We need this so that we can create multiple mathesar tables in the # same MetaData, enabling them to reference each other in the # SQLAlchemy context (e.g., for creating a ForeignKey relationship) diff --git a/db/tables/operations/drop.py b/db/tables/operations/drop.py index d655a0db59..f0f40b3c88 100644 --- a/db/tables/operations/drop.py +++ b/db/tables/operations/drop.py @@ -1,41 +1,5 @@ -from sqlalchemy.schema import DropTable -from sqlalchemy.ext import compiler -from sqlalchemy.exc import NoSuchTableError, InternalError -from psycopg2.errors import DependentObjectsStillExist - -from db.tables.operations.select import reflect_table -from db.metadata import get_empty_metadata - - -class DropTableCascade(DropTable): - def __init__(self, table, cascade=False, if_exists=False, **kwargs): - super().__init__(table, if_exists=if_exists, **kwargs) - self.cascade = cascade - - -@compiler.compiles(DropTableCascade, "postgresql") -def compile_drop_table(element, compiler, **_): - expression = compiler.visit_drop_table(element) - if element.cascade: - return expression + " CASCADE" - else: - return expression +from db.connection import execute_msar_func_with_engine def drop_table(name, schema, engine, cascade=False, if_exists=False): - try: - # TODO reuse metadata - table = reflect_table(name, schema, engine, metadata=get_empty_metadata()) - except NoSuchTableError: - if if_exists: - return - else: - raise - with engine.begin() as conn: - try: - conn.execute(DropTableCascade(table, cascade=cascade)) - except InternalError as e: - if isinstance(e.orig, DependentObjectsStillExist): - raise e.orig - else: - raise e + execute_msar_func_with_engine(engine, 'drop_table', schema, name, cascade, if_exists) diff --git a/db/tables/operations/infer_types.py b/db/tables/operations/infer_types.py index c178d78b29..e7d3c522a3 100644 --- a/db/tables/operations/infer_types.py +++ b/db/tables/operations/infer_types.py @@ -43,7 +43,7 @@ def infer_table_column_types(schema, table_name, engine, metadata=None, columns_ table = reflect_table(table_name, schema, engine, metadata=metadata) temp_name = TEMP_TABLE % (int(time())) - create_schema(TEMP_SCHEMA, engine) + create_schema(TEMP_SCHEMA, engine, if_not_exists=True) with engine.begin() as conn: while engine.dialect.has_table(conn, temp_name, schema=TEMP_SCHEMA): temp_name = TEMP_TABLE.format(int(time())) diff --git a/db/tests/schemas/operations/test_alter.py b/db/tests/schemas/operations/test_alter.py index 9cc61a0812..918627206c 100644 --- a/db/tests/schemas/operations/test_alter.py +++ b/db/tests/schemas/operations/test_alter.py @@ -1,6 +1,6 @@ import pytest from sqlalchemy import func, select -from sqlalchemy.exc import ProgrammingError +from psycopg.errors import InvalidSchemaName from db.schemas import utils as schema_utils from db.schemas.operations.alter import comment_on_schema, rename_schema @@ -26,7 +26,7 @@ def test_rename_schema(engine): def test_rename_schema_missing(engine): - with pytest.raises(ProgrammingError): + with pytest.raises(InvalidSchemaName): rename_schema("test_rename_schema_missing", engine, "new_name") diff --git a/db/tests/schemas/operations/test_drop.py b/db/tests/schemas/operations/test_drop.py index 2fb152907c..71a3182a86 100644 --- a/db/tests/schemas/operations/test_drop.py +++ b/db/tests/schemas/operations/test_drop.py @@ -1,6 +1,6 @@ import pytest -from sqlalchemy.exc import NoSuchTableError, ProgrammingError -from psycopg2.errors import DependentObjectsStillExist +from sqlalchemy.exc import NoSuchTableError +from psycopg.errors import InvalidSchemaName, DependentObjectsStillExist from db.schemas.operations.create import create_schema from db.schemas.operations.drop import drop_schema @@ -30,7 +30,7 @@ def test_drop_schema_missing_if_exists_true(engine): def test_drop_schema_missing_if_exists_false(engine): - with pytest.raises(ProgrammingError): + with pytest.raises(InvalidSchemaName): drop_schema("test_drop_schema_missing", engine, if_exists=False) diff --git a/db/tests/tables/operations/test_drop.py b/db/tests/tables/operations/test_drop.py index 8b6858593f..bd56a6bb01 100644 --- a/db/tests/tables/operations/test_drop.py +++ b/db/tests/tables/operations/test_drop.py @@ -1,4 +1,5 @@ -from psycopg2.errors import DependentObjectsStillExist +from psycopg.errors import DependentObjectsStillExist +from psycopg.errors import UndefinedTable import pytest from sqlalchemy.exc import NoSuchTableError @@ -27,7 +28,7 @@ def test_drop_table_no_table_if_exists_true(engine_with_schema): def test_drop_table_no_table_if_exists_false(engine_with_schema): engine, schema = engine_with_schema - with pytest.raises(NoSuchTableError): + with pytest.raises(UndefinedTable): drop_table("test_drop_table", schema, engine, if_exists=False) diff --git a/db/types/install.py b/db/types/install.py index 7508937007..d830e08f77 100644 --- a/db/types/install.py +++ b/db/types/install.py @@ -6,7 +6,7 @@ def create_type_schema(engine): - create_schema(SCHEMA, engine) + create_schema(SCHEMA, engine, if_not_exists=True) def install_mathesar_on_database(engine): diff --git a/db/types/operations/cast.py b/db/types/operations/cast.py index 17a5dced27..039dcc6171 100644 --- a/db/types/operations/cast.py +++ b/db/types/operations/cast.py @@ -240,6 +240,7 @@ def assemble_function_creation_sql(argument_type, target_type, function_body): """ +# TODO Replace with SQL version (msar.get_cast_function_name) when refactoring. def get_cast_function_name(target_type): """ Some casting functions change postgres config parameters for the diff --git a/docker-compose.dev.yml b/docker-compose.dev.yml new file mode 100644 index 0000000000..92df320887 --- /dev/null +++ b/docker-compose.dev.yml @@ -0,0 +1,55 @@ +version: "3.9" + +services: + # Mathesar App built with the same configurations as the production image + # but with additional testing dependencies. + # It is used to run automated test cases to verify if the app works as intended + test-service: + extends: + file: docker-compose.yml + service: service + container_name: mathesar_service_test + image: mathesar/mathesar-test:latest + build: + context: . + dockerfile: Dockerfile + args: + PYTHON_REQUIREMENTS: requirements-dev.txt + depends_on: + - db + # On testing, the HTTP port is exposed to other containers, and the host. + ports: + - "8000:8000" + # A Django development webserver + Svelte development server used when developing Mathesar. + # The code changes are hot reloaded and debug flags are enabled to aid developers working on Mathesar. + # It is not recommended to use this service in production environment. + dev-service: + container_name: mathesar_service_dev + image: mathesar/mathesar-dev:latest + build: + context: . + dockerfile: Dockerfile + args: + PYTHON_REQUIREMENTS: requirements-dev.txt + extends: + file: docker-compose.yml + service: service + environment: + - MODE=${MODE-DEVELOPMENT} + - DEBUG=${DEBUG-True} + - DJANGO_ALLOW_ASYNC_UNSAFE=true + - DJANGO_SUPERUSER_PASSWORD=password + - DJANGO_SETTINGS_MODULE=${DJANGO_SETTINGS_MODULE-config.settings.development} + entrypoint: dockerize -wait tcp://mathesar_db:5432 -timeout 30s ./dev-run.sh + volumes: + - .:/code/ + - ui_node_modules:/code/mathesar_ui/node_modules/ + depends_on: + - db + # On dev, following ports are exposed to other containers, and the host. + ports: + - "8000:8000" + - "3000:3000" + - "6006:6006" +volumes: + ui_node_modules: diff --git a/docker-compose.yml b/docker-compose.yml index 09970ea4b3..95dac1f7c6 100644 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -1,17 +1,15 @@ version: "3.9" - +# Please refer the documentation located at https://docs.mathesar.org/installation/docker-compose/ for the setting up Mathesar using this docker-compose.yml. services: db: - profiles: ["dev", "prod", "test"] image: postgres:13 container_name: mathesar_db environment: + # These environment variables are used to create a database and superuser when the `db` service starts. + # Refer to https://hub.docker.com/_/postgres for more information on these variables. - POSTGRES_DB=${POSTGRES_DB-mathesar_django} - POSTGRES_USER=${POSTGRES_USER-mathesar} - POSTGRES_PASSWORD=${POSTGRES_PASSWORD-mathesar} - # db container is exposed to the other containers, and the host. - ports: - - "${POSTGRES_PORT-5432}:5432" expose: - "5432" volumes: @@ -22,11 +20,14 @@ services: timeout: 1s retries: 30 start_period: 5s + # A caddy reverse proxy sitting in-front of all the services. + # It is responsible for routing traffic to the respective services + # It is also responsible for serving static files, automatically providing SSL certificate + # and preventing certain DDOS attacks caddy-reverse-proxy: - profiles: ["prod"] image: mathesar/mathesar-caddy:latest environment: - - DOMAIN_NAME=${DOMAIN_NAME} + - DOMAIN_NAME=${DOMAIN_NAME-http://localhost} # caddy container is exposed to the other containers, and the host. ports: - "${HTTP_PORT-80}:80" @@ -38,8 +39,11 @@ services: - caddy_config:/config labels: - "com.centurylinklabs.watchtower.enable=true" - base-service: - profiles: ["web-server"] + # A gunicorn WSGI HTTP Server that + # runs the Mathesar App. + # It depends on the `db` service + # and will start the `db` service automatically before starting itself. + service: container_name: mathesar_service image: mathesar/mathesar-prod:latest environment: @@ -49,25 +53,15 @@ services: - DJANGO_SETTINGS_MODULE=${DJANGO_SETTINGS_MODULE-config.settings.production} - ALLOWED_HOSTS=${ALLOWED_HOSTS-*} - SECRET_KEY=${SECRET_KEY} - - DJANGO_DATABASE_KEY=${DJANGO_DATABASE_KEY-default} - DJANGO_DATABASE_URL=${DJANGO_DATABASE_URL-postgres://mathesar:mathesar@mathesar_db:5432/mathesar_django} - MATHESAR_DATABASES=${MATHESAR_DATABASES-(mathesar_tables|postgresql://mathesar:mathesar@mathesar_db:5432/mathesar)} - DJANGO_SUPERUSER_PASSWORD=${DJANGO_SUPERUSER_PASSWORD} - command: ./run.sh - volumes: - - static:/code/static - - media:/code/media - labels: - - "com.centurylinklabs.watchtower.enable=true" - service: - profiles: ["prod"] - extends: base-service - image: mathesar/mathesar-prod:latest - # Volumes are not shared when extending + entrypoint: ./run.sh volumes: - static:/code/static - media:/code/media depends_on: + # Comment the below field to disable starting the database service automatically db: condition: service_healthy labels: @@ -78,51 +72,14 @@ services: timeout: 5s retries: 30 start_period: 5s - # On prod, the HTTP port is exposed to other containers, but not the host. + # On prod, the HTTP port is exposed to other containers, but not the host to prevent any unnecessary conflicts with external services. + # Do not make any changes to this port expose: - "8000" - test-service: - profiles: ["test"] - extends: base-service - container_name: mathesar_service_test - image: mathesar/mathesar-test:latest - build: - context: . - dockerfile: Dockerfile - args: - PYTHON_REQUIREMENTS: requirements-dev.txt - depends_on: - - db - # On testing, the HTTP port is exposed to other containers, and the host. - ports: - - "8000:8000" - dev-service: - profiles: ["dev"] - container_name: mathesar_service_dev - image: mathesar/mathesar-dev:latest - build: - context: . - dockerfile: Dockerfile - args: - PYTHON_REQUIREMENTS: requirements-dev.txt - extends: base-service - environment: - - MODE=${MODE-DEVELOPMENT} - - DEBUG=${DEBUG-True} - - DJANGO_ALLOW_ASYNC_UNSAFE=true - - DJANGO_SUPERUSER_PASSWORD=password - - DJANGO_SETTINGS_MODULE=${DJANGO_SETTINGS_MODULE-config.settings.development} - command: dockerize -wait tcp://mathesar_db:5432 -timeout 30s ./dev-run.sh - volumes: - - .:/code/ - - ui_node_modules:/code/mathesar_ui/node_modules/ - depends_on: - - db - # On dev, following ports are exposed to other containers, and the host. - ports: - - "8000:8000" - - "3000:3000" - - "6006:6006" + # A webserver responsible for + # receiving upgrade requests and upgrading the Mathesar App docker image. + # It upgrades the docker image only when a http request is sent to it + # For more information refer https://containrrr.dev/watchtower/http-api-mode/ watchtower: image: containrrr/watchtower volumes: @@ -137,7 +94,6 @@ services: - "8080" volumes: postgresql_data: - ui_node_modules: media: static: caddy_data: diff --git a/docs/README.md b/docs/README.md index a610cae103..e0d6e72e30 100644 --- a/docs/README.md +++ b/docs/README.md @@ -40,5 +40,22 @@ See our [Contribution guidelines](../CONTRIBUTING.md) for more information about - For page redirects, we use [`mkdocs-redirects`](https://github.com/mkdocs/mkdocs-redirects). +- We use the [`macros`](https://mkdocs-macros-plugin.readthedocs.io/en/latest/) plugin to show the same content in different places, and we generally put such content in the `snippets` directory. + +- We use the [`placeholder`](https://mkdocs-placeholder-plugin.six-two.dev/usage/) plugin to allow the user to customize small tokens which get repeated throughout a page. Here's how it works: + + 1. Add a token like `PLACEHOLDER_NAME` in `placeholder-plugin.yaml` with a default value. + 1. Put an input on the page to allow the reader to customize the value of the token. + + ```html + + ``` + + 1. Then put the customized value anywhere in the page + + ```text + xPLACEHOLDER_NAMEx + ``` + - For docs content, we adhere to [CiviCRM's Documentation Style Guide](https://docs.civicrm.org/dev/en/latest/documentation/style-guide/). diff --git a/docs/STYLE_GUIDE.md b/docs/STYLE_GUIDE.md new file mode 100644 index 0000000000..801cd011b7 --- /dev/null +++ b/docs/STYLE_GUIDE.md @@ -0,0 +1,32 @@ +# Documentation style guide + +This contains Kriti's notes from when she was revising docs in June 2023. This will eventually be a style guide. + +- Use sentence case for titles. Don't capitalize random nouns. + - Good: + - Connect a database server + - Bad: + - Connect a Database Server + - Connect a Database server + - CONNECT A DATABASE SERVER +- When referencing external services or software, refer to them how they refer to themselves. e.g. write "Let's Encrypt", not "lets encrypt" +- When linking to external sites, identify the site. e.g. don't say "[Django settings](https://docs.djangoproject.com/en/4.2/topics/settings/)", say "Django settings ([see Django docs](https://docs.djangoproject.com/en/4.2/topics/settings/))". + - We don't want to send users to external websites unexpectedly – external links should be clearly identified. +- Every item in a single list should be the same type of thing. + - Good list: + - Apples + - Oranges + - Bananas + - Bad list: + - Apples + - Apples are grown all over the world + - You can buy apples at the grocery store +- If you are using lists to collect different types of facts together, then give each list item a title, e.g. + - Apples + - **Origin**: Apples are grown all over the world + = **Where to buy**: You can buy apples at the grocery store +- Don't have bullets on the same line as an info-box. It's okay to have an infobox under a list item, but it should be part of a previous bullet, not have its own bullet. +- Generally aim for simpler language since it's more accessible to non-native speakers. e.g. "acquisition" is more succinct, but "where to buy" is simpler. + - **Where to buy**: You can buy apples at the grocery store + - **Acquisition**: You can buy apples at the grocery store +- Don't use short-forms e.g. say "distributions", not "distros" diff --git a/docs/docs/administration/uninstall.md b/docs/docs/administration/uninstall.md new file mode 100644 index 0000000000..6c4098e6f6 --- /dev/null +++ b/docs/docs/administration/uninstall.md @@ -0,0 +1,8 @@ +# Uninstall Mathesar + +The uninstall instructions vary depending on the [installation method](../index.md#installing-mathesar) you chose. Select your installation method below to proceed. + +- [Uninstall a **guided** installation of Mathesar](../installation/guided-install/index.md#uninstall) +- [Uninstall a **Docker compose** installation of Mathesar](../installation/docker-compose/index.md#uninstall) +- [Uninstall a **Docker** installation of Mathesar](../installation/docker/index.md#uninstall) +- [Uninstall a **source-built** installation of Mathesar](../installation/build-from-source/index.md#uninstall) diff --git a/docs/docs/administration/upgrade.md b/docs/docs/administration/upgrade.md new file mode 100644 index 0000000000..40adf5154d --- /dev/null +++ b/docs/docs/administration/upgrade.md @@ -0,0 +1,19 @@ +# Upgrade Mathesar + +## Upgrade Mathesar via the web interface + +!!! note + In-app upgrades are only possible after installing Mathesar via our [**guided script**](../installation/guided-install/index.md) or our [**Docker compose**](../installation/docker-compose/index.md) instructions. + +1. Open the Settings menu at the top right of the screen, and click on **Administration**. +1. You should now see the "Software Update" page. +1. If a new version of Mathesar can be installed automatically, then you will see a "New Version Available" box containing an **Upgrade** button. Click the button to begin the upgrade, and follow the on-screen instructions after that. + +## Upgrade Mathesar via the command line + +The upgrade instructions vary depending on the [installation method](../index.md#installing-mathesar) you chose. Select your installation method below to proceed. + +- [Upgrade a **guided** installation of Mathesar](../installation/guided-install/index.md#upgrade) +- [Upgrade a **Docker compose** installation of Mathesar](../installation/docker-compose/index.md#upgrade) +- [Upgrade a **Docker** installation of Mathesar](../installation/docker/index.md#upgrade) +- [Upgrade a **source-built** installation of Mathesar](../installation/build-from-source/index.md#upgrade) diff --git a/docs/docs/configuration/connect-to-existing-db.md b/docs/docs/configuration/connect-to-existing-db.md new file mode 100644 index 0000000000..c0da25dfea --- /dev/null +++ b/docs/docs/configuration/connect-to-existing-db.md @@ -0,0 +1,92 @@ +# Connect to an external database server + +1. On the existing database server, [create a new database](https://www.postgresql.org/docs/current/sql-createdatabase.html) for Mathesar to store its metadata. + + ```bash + psql -c 'create database mathesar_django;' + ``` + +1. Configure the [`DJANGO_DATABASE_URL` environment variable](./env-variables.md#django_database_url) to point to the database you just created. + +1. (Optional) For Docker Compose related installations, you may [disable Mathesar's default database server](./customize-docker-compose.md#disable-db-service) if you like. + + +## Connect to a database server running on the host {: #localhost-db } + +!!! info "" + This content is related to Mathesar running in Docker related environments. This is applicable for the [Guided installation method](../installation/guided-install/index.md), [Docker Compose installation method](../installation/docker-compose/index.md), and [Docker installation method](../installation/docker/index.md). + +If you're running Mathesar in a Docker related environment, and your database server runs on the host machine, you will not be able to connect to it using `localhost:`, since `localhost` would refer to the Docker environment and not to the host. + +You can try using `host.docker.internal` instead of `localhost`. Below are detailed instructions to expose the database on your host to the Docker instance. + +### Prerequisites + +1. Locate `postgresql.conf` & `pg_hba.conf` file on the host machine. This can be located using `psql` shell by executing the following respectively. + + ``` + SHOW config_file; + ``` + + and + + ``` + SHOW hba_file; + ``` +1. Create the necessary network bridges using docker-compose + + ``` + docker compose -f docker-compose.yml up service -d --no-start + ``` + +1. Find the appropriate IP addresses of the `docker0` interface and the `mathesar_default` interface. This can be found by exectuting the following in the host's terminal. + {% raw %} + ``` + docker network inspect -f "docker0 IP: {{range .IPAM.Config}}{{.Gateway}}{{end}}" bridge && docker network inspect -f "mathesar_default IP: {{range .IPAM.Config}}{{.Subnet}}{{end}}" mathesar_default + ``` + {% endraw %} + +1. Stop Mathesar if it's already running. + + +### Steps + +1. Edit the `postgresql.conf` file and add the IP of `docker0` interface in the `listen_addresses` setting. Uncomment this line if it's conmmented out. + + ``` + listen_addresses = 'localhost, ' + ``` + +1. Modify the `pg_hba.conf` file and grant access to the `mathesar_default` interface. Add the following line at the bottom of the file: + + ``` + host all all md5 + ``` + +1. Restart postgres: + + === "Linux" + ``` + sudo systemctl restart postgresql + ``` + === "MacOS" + ``` + sudo brew services restart postgresql + ``` + +1. Set the value of [`MATHESAR_DATABASES` environment variable](./env-variables.md#mathesar_databases) to the following: + + ``` + MATHESAR_DATABASES=(|postgresql://:@host.docker.internal:/) + ``` + +1. If your Mathesar installation is Docker Compose based, add an extra host for the prod container in the `docker-compose.yml` file: + + ``` + extra_hosts: + - "host.docker.internal:" + ``` + +1. Start Mathesar. + +You should have a successful connection to the host database now! diff --git a/docs/docs/configuration/customize-docker-compose.md b/docs/docs/configuration/customize-docker-compose.md new file mode 100644 index 0000000000..9e3b66c35d --- /dev/null +++ b/docs/docs/configuration/customize-docker-compose.md @@ -0,0 +1,99 @@ +# Customize Docker Compose related installations + +!!! info "" + This document is related to Mathesar running in Docker Compose related environments. This is applicable for the [Guided Installation method](../installation/guided-install/index.md), and [Docker Compose Installation method](../installation/docker-compose/index.md). + +### Default database server {: #default-db} + +The default `docker-compose.yml` includes a `db` service that automatically starts a Postgres database server container called `mathesar_db`. This service allows you to start using Mathesar immediately to store data in a Postgres database without administering a separate Postgres server outside Mathesar. + +The `db` service runs on the [internal docker compose port](https://docs.docker.com/compose/compose-file/compose-file-v3/#expose) `5432`. The internal port is not bound to the host to avoid conflicts with other services running on port `5432`. + +Additionally, it comes with a default database and a superuser. This database can come in handy for storing Mathesar's [metadata](./env-variables.md#django_database_url). The credentials for the Default database are: + +``` +DATABASE_NAME='mathesar_django' +USER='mathesar' +PASSWORD='mathesar' +``` + +you can [disable the default database server](#disable-db-service) if you plan on using an [existing database server](../configuration/connect-to-existing-db.md). + +### Disable the default database server {: #disable-db-service} + +The default `docker-compose.yml` automatically starts a [Postgres database server container](#default-db). You may disable it if you plan on using a different Database server. + +In the `docker-compose.yml` file, comment out the `db` services and the `depends_on` field of the `service`. + +```yaml hl_lines="2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 29 30 31" +services: + # db: + # image: postgres:13 + # container_name: mathesar_db + # environment: + # # These environment variables are used to create a database and superuser when the `db` service starts. + # # Refer to https://hub.docker.com/_/postgres for more information on these variables. + # - POSTGRES_DB=${POSTGRES_DB-mathesar_django} + # - POSTGRES_USER=${POSTGRES_USER-mathesar} + # - POSTGRES_PASSWORD=${POSTGRES_PASSWORD-mathesar} + # expose: + # - "5432" + # volumes: + # - postgresql_data:/var/lib/postgresql/data + # healthcheck: + # test: [ "CMD-SHELL", "pg_isready -d $${POSTGRES_DB-mathesar_django} -U $${POSTGRES_USER-mathesar}"] + # interval: 5s + # timeout: 1s + # retries: 30 + # start_period: 5s + + # ... + service: + # ... + volumes: + - static:/code/static + - media:/code/media + # Comment the below field to disable starting the database service automatically + # depends_on: + # db: + # condition: service_healthy +``` + +After this change, Mathesar will no longer start the `db` service automatically. + +### Run Mathesar on a non-standard HTTP port {: #non-standard-port} + +By default, Caddy serves the Mathesar web application on a port as determined by the protocol within your [`DOMAIN_NAME` environment variable](./env-variables.md#domain_name). + +- For `http` domain names it uses port `80`. +- For `https` domain names (as is the default, if not specified) it uses port `443` and redirects any traffic pointed at `http` to `https`. In this case, Caddy also creates an SSL certificate [automatically](https://caddyserver.com/docs/automatic-https#activation). + + !!! warning + If you don't have access to port `443`, avoid using `https` domain names on a non-standard port. Due to the following reasons: + + - Caddy won't be able to verify the SSL certificate when running on a non-standard port. + - Browsers automatically redirect traffic sent to the `http` domain to the standard `https` port (443), rather than to any non-standard `HTTPS_PORT` port that you may have configured. + +To use a non-standard port: + +1. Edit your `.env` file and set either the [`HTTP_PORT`](./env-variables.md#http_port) or the [`HTTPS_PORT`](./env-variables.md#https_port) environment variable (depending on the protocol you're using). + + !!! example + To serve Mathesar at `http://localhost:9000`, include the following in your `.env` file: + + ```bash + DOMAIN_NAME='http://localhost' + HTTP_PORT=9000 + ``` + +1. Restart the container + + === "Linux" + ``` + sudo docker compose -f docker-compose.yml up caddy-reverse-proxy -d + ``` + + === "MacOS" + ``` + docker compose -f docker-compose.yml up caddy-reverse-proxy -d + ``` diff --git a/docs/docs/configuration/env-variables.md b/docs/docs/configuration/env-variables.md new file mode 100644 index 0000000000..e7cd7a1fad --- /dev/null +++ b/docs/docs/configuration/env-variables.md @@ -0,0 +1,86 @@ +# Environment Variables + +This page contains all available environment variables supported by Mathesar. See the specific installation guides for the applicable environment variables and instructions on how to set them. + + +## Backend configuration {: #backend} + +### `SECRET_KEY` + +- **Description**: A unique random string used by Django for cryptographic signing ([see Django docs](https://docs.djangoproject.com/en/3.2/ref/settings/#std:setting-SECRET_KEY)). +- **Format**: A 50 character string +- **Additional information**: You can generate a secret key using [this tool](https://djecrety.ir/) if needed. + + +### `ALLOWED_HOSTS` + +- **Description**: A list of hostnames that Mathesar will be accessible at ([see Django docs](https://docs.djangoproject.com/en/4.2/ref/settings/#allowed-hosts)). + - Hostnames should not contain the protocol (e.g. `http`) or trailing slashes. + - You can use `localhost` in this list. +- **Format**: Comma separated string of hostnames + + !!! success "Valid values" + - `mathesar.example.com, localhost` + - `.localhost, mathesar.example.com, 35.188.184.125` + + !!! failure "Invalid values" + - `http://mathesar.example.com/` - contains HTTP protocol and a trailing slash + - `https://mathesar.example.com` - contains HTTPS protocol + - `localhost/, 35.188.184.125` - contains trailing slash after `localhost` + +### `DJANGO_DATABASE_URL` + +- **Description**: A Postgres connection string of the database used for **Mathesar's internal usage**. +- **Format**:`postgres://user:password@hostname:port/database_name` + - The connection string above will connect to a database with username `user`, password `password`, hostname `mathesar_db`, port `5432`, and database name `mathesar_django`. + +### `MATHESAR_DATABASES` + +- **Description**: Names and connection information for databases managed by Mathesar. These databases will be accessible through the UI. +- **Format**:`(unique_id|connection_string),(unique_id|connection_string),...` + - e.g. `(db1|postgresql://u:p@example.com:5432/db1),(db2|postgresql://u:p@example.com:5432/db2)` + - This would set Mathesar to connect to two databases, `db1` and `db2` which are both accessed via the same user `u`, password `p`, hostname `example.com`, and port `5432`. + + +## Caddy reverse proxy configuration {: #caddy} + +### `DOMAIN_NAME` + +- **Description**: The public URL that will be used to access Mathesar ([see Caddy docs](https://caddyserver.com/docs/caddyfile/concepts#addresses)). +- **Format**: A URL or hostname + + !!! info "Example values" + - `https://example.com` + - `localhost` + - `http://localhost` + +- **Additional information** + - If the protocol is `http`, then Caddy will serve traffic via HTTP only. + - If the protocol is `https` or is not specified, then Caddy will serve traffic via HTTPS (and will redirect all HTTP traffic to HTTPS). In this case Caddy will also attempt to automatically set up HTTPS with [Let's Encrypt](https://letsencrypt.org/) for you ([see Caddy docs](https://caddyserver.com/docs/automatic-https)). + + !!! tip "Tip" + - Set this to `localhost` if you'd like Mathesar to be available only on localhost + - Set the protocol to `http` if you don't want Caddy to automatically handle setting up SSL, e.g. `http://example.com` + + +### `HTTP_PORT` + +- **Description**: Configures the port that Caddy will use when `DOMAIN_NAME` specifies a `http` protocol. +- **Default value**: `80` + + !!! tip "Tip" + - It is recommended to use the default port `80` as features like automatic SSL rely on it ([see Caddy docs](https://caddyserver.com/docs/automatic-https#acme-challenges)). + - You probably want to change it to a different port if one of these is true: + - you already have a reverse proxy handling SSL on your system + - you are running Mathesar on a non-root system + +### `HTTPS_PORT` + +- **Description**: Configures the port that Caddy will use when `DOMAIN_NAME` specifies a `https` protocol or does not specify a protocol. +- **Default value**: `443` + + !!! tip "Tip" + - If you want Caddy to handle the SSL certificate it is highly recommended to use the default port `443` as features like automatic SSL, and HTTPS redirection rely on it ([see Caddy docs](https://caddyserver.com/docs/automatic-https#acme-challenges)). + - You probably want to change it to a different port if one of these is true: + - you already have a reverse proxy handling SSL on your system + - you are running Mathesar on a non-root system diff --git a/docs/docs/index.md b/docs/docs/index.md index e471ff1fd8..8a4d26d891 100644 --- a/docs/docs/index.md +++ b/docs/docs/index.md @@ -1,25 +1,32 @@ # Mathesar Documentation -![Mathesar header](assets/images/header.png) -Mathesar is a straightforward open source tool that provides a **spreadsheet-like interface** to a PostgreSQL **database**. Our web-based interface helps you and your collaborators work with data more independently and comfortably – **no technical skills needed**. +## Welcome! +Mathesar is a self-hostable open source project that provides a spreadsheet-like interface to a PostgreSQL database. Our web-based interface helps you and your collaborators set up data models, edit data, and build custom reports – no technical skills needed. -You can use Mathesar to build **data models**, **enter data**, and even **build reports**. +You can create a new PostgreSQL database while setting up Mathesar or use our UI to interact with an existing database (or do both). -## Installation +A live demo of Mathesar is [available here](https://demo.mathesar.org/). -[Install Mathesar](install/index.md) +## Installing Mathesar +You can self-host Mathesar by following one of the guides below: -## Product -Mathesar should be pretty intuitive to use. More documentation is coming soon, but for now, we've written some documentation for some things that could be tricky. +- [Install with Docker Compose](installation/docker-compose/index.md) +- [Install from scratch (on Linux)](installation/build-from-source/index.md) +- [Install with our guided installation script](installation/guided-install/index.md) +- [Install using Docker image (needs an external database server)](installation/docker/index.md) -- [Syncing Database Changes](product/syncing-db.md) -- [Users & Access Levels](product/syncing-db.md) +!!! info "More installation methods coming soon" + We're working on supporting additional installation methods, and we'd appreciate feedback on which ones to prioritize. Please comment [on this issue](https://github.com/centerofci/mathesar/issues/2509) if you have thoughts. -## Contributing +## Using Mathesar +Mathesar should be pretty intuitive to use. More documentation is coming soon, but for now, we've written some documentation for some things that could be tricky. -As an open source project, we actively encourage contribution! +- [Syncing Database Changes](./user-guide/syncing-db.md) +- [Users & Access Levels](./user-guide/users.md) -- Get started by reading our [Contributor Guide](https://github.com/centerofci/mathesar/blob/develop/CONTRIBUTING.md). +## Contributing +As an open source project, we actively encourage contribution! Get started by reading our [Contributor Guide](https://github.com/centerofci/mathesar/blob/develop/CONTRIBUTING.md). -- You can also contribute by **sponsoring us** on [GitHub](https://github.com/sponsors/centerofci) or [Open Collective](https://opencollective.com/mathesar) \ No newline at end of file +## Donate +We're a non-profit and your donations help sustain our core team. You can donate via [GitHub](https://github.com/sponsors/centerofci) or [Open Collective](https://opencollective.com/mathesar). diff --git a/docs/docs/install/docker-compose/index.md b/docs/docs/install/docker-compose/index.md deleted file mode 100644 index bc1579146f..0000000000 --- a/docs/docs/install/docker-compose/index.md +++ /dev/null @@ -1,135 +0,0 @@ -# Install Mathesar via Docker Compose - -## Requirements - -- You need **[Docker](https://docs.docker.com/desktop/) and [Docker Compose](https://docs.docker.com/compose/install/)**. - - We've tested with Docker v23 and Docker Compose v2.10. Older versions may not work. - -- You need **root access**. - -- If using a custom domain name - - Have your domain name ready during the installation process and have your DNS pointing to your Mathesar server. - -- If connecting to an existing database - - - Ensure the external database can accept network connections from your Mathesar server. - - Have the following information handy before installation: - - - Database hostname _(cannot [yet](https://github.com/centerofci/mathesar/issues/2571) be `localhost`)_ - - Database port - - Database name - - Database username _(should exist and be a `SUPERUSER` [more info](https://www.postgresql.org/docs/13/sql-createrole.html))_ - - Database password - -- If installing on Windows, you need to have [WSL](https://learn.microsoft.com/en-us/windows/wsl/install) installed first. - - -## Install - -1. Paste this command into your terminal to begin installing the latest version of Mathesar: - - ```sh - bash <(curl -sfSL https://raw.githubusercontent.com/centerofci/mathesar/0.1.1/install.sh) - ``` - -1. Follow the interactive prompts to configure your Mathesar installation. - -1. When finished, the installer will display the URL where you can run Mathesar from your web browser. - -!!! info "Getting help" - If you run into any problems during installation, see [troubleshooting](./troubleshooting.md) or [open a ticket describing your problem](https://github.com/centerofci/mathesar/issues/new/choose). - -## Start/stop the server {:#start-stop} - -The Mathesar server needs to be running for you to use Mathesar. If you restart your machine, you'll need to start the server again. - -- **Start** Mathesar: - - === "Linux" - ``` - sudo docker compose -f /etc/mathesar/docker-compose.yml --profile prod up -d - ``` - - === "MacOS" - ``` - docker compose -f /etc/mathesar/docker-compose.yml --profile prod up -d - ``` - -- **Stop** Mathesar: - - === "Linux" - ``` - sudo docker compose -f /etc/mathesar/docker-compose.yml --profile prod down - ``` - - === "MacOS" - ``` - docker compose -f /etc/mathesar/docker-compose.yml --profile prod down - ``` - - This stops all Mathesar Docker containers and releases their ports. - -!!! note - If you customized the Mathesar configuration directory during installation, you'll need to change `/etc/mathesar` to your configuration directory. - -## Upgrade - -Manually upgrade Mathesar to the newest version: - -=== "Linux" - ``` - sudo docker exec mathesar-watchtower-1 /watchtower --run-once - ``` - -=== "MacOS" - ``` - docker exec mathesar-watchtower-1 /watchtower --run-once - ``` - - -!!! tip "Upgrade from within Mathesar" - You can also run the upgrade from within Mathesar by logging into as an admin user and navigating to "Administration" (in the top right menu) > "Software Update" - -## Uninstall - -1. Remove all Mathesar Docker images and containers. - - === "Linux" - ``` - sudo docker compose -f /etc/mathesar/docker-compose.yml --profile prod down --rmi all -v - ``` - - === "MacOS" - ``` - docker compose -f /etc/mathesar/docker-compose.yml --profile prod down --rmi all -v - ``` - -1. Remove configuration files. - - ```sh - sudo rm -rf /etc/mathesar - ``` - - !!! note - If you customized the Mathesar configuration directory during installation, you'll need to change `/etc/mathesar` to your configuration directory. - -1. Remove Mathesar internal schemas. - - **If you connected Mathesar to an existing database**, the installation process would have created a new schema for Mathesar's use. You can remove this schema from that database as follows: - - 1. Connect to the database. - - ``` - psql -h -p -U - ``` - - 2. Delete the schema. - - ```postgresql - DROP SCHEMA mathesar_types CASCADE; - ``` - - !!! danger - Deleting this schema will also delete any database objects that depend on it. This should not be an issue if you don't have any data using Mathesar's custom data types. diff --git a/docs/docs/install/index.md b/docs/docs/install/index.md deleted file mode 100644 index 638179b83f..0000000000 --- a/docs/docs/install/index.md +++ /dev/null @@ -1,7 +0,0 @@ -# Install Mathesar - -- [Install via Docker Compose](./docker-compose/index.md) - - -!!! info "More installation methods coming soon" - We [plan to support additional installation methods](https://github.com/centerofci/mathesar/issues/2509) in the near future, allowing you to run Mathesar without Docker. diff --git a/docs/docs/installation/build-from-source/index.md b/docs/docs/installation/build-from-source/index.md new file mode 100644 index 0000000000..1d5f148c46 --- /dev/null +++ b/docs/docs/installation/build-from-source/index.md @@ -0,0 +1,512 @@ +# Install Mathesar from source on Linux + +!!! warning "For experienced Linux sysadmins" + To follow this guide you need be experienced with Linux server administration, including the command line interface and some common utilities. + + +## Requirements + +### System +We recommend having at least 60 GB disk space and 4 GB of RAM. + +### Operating System +We've tested this on **Ubuntu**, but we expect that it can be adapted for other Linux distributions as well. + +### Access +You should have **root access** to the machine you're installing Mathesar on. + +### Software +You'll need to install the following system packages before you install Mathesar: + +- [Python](https://www.python.org/downloads/) 3.9 + + !!! note "Python version" + Python _older_ than 3.9 will not run Mathesar. + + Python _newer_ than 3.9 will run Mathesar, but will require some slightly modified installation steps which we have [not yet documented](https://github.com/centerofci/mathesar/issues/2872). + +- [PostgreSQL](https://www.postgresql.org/download/linux/) 13 or newer (Verify with `psql --version`) + +- [NodeJS](https://nodejs.org/en/download) 14 or newer (Verify with `node --version`) + + _(This is required for installation only and will eventually be [relaxed](https://github.com/centerofci/mathesar/issues/2871))_ + +- [npm](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) 6 or newer (Verify with `npm --version`) + + _(This is required for installation only and will eventually be [relaxed](https://github.com/centerofci/mathesar/issues/2871))_ + +- [Caddy](https://caddyserver.com/docs/install) (Verify with `caddy version`) + +- [git](https://git-scm.com/downloads) (Verify with `git --version`) + + +### Domain (optional) +If you want Mathesar to be accessible over the internet, you'll probably want to set up a domain or sub-domain to use. **If you don't need a domain, you can skip this section.** + +Before you start installation, **ensure that the DNS for your sub-domain or domain is pointing to the machine that you're installing Mathesar on**. + +## Customizing this Guide +Type your domain name into the box below. Do not include a trailing slash. + + + +Then press Enter to customize this guide with your domain name. + + +## Installation Steps + +### Set up the database + +1. Open a `psql` shell. + + ```sh + sudo -u postgres psql + ``` + +1. Mathesar needs a Postgres superuser to function correctly. Let's create a superuser. + + ```postgresql + CREATE USER mathesar WITH SUPERUSER ENCRYPTED PASSWORD '1234'; + ``` + + !!! warning "Customize your password" + Be sure to change the password `1234` in the command above to something more secure and private. Record your custom password somewhere safe. You will need to reference it later. + +1. Next, we have to create a database for storing Mathesar metadata. + + ```postgresql + CREATE DATABASE mathesar_django; + ``` + +1. Now we let us create a database for storing your data. + + ```postgresql + CREATE DATABASE your_db_name; + ``` + +1. Press Ctrl+D to exit the `psql` shell. + + +### Set up your installation directory + +1. Choose a directory to store the Mathesar application files. + + !!! example "Examples" + - `/home/my_user_name/mathesar` + - `/etc/mathesar` + +1. Type your installation directory into the box below. Do not include a trailing slash. + + + + Then press Enter to customize this guide with your installation directory. + +1. Create your installation directory. + + ``` + mkdir -p xMATHESAR_INSTALLATION_DIRx + ``` + + !!! note "When installing outside your home folder" + If you choose a directory outside your home folder, then you'll need to create it with `sudo` and choose an appropriate owner for the directory (i.e. `root` or a custom user of your choosing). + + The remainder of this guide requires you to **run commands with full permissions inside your installation directory**. You can do this, for example via: + + - `chown my_user_name: xMATHESAR_INSTALLATION_DIRx` + + Or + + - `sudo su` + +1. Navigate into your installation directory. + + ``` + cd xMATHESAR_INSTALLATION_DIRx + ``` + + The remaining commands in this guide should be run from within your installation directory. + + +### Set up the environment + +1. Clone the git repo into the installation directory. + + ```sh + git clone https://github.com/centerofci/mathesar.git . + ``` + +1. Checkout the tag of the latest stable release, `{{mathesar_version}}`. + + ``` + git checkout {{mathesar_version}} + ``` + + !!! warning "Important" + If you don't run the above command you'll end up installing the latest _development_ version of Mathesar, which will be less stable. + + !!! tip + You can install a specific Mathesar release by running commands like `git checkout 0.1.1` (to install version 0.1.1, for example). You can see all available versions by running `git tag`. + +1. We need to create a python virtual environment for the Mathesar application. + + ```sh + -m venv ./mathesar-venv + # /usr/bin/python3.9 -m venv ./mathesar-venv + ``` + +1. Next we will activate our virtual environment: + + ```sh + source ./mathesar-venv/bin/activate + ``` + + !!! warning "Important" + You need to activate the environment each time you restart the shell as they don't persist across sessions. + + +### Install the Mathesar application + +1. Install Python dependencies + + ```sh + pip install -r requirements.txt + ``` + +1. Set the environment variables + + 1. Create .env file + + ```sh + touch .env + ``` + + 1. Edit your `.env` file, making the following changes: + + - Add the [**Backend Configuration** environment variables](../../configuration/env-variables.md#backend) + - Customize the values of the environment variables to suit your needs. + + !!! example + Your `.env` file should look something like this + + ``` bash + ALLOWED_HOSTS='xDOMAIN_NAMEx' + SECRET_KEY='dee551f449ce300ee457d339dcee9682eb1d6f96b8f28feda5283aaa1a21' + DJANGO_DATABASE_URL=postgresql://mathesar:1234@localhost:5432/mathesar_django + MATHESAR_DATABASES=(your_db_name|postgresql://mathesar:1234@localhost:5432/your_db_name) + ``` + + 1. Add the environment variables to the shell + + You need to `export` the environment variables listed in the `.env` file to your shell. The easiest way would be to run the below command. + + ```sh + export $(sudo cat .env) + ``` + + !!! warning "Important" + You need to export the environment variables each time you restart the shell as they don't persist across sessions. + + +1. Install the frontend dependencies + + ```sh + npm install --prefix mathesar_ui + ``` + +1. Compile the Mathesar Frontend App + ```sh + npm run --prefix mathesar_ui build --max_old_space_size=4096 + ``` + +1. Install Mathesar functions on the database: + + ```sh + python install.py --skip-confirm | tee /tmp/install.py.log + ``` + +1. Create a Mathesar admin/superuser: + + ```sh + python manage.py createsuperuser + ``` + + A prompt will appear to ask for the superuser details. Fill in the details to create a superuser. At least one superuser is necessary for accessing Mathesar. + + See the Django docs for more information on the [`createsuperuser` command](https://docs.djangoproject.com/en/4.2/ref/django-admin/#createsuperuser) + +1. Create a media directory for storing user-uploaded media + + ```sh + mkdir .media + ``` + +### Set up Gunicorn + +!!! info "" + We will use `systemd` to run the `gunicorn` service as it lets you use easily start and manage the service. + +1. Create a user for running Gunicorn + + ```sh + sudo groupadd gunicorn && \ + sudo useradd gunicorn -g gunicorn + ``` + +1. Create the Gunicorn systemd service file. + + ```sh + sudo touch /lib/systemd/system/gunicorn.service + ``` + + and copy the following code into it. + + ```text + [Unit] + Description=gunicorn daemon + After=network.target network-online.target + Requires=network-online.target + + [Service] + Type=notify + User=gunicorn + Group=gunicorn + RuntimeDirectory=gunicorn + WorkingDirectory=xMATHESAR_INSTALLATION_DIRx + ExecStart=/bin/bash -c 'xMATHESAR_INSTALLATION_DIRx/mathesar-venv/bin/gunicorn config.wsgi:application' + EnvironmentFile=xMATHESAR_INSTALLATION_DIRx/.env + + [Install] + WantedBy=multi-user.target + ``` + +1. Reload the systemctl and Start the Gunicorn socket + + ```sh + sudo systemctl daemon-reload && \ + sudo systemctl start gunicorn.service && \ + sudo systemctl enable gunicorn.service + ``` + +1. Check the logs to verify if Gunicorn is running without any errors + + ```sh + sudo journalctl --priority=notice --unit=gunicorn.service + ``` + +### Set up the Caddy reverse proxy + +!!! info "" + We will be using the Caddy Reverse proxy to serve the static files and set up SSL certificates. + +1. Create the CaddyFile + + ```sh + sudo touch /etc/caddy/Caddyfile + ``` + +2. Add the configuration details to the CaddyFile + + ```text + https://xDOMAIN_NAMEx { + log { + output stdout + } + respond /caddy-health-check 200 + encode zstd gzip + handle_path /media/* { + @downloads { + query dl=* + } + header @downloads Content-disposition "attachment; filename={query.dl}" + + file_server { + precompressed br zstd gzip + root {$MEDIA_ROOT:xMATHESAR_INSTALLATION_DIRx/.media/} + } + } + handle_path /static/* { + file_server { + precompressed br zstd gzip + root {$STATIC_ROOT:xMATHESAR_INSTALLATION_DIRx/static/} + } + } + reverse_proxy localhost:8000 + } + ``` + +1. Create a user for running Caddy + + ```sh + sudo groupadd caddy && \ + sudo useradd caddy -g caddy + ``` + +1. Create the Caddy systemd service file. + + ```sh + sudo touch /lib/systemd/system/caddy.service + ``` + + and copy the following code into it. + + ```text + [Unit] + Description=Caddy + Documentation=https://caddyserver.com/docs/ + After=network.target network-online.target + Requires=network-online.target + + [Service] + Type=notify + User=caddy + Group=caddy + ExecStart=/usr/bin/caddy run --config /etc/caddy/Caddyfile + ExecReload=/usr/bin/caddy reload --config /etc/caddy/Caddyfile --force + TimeoutStopSec=5s + LimitNOFILE=1048576 + LimitNPROC=512 + PrivateTmp=true + ProtectSystem=full + AmbientCapabilities=CAP_NET_BIND_SERVICE + + [Install] + WantedBy=multi-user.target + ``` + + +1. Reload the systemctl and start the Caddy socket + + ```sh + sudo systemctl daemon-reload && \ + sudo systemctl start caddy.service && \ + sudo systemctl enable caddy.service + ``` + +1. Check the logs to verify if Caddy is running without any errors + + ```sh + sudo journalctl --priority=notice --unit=caddy.service + ``` + + +Now you can start using the Mathesar app by visiting the URL `xDOMAIN_NAMEx` + + +## Administration + +### Upgrade + +1. Go to your Mathesar installation directory. + + ```sh + cd xMATHESAR_INSTALLATION_DIRx + ``` + + !!! note + Your installation directory may be different from above if you used a different directory when installing Mathesar. + +1. Pull the latest version from the repository + + ```sh + git pull https://github.com/centerofci/mathesar.git + ``` + +1. Update Python dependencies + + ```sh + pip install -r requirements.txt + ``` + +1. Next we will activate our virtual environment: + + ```sh + source ./mathesar-venv/bin/activate + ``` + +1. Add the environment variables to the shell before running Django commands + + ```sh + export $(sudo cat .env) + ``` + +1. Run the latest Django migrations + + ```sh + python manage.py migrate + ``` + +1. Install the frontend dependencies + + ```sh + npm install --prefix mathesar_ui + ``` + +1. Build the Mathesar frontend app + + ```sh + npm run --prefix mathesar_ui build --max_old_space_size=4096 + ``` + +1. Update Mathesar functions on the database: + + ```sh + python install.py --skip-confirm >> /tmp/install.py.log + ``` + +1. Restart the gunicorn server + + ```sh + sudo systemctl restart gunicorn + ``` + + +### Uninstalling Mathesar {:#uninstall} + +1. Stop Caddy service + + ```sh + sudo systemctl disable caddy.service && sudo systemctl stop caddy.service + ``` + +1. Remove Caddy service file and Caddyfile + + ```sh + sudo rm /lib/systemd/system/caddy.service && sudo rm /etc/caddy/Caddyfile + ``` + +1. Stop Gunicorn + + ```sh + sudo systemctl disable gunicorn.service && sudo systemctl stop gunicorn.service + ``` + +1. Remove Gunicorn service file + + ```sh + sudo rm /lib/systemd/system/gunicorn.service + ``` + +1. Remove your Mathesar installation directory + + ```sh + sudo rm -r xMATHESAR_INSTALLATION_DIRx + ``` + + !!! warning "Your installation directory might be customized" + It's possible that Mathesar could have been installed into a different directory than shown above. Use caution when deleting this directory. + +1. Remove Django database + + 1. Connect to the psql terminal. + + ``` + sudo -u postgres psql + ``` + + 2. Drop the Django database. + + ```postgresql + DROP DATABASE mathesar_django; + ``` + +{% include 'snippets/uninstall-schemas.md' %} diff --git a/docs/docs/installation/docker-compose/index.md b/docs/docs/installation/docker-compose/index.md new file mode 100644 index 0000000000..75a1e9dbe3 --- /dev/null +++ b/docs/docs/installation/docker-compose/index.md @@ -0,0 +1,102 @@ +# Install Mathesar via Docker Compose + +## Prerequisites + +{% include 'snippets/docker-compose-prerequisites.md' %} + +## Step-by-Step Guide {: #steps} + +1. Navigate to a directory where you'd like to store your Mathesar configuration. We recommend `/etc/mathesar`, but it can be any directory. + + ``` + sudo mkdir -p /etc/mathesar + cd /etc/mathesar + ``` + +1. Download our [docker-compose.yml](https://github.com/centerofci/mathesar/raw/{{mathesar_version}}/docker-compose.yml), and [.env.example](https://github.com/centerofci/mathesar/raw/{{mathesar_version}}/.env.example) files to the directory you've chosen. + + ``` + sudo wget https://github.com/centerofci/mathesar/raw/{{mathesar_version}}/docker-compose.yml + sudo wget https://github.com/centerofci/mathesar/raw/{{mathesar_version}}/.env.example + ``` + +1. Rename `.env.example` to `.env` + + ``` + sudo mv .env.example .env + ``` + + Your custom `.env` file will be used for setting [configuration variables](../../configuration/env-variables.md). + +1. Set up the database + - To use the [default database server](../../configuration/customize-docker-compose#default-db) bundled with Mathesar, no additional steps are necessary. The database service will start along with the Mathesar web server. + - Alternatively, you can [disable the default database server](../../configuration/customize-docker-compose.md#disable-db-service) if you plan on using an [existing database server](../../configuration/connect-to-existing-db.md). + +1. Set up the web server. + + 1. Edit your `.env` file, making the following changes: + + - Add the [**Backend Configuration** environment variables](../../configuration/env-variables.md#backend) + - Customize the values of the environment variables to suit your needs. + + !!! example + If you are using the [default database container](../../configuration/customize-docker-compose#default-db), your `.env` file should look something like this + + ``` bash + ALLOWED_HOSTS='' + SECRET_KEY='dee551f449ce300ee457d339dcee9682eb1d6f96b8f28feda5283aaa1a21' + DJANGO_DATABASE_URL='postgresql://mathesar:mathesar@mathesar_db:5432/mathesar_django' + MATHESAR_DATABASES='(mathesar_tables|postgresql://mathesar:mathesar@mathesar_db:5432/mathesar)' + ``` + + 1. Start the Mathesar web server. + + === "Linux" + ``` + sudo docker compose -f docker-compose.yml up service -d + ``` + + === "MacOS" + ``` + docker compose -f docker-compose.yml up service -d + ``` + +1. Set up the Caddy reverse proxy. + + 1. Edit your `.env` file, adding the [**Caddy Reverse Proxy** environment variables](../../configuration/env-variables.md#caddy). + + 1. Start the Caddy reverse proxy + + === "Linux" + ``` + sudo docker compose -f docker-compose.yml up caddy-reverse-proxy -d + ``` + + === "MacOS" + ``` + docker compose -f docker-compose.yml up caddy-reverse-proxy -d + ``` + +1. Create a superuser + + ```bash + docker exec -it mathesar_service python manage.py createsuperuser + ``` + + A prompt will appear to ask for the superuser details. Fill in the details to create a superuser. At least one superuser is necessary for accessing Mathesar. + + See the Django docs for more information on the [`createsuperuser` command](https://docs.djangoproject.com/en/4.2/ref/django-admin/#createsuperuser) + +1. (Optional) Start the upgrade server to enable upgrading the docker image using the Mathesar UI. + + === "Linux" + ``` + sudo docker compose -f docker-compose.yml up watchtower -d + ``` + + === "MacOS" + ``` + docker compose -f docker-compose.yml up watchtower -d + ``` + +{% include 'snippets/docker-compose-administration.md' %} diff --git a/docs/docs/installation/docker/index.md b/docs/docs/installation/docker/index.md new file mode 100644 index 0000000000..3f55b49f4e --- /dev/null +++ b/docs/docs/installation/docker/index.md @@ -0,0 +1,139 @@ +# Install Mathesar web server via Docker + +Use our [official Docker image](https://hub.docker.com/r/mathesar/mathesar-prod/tags): `mathesar/mathesar-prod:latest` hosted on Docker Hub to run Mathesar. + +!!! warning "Limitations" + This installation procedure is intended for users who want to run a bare-bones version of the Mathesar web server. + + It is assumed you already have a database server and services like a reverse proxy typically needed for running a production setup. If you don't have those, please use the [Docker Compose installation documentation](../docker-compose/index.md). + + +## Prerequisites + +### Operating System +You can install Mathesar using this method on Linux, MacOS, and Windows. + +### Access +You should have permission to run Docker containers on the system. + +### Software +You'll need to install **[Docker](https://docs.docker.com/desktop/)** v23+ + +### Databases + +#### Database for Mathesar's internal usage +You'll need to: + +- Create a PostgreSQL database for Mathesar's internal usage. +- Create a database user for Mathesar to use. The user should be a `SUPERUSER`, [see PostgreSQL docs for more information](https://www.postgresql.org/docs/13/sql-createrole.html). +- Ensure that this database can accept network connections from the machine you're installing Mathesar on. +- Have the following information for this database handy before installation: + - Database hostname + - Database port + - Database name + - Database username + - Database password + +#### Databases connected to Mathesar's UI +Have the following information for all databases you'd like to connect to Mathesar's UI before installation: + +- Database hostname +- Database port +- Database name +- Database username (should be a `SUPERUSER`, see above) +- Database password + +!!! warning "Database creation" + Whenever the Docker container is started, we will attempt to create any databases in this list that don't already exist. So you don't need to ensure that they are created before installation. + +## Installation Steps + +1. Run the Mathesar Docker Image + + ```bash + docker run \ + --detach + -e DJANGO_DATABASE_URL='' \ + -e MATHESAR_DATABASES='(|)' \ + -e SECRET_KEY='' \ + -e ALLOWED_HOSTS='.localhost, 127.0.0.1, [::1]' \ + -v static:/code/static \ + -v media:/code/media \ + --name mathesar_service \ + -p 8000:8000 \ + --restart unless-stopped \ + mathesar/mathesar-prod:latest + ``` + + The above command creates a Docker container containing the Mathesar server running on the `localhost` and listening on port `8000`. It also: + + - Passes configuration options as environment variables to the Docker container. Refer to [Configuring Mathesar web server](../../configuration/env-variables.md#backend) for setting the correct value to these configuration options and for additional configuration options. The configuration options used in the above command are: + - `DJANGO_DATABASE_URL` + - `DJANGO_DATABASE_KEY` + - `MATHESAR_DATABASES` + - `SECRET_KEY` + - Creates two [named Docker volumes](https://docs.docker.com/storage/volumes/) + - `static` for storing static assets like CSS, js files + - `media` for storing user-uploaded media files + - Sets the container name as `mathesar_service` using the `--name` parameter, runs the container in a detached mode using the `--detach` parameter, and binds the port `8000` to the `localhost`. Refer to [Docker documentation](https://docs.docker.com/engine/reference/commandline/run/#options) for additional configuration options. + +1. Verify if the Mathesar server is running successfully: + ```bash + docker logs -f mathesar_service + ``` + +1. Create a superuser + ```bash + docker exec -it mathesar_service python manage.py createsuperuser + ``` + A prompt will appear to ask for the superuser details, fill in the details to create a superuser. At least one superuser is necessary for accessing Mathesar. + + See the Django docs for more information on the [`createsuperuser` command](https://docs.djangoproject.com/en/4.2/ref/django-admin/#createsuperuser) + + +## Upgrading Mathesar {:#upgrade} + +1. Stop your existing Mathesar container: + + ```bash + docker stop mathesar_service + ``` + +1. Remove the old Mathesar Image + ```bash + docker rm mathesar_service + ``` + +1. Bump the image version in the `docker run` command you usually use to run your + Mathesar and start up a brand-new container: + + ```bash + docker run \ + -d \ + --name mathesar_service \ + # YOUR STANDARD ARGS HERE + mathesar/mathesar-prod:latest + ``` + +## Uninstalling Mathesar {:#uninstall} + +1. Remove the Mathesar container. + + ```bash + docker rm -v mathesar_service + ``` + +1. Remove the Mathesar Image + + ```bash + docker rmi mathesar_service + ``` + +1. Remove volumes related to Mathesar + + ```bash + docker volume rm static && + docker volume rm media + ``` + +{% include 'snippets/uninstall-schemas.md' %} diff --git a/docs/docs/installation/guided-install/index.md b/docs/docs/installation/guided-install/index.md new file mode 100644 index 0000000000..32c9d235ac --- /dev/null +++ b/docs/docs/installation/guided-install/index.md @@ -0,0 +1,44 @@ +# Guided installation + +Our install script guides you through a series of prompts to install Mathesar. The script sets up Mathesar using Docker Compose [under the hood](./under-the-hood.md). + +!!! warning "Limitations" + This is a convenient way to install Mathesar. However, it's highly opinionated and requires `sudo` privileges (admin access), and only supports a limited set of configuration options. Use the [Docker Compose installation option](../docker-compose/) if you'd like to customize your installation. + +## Prerequisites + +{% include 'snippets/docker-compose-prerequisites.md' %} + + +## Overview + +The installation script will set up: + +- A Postgres database server to store data +- A web server to run the Mathesar application +- A reverse proxy server to serve static files and set up SSL certificates +- An upgrade server to handle upgrading Mathesar via the web interface + +If you'd like to know the steps performed by the install script in more detail, you can read our [Guided installation: under the hood](./under-the-hood.md) document. + +## Step-by-step guide {: #steps} + +!!! info "Getting help" + If you run into any problems during installation, see [our troubleshooting guide](./troubleshooting.md) or [open a ticket describing your problem](https://github.com/centerofci/mathesar/issues/new/choose). + +1. Paste this command into your terminal to begin installing the latest version of Mathesar: + + ```sh + bash <(curl -sfSL https://raw.githubusercontent.com/centerofci/mathesar/{{mathesar_version}}/install.sh) + ``` + +1. Follow the interactive prompts to configure your Mathesar installation. + +1. When finished, the installer will display the URL where you can run Mathesar from your web browser. + +!!! note "Connecting to additional databases" + Once you have successfully installed Mathesar, if you wish to connect an additional database to Mathesar, [instructions are here](../../configuration/connect-to-existing-db.md). + + + +{% include 'snippets/docker-compose-administration.md' %} diff --git a/docs/docs/install/docker-compose/troubleshooting.md b/docs/docs/installation/guided-install/troubleshooting.md similarity index 88% rename from docs/docs/install/docker-compose/troubleshooting.md rename to docs/docs/installation/guided-install/troubleshooting.md index 3f33442d21..061a9b797c 100644 --- a/docs/docs/install/docker-compose/troubleshooting.md +++ b/docs/docs/installation/guided-install/troubleshooting.md @@ -1,7 +1,8 @@ -# Troubleshooting Docker Compose Installation +# Guided installation: troubleshooting + +!!! info "" + This document is related to our [guided installation](./index.md). -!!! info "We are still testing the install process" - We've tested this installation procedure on Windows, Mac, and a few Linux variants, but Mathesar is in its early stages so there might be unexpected issues. Please open a [GitHub issue](https://github.com/centerofci/mathesar/issues) if you run into any problems. ## Restarting installation @@ -17,12 +18,12 @@ If something has gone wrong with the installation, you may need to restart the s === "Linux" ```sh - sudo docker compose -f /etc/mathesar/docker-compose.yml --profile prod down -v + sudo docker compose -f /etc/mathesar/docker-compose.yml down -v ``` === "MacOS" ```sh - docker compose -f /etc/mathesar/docker-compose.yml --profile prod down -v + docker compose -f /etc/mathesar/docker-compose.yml down -v ``` and then run the installation script again. diff --git a/docs/docs/install/docker-compose/under-the-hood.md b/docs/docs/installation/guided-install/under-the-hood.md similarity index 91% rename from docs/docs/install/docker-compose/under-the-hood.md rename to docs/docs/installation/guided-install/under-the-hood.md index 13d8066f70..461b946d8c 100644 --- a/docs/docs/install/docker-compose/under-the-hood.md +++ b/docs/docs/installation/guided-install/under-the-hood.md @@ -1,15 +1,18 @@ -# Docker Compose Installation, Under the Hood +# Guided installation: under the hood -## Installation Steps -These are the steps that the installation script performs, explained in more depth: +!!! info "" + This document is related to our [guided installation](./index.md). -### Operating System Check +## What does the script do? +Our guided installation script performs the following steps. + +### Operating system check The installer attempts to determine what operating system you're installing Mathesar on. We've tested with some variants of macOS as well as a few distros of Linux. Some logic in the installer branches based on your operating system. -### Docker Version Check +### Docker version check The installer double-checks your Docker and Docker Compose versions, making sure that `docker` is at least version 20.0.0, and `docker-compose` is at least version 2.10.0. -### Database Configuration +### Database configuration Mathesar uses two PostgreSQL databases: - **an internal database**, used to store Mathesar related metadata such as display options. This is set up on the same machine as Mathesar's deployment. @@ -23,7 +26,7 @@ The credentials created in this section are used to log in directly to the datab Finally, Mathesar helps you customize the port exposed to your host machine from the database container. This is useful, since you'll need to have an exposed port to login to the Mathesar database(s) using an alternate client such as `psql`, but there could be a conflict on the default port (e.g. for the case that a PostgreSQL instance is running in the host OS). -### Webserver Configuration +### Webserver configuration This section lets you configure the entrypoint (Caddy) for every request you send to Mathesar. You may need to customize the ports if you have other services using ports on your machine. Additionally, you need to configure either a domain or an external IP address if you plan to expose your installation of Mathesar to the internet. Setting up the domain also gets HTTPS working properly on your Mathesar installation. #### Domain setup @@ -31,11 +34,11 @@ The domain specified here should be a valid, registered domain, whose DNS entry If you don't use a domain, Mathesar can still be accessed from the internet using an IP address instead a domain name. Please note that HTTPS will not work without a domain name set up. -### Admin User Configuration +### Admin user configuration Here, the installer helps you create a user (separate from the database user) that you will use to login to Mathesar through the main web UI. This section walks you through that process to create a username and password for that user. You're allowed to use the same details as the database user above, but it's not required, or particularly recommended. The user created in this section will have admin privileges in Mathesar, and be able to create other users after the installation is complete. -### Configuration Directory +### Configuration directory We need to store all the details configured above, and we do so in a file in your configuration directory. Note that this contains your passwords and other secrets, so **it should be kept secure**. By default, this directory is `/etc/mathesar/`, but you can change it. @@ -48,16 +51,16 @@ Recommended permissions for the `.env` file are: `-rw------- 1 root root 449 Feb 22 13:39 /etc/mathesar/.env` -### Docker Setup +### Docker setup - The installer downloads the `docker-compose.yml` file from Mathesar's repo. - The installer pulls all Docker images needed for Mathesar to run properly, and starts the various services in sequence. -### Final Steps +### Final steps If everything has worked, then the installer prints a message letting you know that it's succeeded, and gives a little information about where you should go to login to Mathesar. -## Docker containers +## Docker containers created This installation process creates the following containers: - `mathesar_service`, which runs the main Mathesar application. @@ -65,7 +68,7 @@ This installation process creates the following containers: - `mathesar-caddy-reverse-proxy-1`, which helps route traffic to the `mathesar_service` container. - `mathesar-watchtower-1`, which helps upgrade Mathesar installation when new releases are available. -## Files +## Files involved This installation process creates the following files in the Mathesar configuration directory: - `.env`. This file defines the environment inside of the various Mathesar `docker` containers. It should be kept safe, since it has sensitive information about the passwords you set for Mathesar. If you've forgotten your admin username or password, look at this file. diff --git a/docs/docs/snippets/docker-compose-administration.md b/docs/docs/snippets/docker-compose-administration.md new file mode 100644 index 0000000000..382ab9456b --- /dev/null +++ b/docs/docs/snippets/docker-compose-administration.md @@ -0,0 +1,86 @@ +## Starting and stopping Mathesar {:#start-stop} + +The Mathesar server needs to be running for you to use Mathesar. If you restart your machine, you'll need to start the server again. + +- **Start** Mathesar: + + === "Linux" + ``` + sudo docker compose -f /etc/mathesar/docker-compose.yml up -d + ``` + + === "MacOS" + ``` + docker compose -f /etc/mathesar/docker-compose.yml up -d + ``` + +- **Stop** Mathesar: + + === "Linux" + ``` + sudo docker compose -f /etc/mathesar/docker-compose.yml down + ``` + + === "MacOS" + ``` + docker compose -f /etc/mathesar/docker-compose.yml down + ``` + + This stops all Mathesar Docker containers and releases their ports. + +!!! note + If you customized the Mathesar configuration directory during installation, you'll need to change `/etc/mathesar` to your configuration directory. + +## Upgrading Mathesar {:#upgrade} + +!!! tip "Upgrade from within Mathesar" + You can also run the upgrade from within Mathesar by logging in as an admin user and navigating to "Administration" (in the top right menu) > "Software Update" + +Manually upgrade Mathesar to the newest version using Watchtower: + +=== "Linux" + ``` + sudo docker exec mathesar-watchtower-1 /watchtower --run-once + ``` + +=== "MacOS" + ``` + docker exec mathesar-watchtower-1 /watchtower --run-once + ``` + +Manually upgrade Mathesar to the newest version without using Watchtower: + +=== "Linux" + ``` + sudo docker compose -f docker-compose.yml up --force-recreate --build service + ``` + +=== "MacOS" + ``` + docker compose -f docker-compose.yml up --force-recreate --build service + ``` + +## Uninstalling Mathesar {:#uninstall} + +1. Remove all Mathesar Docker images and containers. + + === "Linux" + ``` + sudo docker compose -f /etc/mathesar/docker-compose.yml down --rmi all -v + ``` + + === "MacOS" + ``` + docker compose -f /etc/mathesar/docker-compose.yml down --rmi all -v + ``` + +1. Remove configuration files. + + ```sh + sudo rm -rf /etc/mathesar + ``` + + !!! note + If you customized the Mathesar configuration directory during installation, you'll need to change `/etc/mathesar` to your configuration directory. + +{% include 'snippets/uninstall-schemas.md' %} \ No newline at end of file diff --git a/docs/docs/snippets/docker-compose-prerequisites.md b/docs/docs/snippets/docker-compose-prerequisites.md new file mode 100644 index 0000000000..f9947c9289 --- /dev/null +++ b/docs/docs/snippets/docker-compose-prerequisites.md @@ -0,0 +1,35 @@ +### Operating System +You can install Mathesar using this method on Linux, MacOS, and Windows. + +### Access +You should have **root access** to the machine you're installing Mathesar on. + +### Software +You'll need to install the following software before you install Mathesar: + +- **[Docker](https://docs.docker.com/desktop/)** v23+ +- **[Docker Compose](https://docs.docker.com/compose/install/)** v2.10+ +- **If you're installing on Windows:** + - Ensure you have [WSL](https://learn.microsoft.com/en-us/windows/wsl/install) installed + - Turn on Docker Desktop WSL 2, [see Docker docs for more information](https://docs.docker.com/desktop/windows/wsl/#turn-on-docker-desktop-wsl-2) + +### Domain (optional) +If you want Mathesar to be accessible over the internet, you'll probably want to set up a domain or sub-domain to use. **If you don't need a domain, you can skip this section.** + +Before you start installation, **ensure that the DNS for your sub-domain or domain is pointing to the machine that you're installing Mathesar on**. + +### Database (optional) +You can create a new PostgreSQL database while setting up Mathesar or use our UI to interact with an existing database. **If you don't have a database you want to connect to, you can skip this section.** + +To connect Mathesar to an existing database: + +- The external database should be able to accept network connections from your Mathesar server. +- You'll need to set up a database user for Mathesar to use. The user should be a `SUPERUSER`, [see PostgreSQL docs for more information](https://www.postgresql.org/docs/13/sql-createrole.html). +- Have the following information handy before installation: + - Database hostname + - Database port + - Database name + - Database username + - Database password + +See _[Connect to an existing database](/configuration/connect-to-existing-db)_ for more details. diff --git a/docs/docs/snippets/uninstall-schemas.md b/docs/docs/snippets/uninstall-schemas.md new file mode 100644 index 0000000000..ab575dba91 --- /dev/null +++ b/docs/docs/snippets/uninstall-schemas.md @@ -0,0 +1,25 @@ +1. Remove Mathesar internal schemas. + + **If you'd like to continue using your PostgreSQL database**, you'll need to remove the schemas created for Mathesar's use during installation. You can remove them from the database as follows: + + 1. Connect to the database. + + ``` + psql -h -p -U + ``` + + 2. Delete the types schema. + + ```postgresql + DROP SCHEMA mathesar_types CASCADE; + ``` + + !!! danger "" + Deleting this schema will also delete any database objects that depend on it. This should not be an issue if you don't have any data using Mathesar's custom data types. + + 3. Delete the function schemas. + + ```postgresql + DROP SCHEMA msar CASCADE; + DROP SCHEMA __msar CASCADE; + ``` diff --git a/docs/docs/stylesheets/extra.css b/docs/docs/stylesheets/extra.css index daea1e38c4..67c3352157 100644 --- a/docs/docs/stylesheets/extra.css +++ b/docs/docs/stylesheets/extra.css @@ -4,13 +4,12 @@ --md-accent-fg-color: #eb5441; --md-default-fg-color--light: #4b535d; - --md-default-fg-color--lighter: #6b757f; - --md-default-fg-color--lightest: #8b959f; - --md-default-bg-color: #F9F8F6; + --md-default-fg-color--lighter: #959da6; + --md-default-fg-color--lightest: #c3cdd8; + --md-default-bg-color: #f9f8f6; --md-code-fg-color: #25292e; --md-code-bg-color: #e4e0d7; - --md-code-hl-color: #1269cf; --md-typeset-mark-color: #ffff0080; --md-typeset-del-color: #f5503d26; @@ -29,21 +28,23 @@ --md-footer-fg-color--lighter: #ffffff73; --md-footer-bg-color: #000000de; --md-footer-bg-color--dark: #00000052; + + --md-link-color: #075cbe; } [data-md-color-scheme="slate"] { - --md-primary-bg-color--light: #e4e7ed; - --md-primary-fg-color--light: #e4e7ed; + --md-primary-bg-color--lightest: #fafafa; + --md-primary-bg-color--light: #a6a9af; + --md-primary-fg-color--light: #a6a9af; --md-typeset-a-color: #fff; - --md-default-bg-color: #343941; + --md-default-bg-color: #2c3037; + --md-accent-fg-color: #ff5c47; + --md-link-color: #3191ff; } .md-typeset a { - text-decoration: underline; -} - -.md-nav__link--active { - font-weight: 700; + color: var(--md-link-color); + text-decoration: underline; } .md-typeset h1 { @@ -56,7 +57,111 @@ font-weight: 600; } +.md-nav__link--active { + font-weight: 700; +} + [data-md-color-scheme="slate"] .md-typeset h1 { border-bottom: 2px solid var(--md-primary-fg-color--light); + color: var(--md-primary-bg-color--lightest); +} + +.md-nav__title { + width: max-content; + padding: 0.5em; + text-transform: uppercase; + font-size: 0.85em; +} + +.md-nav--secondary .md-nav__title { + box-shadow: none; + background: none; +} + +.md-nav__link--active { + font-weight: 700; +} + +.md-nav__list .md-nav__link { + text-decoration: none; + color: var(--md-default-fg-color--light); + position: relative; + transition: transform 0.3s ease-in-out; +} + +[data-md-color-scheme="slate"] .md-nav__list .md-nav__link { + color: var(--md-primary-bg-color--lightest); +} + +.md-nav--secondary { + padding: 1em; + position: relative; + overflow: hidden; + border: 1px solid var(--md-code-bg-color); + border-radius: 4px; +} + +[data-md-color-scheme="default"] .md-nav--secondary { + background-color: #edece6; +} + +[data-md-color-scheme="slate"] .md-nav--secondary { + border: 1px solid var(--md-primary-fg-color--light); +} + +.md-nav__list > .md-nav__item > .md-nav__link { + padding: 0.25em 0; + margin-top: 0; +} + +.md-nav--secondary > .md-nav__list .md-nav__item:not(:first-child) { + border-top: 1px dashed var(--md-default-fg-color--lightest); + color: var(--md-primary-fg-color); +} + +.md-nav__list .md-nav__item:first-child { + border-top: none; +} + +.md-nav__list .md-nav__link--active { + color: var(--md-accent-fg-color); +} + +[data-md-color-scheme="slate"] .md-nav__list .md-nav__link--active { + color: var(--md-accent-fg-color); +} + +.md-nav__item--section > .md-nav__link { + font-size: 0.85em; + text-transform: uppercase; + color: var(--md-default-fg-color--lighter); +} + +[data-md-color-scheme="slate"] .md-nav__item--section > .md-nav__link { color: var(--md-primary-fg-color--light); -} \ No newline at end of file +} + +.md-nav__item { + padding-left: 0; + margin-left: 0.5rem; +} + +.md-nav__item .md-nav__link { + padding: 0; +} + +.md-nav--secondary .md-nav__list .md-nav__link { + margin-top: 0; + padding: 0.25rem 0; + display: block; +} + +[data-md-color-scheme="slate"] .md-nav__list .md-nav__link:hover { + transform: translateX(0.25rem); + color: var(--md-primary-fg-color--light); +} + +[data-md-color-scheme="default"] .md-nav__list .md-nav__link:hover { + transform: translateX(0.25rem); + color: var(--md-primary-fg-color); +} diff --git a/docs/docs/product/intro.md b/docs/docs/user-guide/index.md similarity index 95% rename from docs/docs/product/intro.md rename to docs/docs/user-guide/index.md index 049eb5d9de..56e2e69edf 100644 --- a/docs/docs/product/intro.md +++ b/docs/docs/user-guide/index.md @@ -1,4 +1,4 @@ -# Introduction +# Using Mathesar Welcome! At this point, we assume you've installed Mathesar successfully and have logged into the web UI. diff --git a/docs/docs/product/syncing-db.md b/docs/docs/user-guide/syncing-db.md similarity index 100% rename from docs/docs/product/syncing-db.md rename to docs/docs/user-guide/syncing-db.md diff --git a/docs/docs/product/users.md b/docs/docs/user-guide/users.md similarity index 100% rename from docs/docs/product/users.md rename to docs/docs/user-guide/users.md diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index 3c7909035a..acbeb88db6 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -3,12 +3,61 @@ site_url: https://docs.mathesar.org/ repo_url: https://github.com/centerofci/mathesar/ repo_name: centerofci/mathesar +nav: + - Introduction: + - Welcome: index.md + - Installation: + - Install with Docker Compose: installation/docker-compose/index.md + - Install from scratch: installation/build-from-source/index.md + - Install with guided script: installation/guided-install/index.md + - Appendix to guided script: + - Under the hood: installation/guided-install/under-the-hood.md + - Troubleshooting: installation/guided-install/troubleshooting.md + - Install UI-only Docker image: installation/docker/index.md + - Configuration: + - Environment variables: configuration/env-variables.md + - Connect to an existing database server: configuration/connect-to-existing-db.md + - Customize Docker Compose installations: configuration/customize-docker-compose.md + - Administration: + - Upgrade Mathesar: administration/upgrade.md + - Uninstall Mathesar: administration/uninstall.md + - Using Mathesar: + - Introduction: user-guide/index.md + - Syncing database changes: user-guide/syncing-db.md + - Users & access levels: user-guide/users.md + +plugins: + - search: + lang: en + - redirects: + redirect_maps: + 'installation-dc/administration.md': 'installation/guided-install/index.md#start-stop' + 'installation-dc/ansible-setup.md': 'installation/docker-compose/index.md' + 'installation-dc/quickstart.md': 'installation/guided-install/index.md' + 'installation-dc/troubleshooting.md': 'installation/guided-install/troubleshooting.md' + 'installation-dc/under-the-hood.md': 'installation/guided-install/under-the-hood.md' + 'installation-dc/uninstall.md': 'installation/guided-install/index.md#uninstall' + 'product/intro.md': 'user-guide/index.md' + 'product/syncing-db.md': 'user-guide/syncing-db.md' + 'product/users.md': 'user-guide/users.md' + 'install/index.md': 'index.md' + 'install/guided-install/index.md': 'installation/guided-install/index.md' + 'install/docker-compose/index.md': 'installation/docker-compose/index.md' + 'install/docker-compose/under-the-hood.md': 'installation/guided-install/under-the-hood.md' + 'install/docker-compose/troubleshooting.md': 'installation/guided-install/troubleshooting.md' + 'install/docker/index.md': 'installation/docker/index.md' + 'install/build-from-source/index.md': 'installation/build-from-source/index.md' + - macros + - placeholder + theme: name: material logo: assets/images/logo.svg favicon: assets/images/favicon.ico features: - content.code.copy + - navigation.sections + - navigation.expand font: text: Nunito Sans code: Fira Code @@ -33,6 +82,7 @@ markdown_extensions: - admonition - attr_list - def_list + - codehilite - pymdownx.highlight: anchor_linenums: true line_spans: __span @@ -49,27 +99,5 @@ markdown_extensions: title: On this page permalink: true -plugins: - - search: - lang: en - - redirects: - redirect_maps: - 'installation-dc/administration.md': 'install/docker-compose/index.md' - 'installation-dc/ansible-setup.md': 'install/docker-compose/index.md' - 'installation-dc/quickstart.md': 'install/docker-compose/index.md' - 'installation-dc/troubleshooting.md': 'install/docker-compose/troubleshooting.md' - 'installation-dc/under-the-hood.md': 'install/docker-compose/under-the-hood.md' - 'installation-dc/uninstall.md': 'install/docker-compose/index.md' - -nav: - - Home: index.md - - Install: - - Install Mathesar: install/index.md - - Via Docker Compose: - - Install via Docker Compose: install/docker-compose/index.md - - Under the hood: install/docker-compose/under-the-hood.md - - Troubleshooting: install/docker-compose/troubleshooting.md - - Product: - - Introduction: product/intro.md - - Syncing database changes: product/syncing-db.md - - Users & Access Levels: product/users.md +extra: + mathesar_version: 0.1.2 diff --git a/docs/placeholder-plugin.yaml b/docs/placeholder-plugin.yaml new file mode 100644 index 0000000000..e4312464d2 --- /dev/null +++ b/docs/placeholder-plugin.yaml @@ -0,0 +1,2 @@ +MATHESAR_INSTALLATION_DIR: /etc/mathesar +DOMAIN_NAME: localhost diff --git a/docs/requirements.txt b/docs/requirements.txt index 4597a4033b..8eef20f7fd 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -1,3 +1,5 @@ mkdocs==1.4.2 mkdocs-material==8.5.11 mkdocs-redirects==1.2.0 +mkdocs-macros-plugin==0.7.0 +mkdocs-placeholder-plugin==0.3.1 diff --git a/install.py b/install.py index de8240987e..cddc47f7bf 100644 --- a/install.py +++ b/install.py @@ -2,6 +2,7 @@ This script installs functions and types for Mathesar onto the configured DB. """ import getopt +import os import sys import django @@ -19,6 +20,7 @@ def main(): for (opt, value) in opts: if (opt == "-s") or (opt == "--skip-confirm"): skip_confirm = True + os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.production") django.setup() management.call_command('migrate') debug_mode = decouple_config('DEBUG', default=False, cast=bool) @@ -26,7 +28,8 @@ def main(): if not debug_mode: management.call_command('collectstatic', '--noinput', '--clear') print("------------Setting up User Databases------------") - user_databases = [key for key in settings.DATABASES if key != "default"] + django_db_key = decouple_config('DJANGO_DATABASE_KEY', default="default") + user_databases = [key for key in settings.DATABASES if key != django_db_key] for database_key in user_databases: install_on_db_with_key(database_key, skip_confirm) diff --git a/install.sh b/install.sh index aba0361fcd..c359599c47 100755 --- a/install.sh +++ b/install.sh @@ -1,7 +1,7 @@ #!/usr/bin/env bash set -e clear -x -github_tag=${1-"0.1.1"} +github_tag=${1-"0.1.2"} min_maj_docker_version=20 min_maj_docker_compose_version=2 min_min_docker_compose_version=7 @@ -55,7 +55,11 @@ ${prompt}" done echo "${password}" } - +validate_password(){ + if [ ${#1} -lt 8 ]; then + return 1 + fi +} create_password () { local password local password_check @@ -65,11 +69,19 @@ Repeat the password: " local repeat_retry=" Passwords do not match! Try again. " - +local validation_prompt=" +Password must be at least 8 characters long! +" password=$(get_password "${prompt}") - read -rs -p "${repeat_prompt}" password_check - if [ "${password}" != "${password_check}" ]; then - password=$(create_password "${repeat_retry}") + #check if the password is at least 8 characters long + + if validate_password "${password}"; then + read -rs -p "${repeat_prompt}" password_check + if [ "${password}" != "${password_check}" ]; then + password=$(create_password "${repeat_retry}") + fi + else + password=$(create_password "${validation_prompt}") fi echo "${password}" } @@ -146,7 +158,7 @@ Welcome to the Mathesar installer for version %s! For more information or explanation about the steps involved, please see: -https://docs.mathesar.org/installation-dc/under-the-hood/ +https://docs.mathesar.org/installation/guided-install/under-the-hood/ -------------------------------------------------------------------------------- @@ -201,8 +213,8 @@ https://github.com/centerofci/mathesar/issues/ if [ "${1}" == "late" ]; then read -r -p " Press ENTER to print the logs and reset the local docker environment. " - docker compose --profile prod logs - docker compose --profile prod down -v --rmi all + docker compose logs + docker compose down -v --rmi all fi read -r -p " Press ENTER to exit the installer. " @@ -389,7 +401,6 @@ POSTGRES_PASSWORD='${django_db_password}' POSTGRES_PORT='${django_db_port}' ALLOWED_HOSTS='${allowed_hosts}' SECRET_KEY='${secret_key}' -DJANGO_DATABASE_KEY='default' DJANGO_DATABASE_URL='${django_database_url}' MATHESAR_DATABASES='(mathesar_tables|${mathesar_database_url})' DJANGO_SUPERUSER_PASSWORD='${superuser_password}' @@ -417,13 +428,14 @@ installation. printf "Downloading docker-compose.yml... " sudo curl -sfL -o docker-compose.yml https://raw.githubusercontent.com/centerofci/mathesar/"${github_tag}"/docker-compose.yml || installation_fail early + read -r -p "Success! Next, we'll download files and start the server, This may take a few minutes. Press ENTER to continue. " clear -x -docker compose --profile prod up -d --wait || installation_fail late +docker compose up -d --wait || installation_fail late printf "\n" printf " -------------------------------------------------------------------------------- diff --git a/mathesar/__init__.py b/mathesar/__init__.py index b0306b2d46..278d0e3e53 100644 --- a/mathesar/__init__.py +++ b/mathesar/__init__.py @@ -1,3 +1,3 @@ default_app_config = 'mathesar.apps.MathesarConfig' -__version__ = "0.1.1" +__version__ = "0.1.2" diff --git a/mathesar/admin.py b/mathesar/admin.py index 08257b4f27..be9d1f1f60 100644 --- a/mathesar/admin.py +++ b/mathesar/admin.py @@ -3,6 +3,7 @@ from mathesar.models.base import Table, Schema, DataFile from mathesar.models.users import User +from mathesar.models.query import UIQuery class MathesarUserAdmin(UserAdmin): @@ -22,3 +23,4 @@ class MathesarUserAdmin(UserAdmin): admin.site.register(Schema) admin.site.register(DataFile) admin.site.register(User, MathesarUserAdmin) +admin.site.register(UIQuery) diff --git a/mathesar/api/db/viewsets/tables.py b/mathesar/api/db/viewsets/tables.py index 4fcec95cbf..75671d631c 100644 --- a/mathesar/api/db/viewsets/tables.py +++ b/mathesar/api/db/viewsets/tables.py @@ -247,9 +247,11 @@ def existing_import(self, request, pk=None): @action(methods=['post'], detail=True) def map_imported_columns(self, request, pk=None): temp_table = self.get_object() - target_table = request.get('import_target', None) + target_table_id = request.data.get('import_target', None) + target_table = get_table_or_404(target_table_id) try: - temp_table.suggest_col_mappings_for_import(target_table) + mappings = temp_table.suggest_col_mappings_for_import(target_table) + return Response({"mappings": mappings}) except ColumnMappingsNotFound as e: raise database_api_exceptions.ColumnMappingsNotFound( e, diff --git a/mathesar/api/exceptions/database_exceptions/exceptions.py b/mathesar/api/exceptions/database_exceptions/exceptions.py index df355d1ee5..43eeabe029 100644 --- a/mathesar/api/exceptions/database_exceptions/exceptions.py +++ b/mathesar/api/exceptions/database_exceptions/exceptions.py @@ -178,6 +178,26 @@ def __init__( super().__init__(exception, self.error_code, message, field, details, status_code) +class StaticDefaultAssignmentToDynamicDefaultException(MathesarAPIException): + error_code = ErrorCodes.DynamicDefaultAlterationToStaticDefault.value + + def __init__( + self, + exception, + message=None, + field=None, + details=None, + status_code=status.HTTP_500_INTERNAL_SERVER_ERROR + ): + super().__init__(exception, self.error_code, self.err_msg(exception, message), field, details, status_code) + + @staticmethod + def err_msg(exception, message): + if type(exception) is DynamicDefaultModificationError and exception.column: + return f'Dynamic Default of {exception.column.name} column can not be altered.' + return message + + class UnsupportedTypeAPIException(MathesarAPIException): # Default message is not needed as the exception string provides enough details error_code = ErrorCodes.UnsupportedType.value @@ -441,3 +461,8 @@ def __init__( if exception is None: exception = Exception(message) super().__init__(exception, self.error_code, message, field, details, status_code) + + +class DynamicDefaultModificationError(Exception): + def __init__(self, column=None): + self.column = column diff --git a/mathesar/api/exceptions/error_codes.py b/mathesar/api/exceptions/error_codes.py index f85022890d..2229fcda72 100644 --- a/mathesar/api/exceptions/error_codes.py +++ b/mathesar/api/exceptions/error_codes.py @@ -62,3 +62,4 @@ class ErrorCodes(Enum): EditingPublicSchema = 4421 DuplicateUIQueryInSchema = 4422 IdentifierTooLong = 4423 + DynamicDefaultAlterationToStaticDefault = 4424 diff --git a/mathesar/api/serializers/columns.py b/mathesar/api/serializers/columns.py index 939e90b729..a1da3168a1 100644 --- a/mathesar/api/serializers/columns.py +++ b/mathesar/api/serializers/columns.py @@ -5,6 +5,7 @@ from db.identifiers import is_identifier_too_long from db.columns.exceptions import InvalidTypeError +from mathesar.api.exceptions.database_exceptions.exceptions import DynamicDefaultModificationError from db.columns.exceptions import InvalidTypeOptionError from db.types.base import PostgresType, MathesarCustomType from db.types.operations.convert import get_db_type_enum_from_id @@ -169,6 +170,14 @@ class Meta(SimpleColumnSerializer.Meta): def validate(self, data): data = super().validate(data) # Reevaluate column display options based on the new column type. + if self.partial and 'column_default_dict' in data: + if self.instance is not None and self.instance.column_default_dict: + if 'is_dynamic' in self.instance.column_default_dict: + if self.instance.column_default_dict['is_dynamic'] is True: + raise database_api_exceptions.StaticDefaultAssignmentToDynamicDefaultException( + DynamicDefaultModificationError(self.instance), + status_code=status.HTTP_400_BAD_REQUEST + ) if TYPE_KEY in data and self.instance: db_type = get_db_type_enum_from_id(data[TYPE_KEY].lower()) target_types = self.instance.valid_target_types diff --git a/mathesar/database/base.py b/mathesar/database/base.py index 2daf343930..dbb349be40 100644 --- a/mathesar/database/base.py +++ b/mathesar/database/base.py @@ -13,7 +13,10 @@ def create_mathesar_engine(db_name): try: credentials = _get_credentials_for_db_name_in_settings(db_name) except KeyError: - credentials = _get_credentials_for_db_name_not_in_settings(db_name) + if hasattr(settings, 'MATHESAR_LIVE_DEMO') and settings.MATHESAR_LIVE_DEMO: + credentials = _get_credentials_for_db_name_not_in_settings(db_name) + else: + raise return engine.create_future_engine_with_custom_types(**credentials) diff --git a/mathesar/imports/csv.py b/mathesar/imports/csv.py index 19c8d8f950..2329b7891b 100644 --- a/mathesar/imports/csv.py +++ b/mathesar/imports/csv.py @@ -16,7 +16,7 @@ from mathesar.state import reset_reflection -ALLOWED_DELIMITERS = ",\t:|" +ALLOWED_DELIMITERS = ",\t:|;" SAMPLE_SIZE = 20000 CHECK_ROWS = 10 diff --git a/mathesar/models/base.py b/mathesar/models/base.py index 5bad2c4301..9c9ca77ccd 100644 --- a/mathesar/models/base.py +++ b/mathesar/models/base.py @@ -696,7 +696,22 @@ def insert_records_to_existing_table(self, existing_table, data_files, mappings= def suggest_col_mappings_for_import(self, existing_table): temp_table_col_list = self.get_column_name_type_map() target_table_col_list = existing_table.get_column_name_type_map() - return column_utils.find_match(temp_table_col_list, target_table_col_list, self._sa_engine) + temp_table_name_id_map = self.get_column_name_id_bidirectional_map() + target_table_name_id_map = existing_table.get_column_name_id_bidirectional_map() + column_mappings = column_utils.find_match(temp_table_col_list, target_table_col_list, self._sa_engine) + + # Convert python list indices to django ids. + mappings = [ + ( + temp_table_name_id_map[ + temp_table_col_list[from_col][0] # from_column name + ], + target_table_name_id_map[ + target_table_col_list[target_col][0] # target_column name + ] + ) for from_col, target_col in column_mappings + ] + return mappings class Column(ReflectionManagerMixin, BaseModel): diff --git a/mathesar/tests/api/test_column_api.py b/mathesar/tests/api/test_column_api.py index 23bed70f9d..2d2d6c5971 100644 --- a/mathesar/tests/api/test_column_api.py +++ b/mathesar/tests/api/test_column_api.py @@ -404,10 +404,33 @@ def test_column_update_typeget_all_columns(column_test_table_with_service_layer_ assert new_columns_response.status_code == 200 +def test_column_with_dynamic_default_update_default(column_test_table, client): + expt_default = 5 + data = {"default": {"value": expt_default}} + column = column_test_table.get_columns_by_name(['mycolumn0'])[0] + response = client.patch( + f"/api/db/v0/tables/{column_test_table.id}/columns/{column.id}/", + data=json.dumps(data), + content_type="application/json", + ) + assert response.json()[0]["code"] == 4424 + + +def test_column_with_dynamic_default_update_delete_default(column_test_table, client): + data = {"default": None} + column = column_test_table.get_columns_by_name(['mycolumn0'])[0] + response = client.patch( + f"/api/db/v0/tables/{column_test_table.id}/columns/{column.id}/", + data=json.dumps(data), + content_type="application/json", + ) + assert response.json()[0]["code"] == 4424 + + def test_column_update_default(column_test_table, client): expt_default = 5 data = {"default": {"value": expt_default}} # Ensure we pass a int and not a str - column = column_test_table.get_columns_by_name(['mycolumn0'])[0] + column = column_test_table.get_columns_by_name(['mycolumn1'])[0] response = client.patch( f"/api/db/v0/tables/{column_test_table.id}/columns/{column.id}/", data=json.dumps(data), @@ -419,17 +442,18 @@ def test_column_update_default(column_test_table, client): def test_column_update_delete_default(column_test_table, client): expt_default = None data = {"default": None} - column = column_test_table.get_columns_by_name(['mycolumn0'])[0] + column = column_test_table.get_columns_by_name(['mycolumn1'])[0] response = client.patch( f"/api/db/v0/tables/{column_test_table.id}/columns/{column.id}/", - data=data, + data=json.dumps(data), + content_type="application/json", ) assert response.json()["default"] == expt_default def test_column_update_default_invalid_cast(column_test_table, client): data = {"default": {"value": "not an integer"}} - column = column_test_table.get_columns_by_name(['mycolumn0'])[0] + column = column_test_table.get_columns_by_name(['mycolumn1'])[0] response = client.patch( f"/api/db/v0/tables/{column_test_table.id}/columns/{column.id}/", diff --git a/mathesar/tests/api/test_table_api.py b/mathesar/tests/api/test_table_api.py index 0bec6e6796..8ed35c8201 100644 --- a/mathesar/tests/api/test_table_api.py +++ b/mathesar/tests/api/test_table_api.py @@ -5,6 +5,7 @@ from sqlalchemy import text from db.columns.operations.select import get_column_attnum_from_name, get_column_attnum_from_names_as_map +from db.identifiers import truncate_if_necessary from db.types.base import PostgresType, MathesarCustomType from db.metadata import get_empty_metadata from mathesar.models.users import DatabaseRole, SchemaRole @@ -15,6 +16,19 @@ from mathesar.models.base import Column, Table, DataFile +# DUPLICATE: We need a better testing organization schema. Now is not the time to fix. +@pytest.fixture +def long_column_data_file(): + data_filepath = 'mathesar/tests/data/long_column_names.csv' + with open(data_filepath, "rb") as csv_file: + data_file = DataFile.objects.create( + file=File(csv_file), + created_from='file', + base_name='longdatafiled', + ) + return data_file + + @pytest.fixture def schema_name(): return 'table_tests' @@ -158,6 +172,7 @@ def check_create_table_response( assert data_file.table_imported_to.id == table.id assert table.import_target == import_target_table check_table_response(response_table, table, expt_name) + return table list_clients_with_results_count = [ @@ -1768,3 +1783,117 @@ def test_table_ui_dependency(client, create_patents_table, get_uid): ] } assert response_data == expected_response + + +@pytest.mark.parametrize( + 'before_truncation, after_truncation', + [ + [ + "bbbbbbbbbbbbbb", + "bbbbbbbbbbbbbb", + ], + [ + "cccccccccccccccccccccc", + "cccccccccccccccccccccc", + ], + [ + "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", + "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", + ], + [ + "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", + "fffffffffffffffffffffffffffffffffffffff-7e43d30e" + ], + [ + "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee", + "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee-d0ccef3c", + ], + [ + "ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg", + "ggggggggggggggggggggggggggggggggggggggg-2910cecf", + ], + ] +) +def test_truncate_if_necessary(before_truncation, after_truncation): + assert truncate_if_necessary(before_truncation) == after_truncation + + +def test_create_table_long_name_data_file(client, long_column_data_file, schema): + table_name = 'My Long column name datafile' + # response, response_table, table = _create_table( + # ) + expt_name = _get_expected_name(table_name, data_file=long_column_data_file) + first_row = ( + 1, 'NATION', '8.6', '4.5', '8.5', '4.3', '8.3', '4.6', '78.6', '2.22', + '0.88', '0.66', '1.53', '3.75', '3.26', '0.45', '0.07', '53.9', '52.3', + '0.8', '0.38487', '3.15796', '2.3', '33247', '14.842144', '6.172333', + '47.158545', '1.698662', '2.345577', '7.882694', '0.145406', '3.395302', + '92.085375', '14.447634', '78.873848', '1.738571', '16.161024', + '19.436701', '8.145643', '94.937079', '74.115131', '75.601680', + '22.073834', '11.791045', '1.585233', + '1.016932', '2023-02-01' + ) + column_names = [ + "State or Nation", + "Cycle 1 Total Number of Health Deficiencies", + "Cycle 1 Total Number of Fire Safety Deficiencies", + "Cycle 2 Total Number of Health Deficiencies", + "Cycle 2 Total Number of Fire Safety Deficiencies", + "Cycle 3 Total Number of Health Deficiencies", + "Cycle 3 Total Number of Fire Safety Deficiencies", + "Average Number of Residents per Day", + "Reported Nurse Aide Staffing Hours per Resident per Day", + "Reported LPN Staffing Hours per Resident per Day", + "Reported RN Staffing Hours per Resident per Day", + "Reported Licensed Staffing Hours per Resident per Day", + "Reported Total Nurse Staffing Hours per Resident per Day", + "Total number of nurse staff hours per resident per day on the weekend", + "Registered Nurse hours per resident per day on the weekend", + "Reported Physical Therapist Staffing Hours per Resident Per Day", + "Total nursing staff turnover", + "Registered Nurse turnover", + "Number of administrators who have left the nursing home", + "Case-Mix RN Staffing Hours per Resident per Day", + "Case-Mix Total Nurse Staffing Hours per Resident per Day", + "Number of Fines", + "Fine Amount in Dollars", + "Percentage of long stay residents whose need for help with daily activities has increased", + "Percentage of long stay residents who lose too much weight", + "Percentage of low risk long stay residents who lose control of their bowels or bladder", + "Percentage of long stay residents with a catheter inserted and left in their bladder", + "Percentage of long stay residents with a urinary tract infection", + "Percentage of long stay residents who have depressive symptoms", + "Percentage of long stay residents who were physically restrained", + "Percentage of long stay residents experiencing one or more falls with major injury", + "Percentage of long stay residents assessed and appropriately given the pneumococcal vaccine", + "Percentage of long stay residents who received an antipsychotic medication", + "Percentage of short stay residents assessed and appropriately given the pneumococcal vaccine", + "Percentage of short stay residents who newly received an antipsychotic medication", + "Percentage of long stay residents whose ability to move independently worsened", + "Percentage of long stay residents who received an antianxiety or hypnotic medication", + "Percentage of high risk long stay residents with pressure ulcers", + "Percentage of long stay residents assessed and appropriately given the seasonal influenza vaccine", + "Percentage of short stay residents who made improvements in function", + "Percentage of short stay residents who were assessed and appropriately given the seasonal influenza vaccine", + "Percentage of short stay residents who were rehospitalized after a nursing home admission", + "Percentage of short stay residents who had an outpatient emergency department visit", + "Number of hospitalizations per 1000 long-stay resident days", + "Number of outpatient emergency department visits per 1000 long-stay resident days", + "Processing Date" + ] + # Make sure at least some column names require truncation; + # 63 is the hard Postgres limit; we're also experiencing problems with ids + # as short as 58 characters, but I'll leave this at 63 so that it doesn't + # have to be updated once that's fixed. + assert any( + len(column_name) >= 63 + for column_name + in column_names + ) + processed_column_names = [truncate_if_necessary(col) for col in column_names] + table = check_create_table_response( + client, table_name, expt_name, long_column_data_file, schema, first_row, + processed_column_names, import_target_table=None + ) + # This just makes sure we can get records. This was a bug with long column names. + client.get(f'/api/db/v0/tables/{table.id}/records/') diff --git a/mathesar/tests/data/csv_parsing/patents_invalid.csv b/mathesar/tests/data/csv_parsing/patents_invalid.csv index f71ddfccec..96478af390 100644 --- a/mathesar/tests/data/csv_parsing/patents_invalid.csv +++ b/mathesar/tests/data/csv_parsing/patents_invalid.csv @@ -1,1395 +1,1395 @@ -"Center";"Status";"Case Number";"Patent Number";"Application SN";"Title";"Patent Expiration Date" -"NASA Kennedy Space Center";"Application";"KSC-12871";0;"13/033,085";"Polyimide Wire Insulation Repair System"; -"NASA Ames Research Center";"Issued";"ARC-14048-1";5694939;"08/543,093";"Autogenic-Feedback Training Exercise Method & System";"10/03/2015" -"NASA Ames Research Center";"Issued";"ARC-14231-1";6109270;"09/017,519";"Multimodality Instrument For Tissue Characterization";"02/04/2017" -"NASA Ames Research Center";"Issued";"ARC-14231-2DIV";6976013;"10/874,003";"Metrics For Body Sensing System";"06/16/2024" -"NASA Ames Research Center";"Issued";"ARC-14231-3";6718196;"09/652,299";"Multimodality Instrument For Tissue Characterization";"02/04/2017" -"NASA Ames Research Center";"Issued";"ARC-14275-1";6445390;"09/226,673";"Automated Triangle Geometry Processing For Surface Modeling And Cartesian Grid Generation (CART3D)";"12/24/2018" -"NASA Ames Research Center";"Issued";"ARC-14281-1";6606612;"09/374,491";"Aerodynamic Design Using Neural Networks";"08/13/2019" -"NASA Ames Research Center";"Issued";"ARC-14281-3";7191161;"10/637,087";"Method For Constructing Composite Response Surfaces By Combining Neural Networks With Polynomial Interpolation Or Estimation Techniques";"11/18/2020" -"NASA Ames Research Center";"Issued";"ARC-14359-1";6314362;"09/498,123";"A Direct-To Controller Tool (A Component Of The CTAS Software Suite)";"02/02/2020" -"NASA Ames Research Center";"Issued";"ARC-14494-1";6720984;"09/606,107";"Bio-Electric Keyboard/Mouse/Joystick Interface Software/Algorithm";"06/13/2020" -"NASA Ames Research Center";"Issued";"ARC-14512-1";6823333;"09/800,309";"Keyword-in-context Search Method And Software For Information Retrieval From Collections Of Text Documents (Quorum/Perilog)";"03/02/2021" -"NASA Ames Research Center";"Issued";"ARC-14513-1";6741981;"09/800,311";"Model-based Phrase Search Method And Software For Information Retrieval From Collections Of Text Documents (Quorum/Perilog)";"09/14/2021" -"NASA Ames Research Center";"Issued";"ARC-14514-1";6697793;"09/800,313";"Method And Software For Using Implicit Phrase Models To Generate Prominent Phrases Contained In Collections Of Text Documents (Quorum/Perilog)";"03/02/2021" -"NASA Ames Research Center";"Issued";"ARC-14515-1";6721728;"09/800,310";"Method And Software For Extracting And Distilling Topically And Situationally Relevant Phrases From Collections Of Text Documents (Quorum/Perilog)";"07/26/2021" -"NASA Ames Research Center";"Issued";"ARC-14556-1";7346172;"09/822470";"Spatially-modulated Auditory Alert Having Enhanced Detection";"08/24/2022" -"NASA Ames Research Center";"Issued";"ARC-14569-1";7783130;"11/045,041";"Spatial Standard Observer";"03/26/2028" -"NASA Ames Research Center";"Issued";"ARC-14569-2";8139892;"12/807,375";"Spatial Standard Observer";"01/24/2025" -"NASA Ames Research Center";"Issued";"ARC-14586-1DIV";7293001;"11/274,744";"A Hybrid Neural Network And Support Vector Machine Method For Optimization";"01/07/2022" -"NASA Ames Research Center";"Issued";"ARC-14613-1";6858197;"10/099,247";"A Novel Technique That Allows For The Deposition And Patterning Of A Catalyst Onto A Surface For The Growth Of Single-Walled Carbon Nanotubes";"11/30/2019" -"NASA Ames Research Center";"Issued";"ARC-14652-1";7375826;"10/956,517";"3D Laser Scanner";"03/25/2026" -"NASA Ames Research Center";"Issued";"ARC-14653-1";7702427;"10/914,783";"Future ATM (Air Traffic Management) Concepts Evaluation Tool (FACET)";"07/30/2024" -"NASA Ames Research Center";"Issued";"ARC-14653-2";8290696;"12/694,966";"Future ATM (Air Traffic Management) Concepts Evaluation Tool (FACET)";"07/30/2024" -"NASA Ames Research Center";"Issued";"ARC-14661-1";7276266;"10/320,698";"A Plasma Apparatus And Process For Functionalization Of Carbon Nanotubes";"12/13/2022" -"NASA Ames Research Center";"Issued";"ARC-14661-2";7473436;"10/828,524";"Improved Functionalization Of Carbon Nanotubes";"12/13/2022" -"NASA Ames Research Center";"Issued";"ARC-14661-3";7767270;"11/387,503";"Selective Functionalization Of Carbon Nanotubes Based Upon Distance Traveled";"11/05/2025" -"NASA Ames Research Center";"Issued";"ARC-14662-1";6968338;"10/232,975";"Advanced XML Database Integration Technique For Managing Unstructured Documents (NETMARK) (Part of NTTS Suite)";"07/18/2023" -"NASA Ames Research Center";"Issued";"ARC-14682-2";7333735;"10/885,533";"Communication Using VCSEL Laser Array";"11/03/2023" -"NASA Ames Research Center";"Issued";"ARC-14710-1";7231329;"10/706,478";"Elimination Of Parameter Input Requirement For Elliptic Grid Generation Methods In Engineering";"03/11/2025" -"NASA Ames Research Center";"Issued";"ARC-14733-1";6972056;"10/135,013";"An Environmentally Compatible Method To Purify Carbon Nanotubes";"01/03/2023" -"NASA Ames Research Center";"Issued";"ARC-14743-1";7767305;"10/758611";"High-Efficiency Tantalum-Based Ceramics (HETC)";"01/14/2024" -"NASA Armstrong Flight Research Center";"Issued";"DRC-008-014";8047472;"12/45,970";"IMPROVED RAM BOOSTER";"03/11/2028" -"NASA Ames Research Center";"Issued";"ARC-14744-1US";7816491;"10/494,853";"Ordered Biological Nanostructures Formed From Chaperonin Polypeptides";"05/06/2024" -"NASA Ames Research Center";"Issued";"ARC-14744-2";7795388;"11/194,991";"A Versatile Platform For Nanotechnology Based On Circular Permutations Of Chaperonin Protein";"05/06/2024" -"NASA Ames Research Center";"Issued";"ARC-14940-1";7135172;"10/238,515";"Bucky Paper As An Artificial Support Membrane In Retinal Cell Transplantation";"06/12/2024" -"NASA Ames Research Center";"Issued";"ARC-14941-1";6755530;"10/198,672";"Carbon Nanotubes As A Prototype Interface For Retinal Cell Recording And Stimulation (Vision Chip)";"10/18/2022" -"NASA Ames Research Center";"Issued";"ARC-14950-1";7596416;"10/928,874";"Program Management Tool (PMT) Also Known As Business Intelligence (BI)";"07/22/2027" -"NASA Ames Research Center";"Issued";"ARC-14950-2";8224472;"12/211,439";"Enhanced Project Management Tool";"10/20/2026" -"NASA Ames Research Center";"Issued";"ARC-14970-1";7129857;"10/789,049";"Intelligent Weather Agent";"07/20/2024" -"NASA Ames Research Center";"Issued";"ARC-15040-1";8200486;"10/457,696";"Sub Auditory Speech Recognition Based On Electromyographic Signals";"09/14/2025" -"NASA Ames Research Center";"Issued";"ARC-15041-2";7206674;"10/923,156";"Information Display System For Atypical Flight Phase";"05/21/2024" -"NASA Ames Research Center";"Issued";"ARC-15042-2";7217650;"10/816,576";"Metallic Nanowire Interconnections For Integrated Circuit Fabrication";"03/11/2023" -"NASA Ames Research Center";"Issued";"ARC-15058-1";7383238;"10/789,029";"Inductive Monitoring System - System Health Monitoring Software That Learns System Behavior From Data (IMS)";"03/12/2025" -"NASA Ames Research Center";"Issued";"ARC-15073-1";7590606;"10/703,039";"InvestigationOrganizer: Information Storage, Modeling And Visualization Support For Accident/Mishap Investigations (Part Of A Suite Of Software That Includes ARC-15069, ARC-15070 And ARC-15073) ";"04/30/2026" -"NASA Ames Research Center";"Issued";"ARC-15088-1";7070923;"10/608,884";"Carbon Nanotube Bucky Paper Cages For Immune Shielding Of Cells And Tissue For Transplantation";"09/20/2023" -"NASA Ames Research Center";"Issued";"ARC-15101-1";7113265;"10/808,704";"Sample Handling Device For X-ray Diffraction Instruments";"03/17/2024" -"NASA Ames Research Center";"Issued";"ARC-15157-1";7286573;"10/923,160";"A Method Of Converting Quantum Wells From Type-II To Type-I And Of Enhancing Interband Optical Gain ";"03/11/2025" -"NASA Ames Research Center";"Issued";"ARC-15171-1";7650232;"11/239,456";"Trajectory Specification For High-Capacity Air Traffic Control";"05/25/2027" -"NASA Ames Research Center";"Issued";"ARC-15173-1";7273095;"10/825,795";"Embedded Carbon Nanotube Array As High Performance Thermal Conductors";"03/11/2023" -"NASA Ames Research Center";"Issued";"ARC-15173-2";7784531;"11/900,131";"Nanoengineered Thermal Materials Based On Carbon Nanotube Array Composites";"02/16/2024" -"NASA Ames Research Center";"Issued";"ARC-15201-1";7381459;"10/779,504";"Toughened Uni-piece Fibrous Reduced Oxidation Ceramic (TUFROC) Light-Weight Thermal Protection System For Use On Space Vehicles During Atmospheric Entry At Hypersonic Speed";"02/12/2024" -"NASA Ames Research Center";"Issued";"ARC-15201-2";7314648;"10/911,747";"Toughened Uni-piece Fibrous Reinforced Oxidation-Resistant Composite (TUFROC)";"02/12/2024" -"NASA Ames Research Center";"Issued";"ARC-15204-1";7949472;"10/885,537";"Nanopore Pipetts For Structural Characterization Of Single Polymeric Biomelecules";"01/14/2026" -"NASA Ames Research Center";"Issued";"ARC-15204-1DIV";8494782;"13/092,048";"Nanopore Pipetts For Structural Characterization Of Single Polymeric Biomelecules";"06/24/2024" -"NASA Ames Research Center";"Issued";"ARC-15205-1";7939734;"10/873,996";"The Electrochemical Biosensors Using Carbon Nanotube Nanoelectrode Arrays";"06/14/2024" -"NASA Ames Research Center";"Issued";"ARC-15312-1";7672969;"11/513,429";"Context Based Configuration Management Concept";"08/25/2026" -"NASA Ames Research Center";"Issued";"ARC-15314-1";7718223;"11/007,913";"Provision Of Carbon Nanotube Arrays Of Variable Density For IC Hot Spot Control";"02/12/2027" -"NASA Ames Research Center";"Issued";"ARC-15314-2";7704547;"11/472,516";"Carbon Nanotube Growth Density Control";"12/07/2024" -"NASA Ames Research Center";"Issued";"ARC-15315-1";7378963;"11/239,449";"Reconfigurable Auditory-visual Display For Multi-channel Control Center And Rescue Communications";"01/06/2026" -"NASA Ames Research Center";"Issued";"ARC-15356-2";7161501;"11/66,650";"Display Of Aircraft Energy State For Flight Operations Quality Assurance (FOQA) Programs";"09/22/2024" -"NASA Ames Research Center";"Issued";"ARC-15356-3";7212135;"11/066649";"Real-Time Analysis And Display Of Aircraft Approach Maneuvers ";"09/22/2024" -"NASA Ames Research Center";"Issued";"ARC-15370-1";7698274;"10/956,524";"Selective Access And Editing In A Database (Part of NTTS Suite)";"03/18/2027" -"NASA Ames Research Center";"Issued";"ARC-15392-1";7313475;"11/053,713";"Delay Banking: Collaborative Decision Making For Airspace-user Priority In Tactical Flow Restrictions";"04/04/2025" -"NASA Ames Research Center";"Issued";"ARC-15404-1";7288490;"11/009,854";"Use Of A Single Electrode To Orient Carbon Nanotube Growth";"12/07/2024" -"NASA Ames Research Center";"Issued";"ARC-15437-1";7438422;"11/340,816";"Low Cost Portable Planetarium Imaging System";"05/14/2027" -"NASA Ames Research Center";"Issued";"ARC-15443-1";7531775;"11/251,006";"A Tracking Sunphotometer Without Moving Parts ";"01/31/2026" -"NASA Ames Research Center";"Issued";"ARC-15460-1";7426848;"11/203,576";"Discharge Based Gas Sensor Array Using Self-Oriented Regular Vertical Array Of Carbon Nanotubes";"08/05/2025" -"NASA Ames Research Center";"Issued";"ARC-15462-1";7574338;"11/340002";"Finite-Difference Simulation And Visualization Of Elastodynamics In Time-Evolving Generalized Curvilinear Coordinates ";"07/29/2026" -"NASA Ames Research Center";"Issued";"ARC-15487-1";7796026;"11/111,620";"Electronic Firefighter Escape Trail";"06/04/2028" -"NASA Ames Research Center";"Issued";"ARC-15506-1";7529633;"11/203,589";"Applications Of Carbon Nanotube Hold-Off Voltages";"10/22/2026" -"NASA Ames Research Center";"Issued";"ARC-15519-1";7574357;"11/169,265";"Security Applications For Subvocal Speech";"11/09/2026" -"NASA Ames Research Center";"Issued";"ARC-15566-1";7801687;"11/178,079";"Gas Sensors Based on Coated and Doped Carbon Nanotubes";"05/26/2029" -"NASA Ames Research Center";"Issued";"ARC-15566-2";8000903;"11/416,505";"Coated Or Doped Carbon Nanotube Network Sensors As Affected By Environmental Parameters And Elapsed Time";"09/15/2029" -"NASA Ames Research Center";"Issued";"ARC-15566-3";7875455;"11/489,803";"Nanotechnology Sensors For Determination Of Chemical Substances In An Oil Reservoir";"12/17/2028" -"NASA Ames Research Center";"Issued";"ARC-15566-5";7623972;"11/591,630";"Detection Of Presence Of Chemical Precursors";"07/08/2025" -"NASA Ames Research Center";"Issued";"ARC-15575-1";7473930;"11/173,053";"Use Of Carbon Nanotube Arrays For Display Purposes";"10/24/2026" -"NASA Ames Research Center";"Issued";"ARC-15578-2";7873181;"11/525,600";"Visual Signal Sensor Organ Replacement: Implementation";"05/19/2028" -"NASA Ames Research Center";"Issued";"ARC-15606-1";7431242;"11/265,324";"Aero Assist Capsule Vehicle Geometry For Atmospheric Entry";"04/01/2026" -"NASA Ames Research Center";"Issued";"ARC-15684-1";7516890;"11/444,807";"InterIssued Inventory Monitoring";"05/25/2026" -"NASA Ames Research Center";"Issued";"ARC-15714-1";7869029;"11/398,733";"Light Collimator And Monitor";"11/11/2029" -"NASA Ames Research Center";"Issued";"ARC-15782-1";7549338;"11/973998";"Nanotechnology Sensor Of Presence And Concentration Of A Target Molecule";"09/28/2027" -"NASA Ames Research Center";"Issued";"ARC-15796-1";8675922;"13/444,777";"Motion Blur Evaluation Techniques";"08/31/1932" -"NASA Ames Research Center";"Issued";"ARC-15870-1";7655497;"11/513,431";"Growth Method For Phase Change Nanostructures";"08/16/2027" -"NASA Ames Research Center";"Issued";"ARC-15890-1";7655145;"11/543,275";"Water Treatment Systems For Long Space Flight Use";"11/05/2027" -"NASA Ames Research Center";"Issued";"ARC-15900-1";7490367;"11/526,175";"Wet Waste Drying Bag";"09/20/2026" -"NASA Ames Research Center";"Issued";"ARC-15903-1DIV";8409491;"13/215,206";"In-situ Formation Of Reinforcement Phases In Ceramic Composites And Ultra High Temperature Ceramic Composites For Advanced TPS Applications";"09/28/2027" -"NASA Ames Research Center";"Issued";"ARC-15967-1";7635420;"11/645,267";"Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays";"06/06/2028" -"NASA Ames Research Center";"Application";"ARC-15977-1";0;"12/100,378";"Artificial Immune System Based Approach For Air Combat Maneuvering"; -"NASA Ames Research Center";"Application";"ARC-15981-4";;"13/463,780";"Chaperonin-based Templates for Pseudo-cellulosomes with Multiple Enzymes Present";"07/19/2027" -"NASA Ames Research Center";"Issued";"ARC-15983-1";7923709;"12/273,502";"Radiation Shielding System Using A Composite Of Hydrogen-Rich Polymers Loaded With Carbon Nanotubes";"09/30/2029" -"NASA Ames Research Center";"Application";"ARC-16478-1";;"14/191,246";"Real Time PIREPs Using Audio Twitter";"02/26/1934" -"NASA Ames Research Center";"Issued";"ARC-15995-1";8290246;"11/958,296";"A Method To Measure The Recession Of Ablative Materials In Arc-jet Testing Using Digital Stereo-photogrammetry And Image Cross-correlation";"07/01/1931" -"NASA Ames Research Center";"Issued";"ARC-16013-1";7968054;"11/715,785";"Wireless Chemical Sensor Data Transmission System Based On Nanotechnology";"10/03/2029" -"NASA Ames Research Center";"Issued";"ARC-16018-1";7662459;"12/175,379";"Atmospheric Entry Heat Shield Employing Cured Thermal Protection Material Blocks Bonded In A Large-Cell Honeycomb Matrix";"07/17/2028" -"NASA Ames Research Center";"Application";"ARC-16132-1";0;"14/091,250";"Surface Densification Of Phenolic Impregnated Carbon Ablator (PICA)";"11/26/1933" -"NASA Ames Research Center";"Issued";"ARC-16133-1";8069001;"12/319,918";"Hollow AErothermal Ablation And Temperature (HEAT) Isotherm Sensor For Tracking Isotherm Through The TPS Material";"10/09/2029" -"NASA Ames Research Center";"Application";"ARC-16211-1";0;"13/896,284";"Low Cost Optical Fiber Solar Cell Configurations";"05/16/1933" -"NASA Ames Research Center";"Issued";"ARC-16235-1";8285659;"12/543,411";"Modeling-Error-Driven Performance-Seeking Direct Adaptive Control";"11/18/1930" -"NASA Ames Research Center";"Application";"ARC-16273-1";0;"12/454,024";"Decomposition Technique for Remaining Useful Life Prediction";"11/18/1930" -"NASA Ames Research Center";"Issued";"ARC-16280-1";8409845;"12/316,557";"Offshore membrane enclosures for dewatering Algae (OMEDA)";"10/15/1931" -"NASA Ames Research Center";"Issued";"ARC-16298-1";8333810;"12/398,854";"Nanotechnology-Based Supercapacitor";"06/29/1930" -"NASA Ames Research Center";"Issued";"ARC-16320-1";8332342;"12/622,407";"Battery Prognostics using Particle Filtering Techniques";"02/05/1931" -"NASA Ames Research Center";"Issued";"ARC-16331-1";8408707;"12/428,441";"System to estimate visual acuity from wavefront aberrations";"05/29/2029" -"NASA Ames Research Center";"Issued";"ARC-16334-1";8244477;"12/478,667";"Estimation of Growth Stage and Growth Rate for Algae";"06/04/2029" -"NASA Ames Research Center";"Application";"ARC-16337-1";0;"13/793,998";"Method and Device for Biometric Subject Verification and Identification Based Upon electrocardiographic signals";"03/11/1933" -"NASA Ames Research Center";"Application";"ARC-16340-1";0;"13/645,284";"Method for formation and manufacture of carbon nanotube mesh bucky paper capsules for transplantation of cells and tissue and implantation of medical devices";"10/04/1932" -"NASA Ames Research Center";"Issued";"ARC-16342-1";8412469;"12/698,996";"Advanced Sensor Technology for Algal Biotechnology (ASTAB) ";"12/16/1930" -"NASA Ames Research Center";"Application";"ARC-16348-1";;"13/109,954";"Co-Optimized Blunt-Body ReEntry Vehicle Aerothermodynamic Parametric Shape and Multi-Discipline Optimization Design Process"; -"NASA Ames Research Center";"Issued";"ARC-16351-1";8498756;"13/213,022";"Hovercraft Landing System";"12/07/1931" -"NASA Ames Research Center";"Issued";"ARC-16370-1";8375675;"12/574,493";"Self Aligning Lug for adapting carbon fiber rods to a bolted metallic connection";"05/07/1931" -"NASA Ames Research Center";"Application";"ARC-16372-1";0;"13/794,061";"Inexpensive Cooling Systems for Devices";"03/11/1933" -"NASA Ames Research Center";"Issued";"ARC-16373-1";8489181;"12/319,220";"Heart Electrical Actions as Biometric Indicia";"04/29/1932" -"NASA Ames Research Center";"Application";"ARC-16405-1";0;"14/091,236";"Nanowire based piezoelectric power generation";"11/26/1933" -"NASA Ames Research Center";"Issued";"ARC-16407-1";8337208;"12/622,374";"Content Analysis to Detect High Stress in Oral Interviews and Text Documents";"05/26/1931" -"NASA Ames Research Center";"Application";"ARC-16419-1";0;"13/317,034";"Strobing to Mitigate Vibration for Display Legibility";"10/05/1932" -"NASA Ames Research Center";"Application";"ARC-16450-1CIP";0;"13/720,898";"Distributed Prognostics and Health Management with a Wireless Network Architecture ";"05/05/2029" -"NASA Ames Research Center";"Application";"ARC-16456-1";;"13/480,917";"FABRICATION OF NANOPIPETTE ARRAY FOR BIOSENSING"; -"NASA Ames Research Center";"Application";"ARC-16461-1";;"13/956,218";"Solar Powered CO2 Conversions with Thin Film Devices";"07/31/1933" -"NASA Ames Research Center";"Application";"ARC-16466-1";;"14/010,322";"Combined HETC/ROCCI TPS Material for Temperatures Up To T=3200 F ";"08/26/1933" -"NASA Ames Research Center";"Application";"ARC-16467-1";;"13/615,202";"ODVEC: Outlier Detection Via Estimating Clusters"; -"NASA Ames Research Center";"Application";"ARC-16607-1";;"13/658,749";"An Approach to Make Flexible Ablators that are Flexible Char Formers";"10/23/1932" -"NASA Ames Research Center";"Application";"ARC-16621-1";;"13/472,283";"Transformable Hypersonic Aerodynamic Decelerator";"12/04/1932" -"NASA Ames Research Center";"Application";"ARC-16644-1";;"13/648,197";"Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control ";"10/09/1932" -"NASA Ames Research Center";"Application";"ARC-16646-1";;"13/485,721";"A method to produce copper nanowires for interconnect applications"; -"NASA Ames Research Center";"Application";"ARC-16661-1";;"13/444,789";"Video acuity measurement system"; -"NASA Ames Research Center";"Application";"ARC-16697-1";;"13/956,929";"NTTS Search and Reporting (Part of NTTS Suite)";"08/01/1933" -"NASA Ames Research Center";"Application";"ARC-16707-1";;"13/438,793";"Ectomycorrhizal mediated remediaiton of phenolic-based contamination through use of specifically adapted ectomycorrhizal fungi and enzyme enhancement through partial defoliation of the host."; -"NASA Ames Research Center";"Application";"ARC-16707-1CIP";;"13/854,620";"Ectomycorrhizal mediated remediaiton of phenolic-based contamination through use of specifically adapted ectomycorrhizal fungi and enzyme enhancement through partial defoliation of the host.";"04/03/1932" -"NASA Ames Research Center";"Application";"ARC-16732-1";;"13/573,924";"NanoSat Launch Adapter System (NLAS)";"03/14/1933" -"NASA Ames Research Center";"Application";"ARC-16733-1";;"13/535,884";"Habitat Water Wall for Water, Solids, and Atmosphere Recycle and Reuse "; -"NASA Ames Research Center";"Application";"ARC-16752-1";;"14/179,401";"Fuel-Efficient, Airport-Friendly, Multi-Speed Transport Aircraft Configuration with Novel Structural Approach";"02/12/1934" -"NASA Ames Research Center";"Application";"ARC-16811-1";;"13/544,752";"Compliant electrode and composite materials for piezoelectric wind and mechanical energy conversions"; -"NASA Ames Research Center";"Application";"ARC-16812-1";;"13/783,112";"Graphene composite materials for supercapacitor electrodes ";"03/01/1933" -"NASA Ames Research Center";"Application";"ARC-16833-1";;"13/747,875";"Flight Deck Predictive Weather Display and Decision Support Interface ";"01/23/1933" -"NASA Ames Research Center";"Application";"ARC-16844-1";;"13/662,346";"Adaptive control and disturbance rejection of non-minimum phase plants using residual mode filters";"10/26/1932" -"NASA Ames Research Center";"Application";"ARC-16846-1";;"13/707,546";"Dynamic Weather Routes Tool";"12/06/1932" -"NASA Ames Research Center";"Application";"ARC-16892-1A";;"13/929,646";"The Surface-Adhering Bioreactor (SABR): A novel microbial cell cultivation platform";"06/27/1933" -"NASA Ames Research Center";"Application";"ARC-16902-1";;"13/725,475";"Nanosensors for medical diagnosis";"12/21/1932" -"NASA Ames Research Center";"Application";"ARC-16916-1";;"13/956,736";"A Method for Improving Control Systems with Normalized Adaptation by Optimal Control Modification";"08/01/1933" -"NASA Ames Research Center";"Application";"ARC-16924-1";;"14/010,355";"Aluminoborosilicate Supplement for Thermal Protection of a Re-entrant Vehicle";"08/26/1933" -"NASA Ames Research Center";"Application";"ARC-16942-2";;"13/659,739";"A new family of low density flexible ablators";"10/24/1932" -"NASA Armstrong Flight Research Center";"Issued";"DRC-001-049";7180943;"10/113,637";"Adaptive Lossless Data Compression";"03/26/2022" -"NASA Armstrong Flight Research Center";"Issued";"DRC-005-031";7407131;"11/288,052";"Sound Shield";"10/31/2025" -"NASA Armstrong Flight Research Center";"Issued";"DRC-006-001";7431243;"11/227,325";"Algorithms For Autonomous Soaring";"02/27/2026" -"NASA Armstrong Flight Research Center";"Application";"DRC-006-002";0;"11/422,554";"Air Breathing,Reusable, Vertical Launch, Vertical Landing, First Stage Launch System with Off-the-Shelf Second Stage - Ram Booster"; -"NASA Armstrong Flight Research Center";"Issued";"DRC-006-005";7711455;"11/463,485";"Propulsion Controlled Aircraft Computer (PCAC)";"08/09/2026" -"NASA Armstrong Flight Research Center";"Issued";"DRC-006-024";7520176;"11/567,118";"Method for Real-Time Structure Shape Sensing";"12/05/2026" -"NASA Armstrong Flight Research Center";"Application";"DRC-006-045";0;"11/682,969";"METHOD FOR REDUCING THE REFRESH RATE OF FIBER BRAGG GRATING SENSORS"; -"NASA Armstrong Flight Research Center";"Issued";"DRC-008-001";8145366;"12/138,747";"Real-time Interactive Sonic Boom Display";"04/28/2030" -"NASA Armstrong Flight Research Center";"Issued";"DRC-008-023";7715994;"12/191,734";"IMPROVED PROCESS FOR USING SURFACE STRAIN MEASUREMENTS TO OBTAIN OPERATIONAL LOADS FOR COMPLEX STRUCTURES";"08/14/2028" -"NASA Armstrong Flight Research Center";"Application";"DRC-009-008";0;"12/718034";"Continental Digital Elevation Map Compression and Decompression Software"; -"NASA Armstrong Flight Research Center";"Issued";"DRC-009-026";8447443;"13/367990";"A New Peak-Seeking Control Method";"02/07/2032" -"NASA Armstrong Flight Research Center";"Application";"DRC-010-042";;"13/463246";"An apparatus and a method to eliminate polarization-induced fading from multiple fiber-optics strain sensors via signal-processing under polarization diversity detection scheme"; -"NASA Armstrong Flight Research Center";"Application";"DRC-011-002";;"13/759,847";"OPTICAL WAVEGUIDE BRAGG GRATING WAVELENGTH SHIFT BY LIGHT INTERACTION WITH ACTIVE MATERIAL";"02/05/2033" -"NASA Armstrong Flight Research Center";"Application";"DRC-011-015";;"14/106947";"In-situ three-dimensional shape rendering from strain values obtained through optical fiber sensors";"05/31/2032" -"NASA Armstrong Flight Research Center";"Application";"DRC-012-005";;"13/759210";"Method and apparatus of multiplexing and acquiring data from multiple optical fibers using a single data channel of an optical frequency-domain reflectrometry (OFDR) system (Revised)";"02/05/2033" -"NASA Armstrong Flight Research Center";"Application";"DRC-012-006";;"13/733364";"A Novel Approach to Liquid Level Sensing Using Fiber Bragg Grating Technology";"01/03/2033" -"NASA Armstrong Flight Research Center";"Application";"DRC-012-011";;"13/573920";"Air Launch From A Towed Aircraft";"07/05/2032" -"NASA Armstrong Flight Research Center";"Issued";"DRC-096-055";6126111;"09/112,067";"Emergency Flight Control System Using One Engine And Fuel Transfer";"07/08/2018" -"NASA Armstrong Flight Research Center";"Issued";"DRC-097-021";6102330;"08/905,777";"Emergency Aircraft Lateral Controller Using Existing (non-modified) Digital Engine Computers During A System Failure For The Purpose Of Safe Landing";"07/29/2017" -"NASA Armstrong Flight Research Center";"Issued";"DRC-098-001";6216063;"09/74,024";"A Flutterometer Flight Test Tool";"05/06/2018" -"NASA Goddard Space Flight Center";"Application";"GSC-13378-1";0;"07/710,633";"SPLINE-LOCKING PAYLOAD FASTENER"; -"NASA Goddard Space Flight Center";"Issued";"GSC-13802-1";6584874;"08/673,859";"USING A 3-D SPRAG IN RACHETING TOOLS BASED ON PAT. NO. 5,482-144";"07/02/2016" -"NASA Goddard Space Flight Center";"Issued";"GSC-13817-1";5983162;"08/872,586";"Empirical Mode Decomposition Method And Hilbert Spectral Analysis Algorithms";"06/10/2017" -"NASA Goddard Space Flight Center";"Issued";"GSC-13817-2";6631325;"09/82,523";"COMPUTER IMPLEMENTED EMPIRICAL MODE DECOMPOSITION METHOD APPARATUS AND ARTICLE OF MANUFACTURE UTILIZING CURVATURE EXTREMA";"06/10/2017" -"NASA Goddard Space Flight Center";"Issued";"GSC-13817-3";6381559;"09/282,424";"Empirical Mode Decomposition Apparatus, Method, And Article Of Manufacture For Analyzing Biological Signals And Performing Curve Fitting";"03/31/2019" -"NASA Goddard Space Flight Center";"Issued";"GSC-13817-4";6862558;"10/73,957";"Empirical Mode Decomposition For Analyzing Acoustical Signals";"02/13/2022" -"NASA Goddard Space Flight Center";"Issued";"GSC-13817-5";6738734;"10/11,206";"Empirical Mode Decomposition Apparatus, Method And Article Of Manufacture For Analyzing Biological Signals And Performing Curve Fitting";"06/10/2017" -"NASA Goddard Space Flight Center";"Issued";"GSC-13905-1";6640949;"10/95,343";"1-Way Bearing";"03/01/2022" -"NASA Goddard Space Flight Center";"Issued";"GSC-13909-1";6311130;"09/150,671";"Computer Implemented Empirical Mode Decomposition Method, Apparatus, And Article Of Manufacture For Two-Dimensional Signals";"09/10/2018" -"NASA Goddard Space Flight Center";"Issued";"GSC-13985-1";6566854;"09/646,161";"Active Antenna Combined With Non-Ferrous Current Probe.";"09/12/2020" -"NASA Goddard Space Flight Center";"Issued";"GSC-14064-1";6648522;"09/804,646";"Universal Fiber Optic Connector Polishing Fixture With Precision Alignment Capability";"03/13/2021" -"NASA Goddard Space Flight Center";"Issued";"GSC-14207-1";6626792;"09/799,872";"Gear Bearings";"03/03/2021" -"NASA Goddard Space Flight Center";"Issued";"GSC-14209-1";6293803;"09/501,412";"Stress Relieved Zee Electrical Interconnect";"02/09/2020" -"NASA Goddard Space Flight Center";"Issued";"GSC-14213-1";6760487;"09/550,254";"Estimated Spectrum Adaptive Postfilter (ESAP) And The Iterative Prepost Filtering (IPF) Algorithms";"04/14/2020" -"NASA Goddard Space Flight Center";"Issued";"GSC-14236-1";6538796;"09/541,680";"MEMS Devices For Spacecraft Thermal Control Applications";"03/31/2020" -"NASA Goddard Space Flight Center";"Issued";"GSC-14302-1";6782124;"09/729,138";"Extension Of The Empirical Mode Decomposition Method To A Time Series Of 2-Dimensional Grid Maps";"11/29/2020" -"NASA Goddard Space Flight Center";"Issued";"GSC-14305-1";6895115;"09/839,147";"Method For Recursive Implementation Of Hierarchical Segmentation";"04/23/2021" -"NASA Goddard Space Flight Center";"Issued";"GSC-14389-1";7543274;"10/789,028";"Deriving Formal Specifications And Code From Scenarios";"02/25/2024" -"NASA Goddard Space Flight Center";"Issued";"GSC-14393-1";7145739;"10/385,166";"Light Weight Optical Mirrors Formed In Single Crystal Silicon";"03/06/2023" -"NASA Goddard Space Flight Center";"Issued";"GSC-14413-1";7255483;"10/93,621";"Thrust Rollers";"03/01/2022" -"NASA Goddard Space Flight Center";"Issued";"GSC-14435-1";6740224;"10/173,533";"Innovative Manufacturing Procedure For Low Cost And High Quality Carbon Nanotubes";"06/11/2022" -"NASA Goddard Space Flight Center";"Issued";"GSC-14480-2";7762155;"11/444,808";"Gear Bearings";"05/25/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-14561-1";7207245;"11/174,454";"Screw-Locking Wrench";"06/30/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14562-1";7504921;"11/543,278";"Stepping Flextures";"09/29/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-14601-1";7008605;"10/292,952";"Method For Manufacturing High Quality Carbon Nanotubes";"11/08/2022" -"NASA Goddard Space Flight Center";"Issued";"GSC-14603-1";7544146;"11/122,201";"Anti-Backlash Gear-Bearings";"05/02/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14608-1";6990436;"10/729,579";"Time Frequency Analysis Based On Extrema Sifting";"11/28/2023" -"NASA Goddard Space Flight Center";"Issued";"GSC-14616-1";7248342;"10/730,195";"Conceptual Design Of A 3D Imaging Lidar For High-Resolution Mapping Of The Surface Topography Of Moons Or Planets From Space";"12/05/2023" -"NASA Goddard Space Flight Center";"Issued";"GSC-14657-1";7512568;"11/109,400";"Evolvable Neural Software System";"04/08/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14666-1";6775600;"10/267,092";"Systems And Methods For Determining Spacecraft Orientation";"10/07/2022" -"NASA Goddard Space Flight Center";"Issued";"GSC-14673-1";6901353;"10/615,365";"Normalized Amplitude Hilbert Transform (NAHT): A New Algorithm For Computing Instantaneous Frequency";"07/08/2023" -"NASA Goddard Space Flight Center";"Issued";"GSC-14683-1";8480826;"11/736,874";"Specular Coatings For Composite Structures";"04/18/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-14762-1";7769488;"11/108,627";"SMART Solar Sail";"04/08/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14777-1";7341932;"11/251,531";"Large Area Vacuum Ultra-Violet Sensors";"09/30/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14793-1";7548199;"11/239,458";"Pivot 2.0: Radiation Hardened, Fast Acquisition/Weak Signal Tracking GPS Receiver";"09/20/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14807-1";7464006;"10/963,470";"Application Of HHT To Financial Data Analysis For Define Volatility And Trend";"10/07/2024" -"NASA Goddard Space Flight Center";"Issued";"GSC-14833-1";7346461;"11/251,004";"Stability Spectrum Through Hilbert-Huang Transform";"09/30/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14845-1";7290737;"11/251,537";"Demiseable Reaction Wheel Assembly";"09/29/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14871-1";7935297;"11/370,396";"Template For Deposition Of Micron And Sub-micron Pointed Structures";"03/06/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-14873-1";8357211;"12/872,445 ";"ADR Salt Pill Design And Crystal Growth Process For Hydrated Magnetic Salts";"08/31/2030" -"NASA Goddard Space Flight Center";"Issued";"GSC-14879-1";7635832;"11/469,105";"Iterative-Transform Phase-Retrieval Utilizing Adaptive Diversity";"08/31/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-14941-1";7739671;"11/203,590";"A Method And System For Direct Implementation Of Formal Specifications Derived Mechanically From Informal Requirements";"08/12/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14942-1";7752608;"11/203,586";"A Method And System For Formal Analysis, Simulation, And Verification Of Knowledge-Based Systems, Rule-Based Systems, And Expert Systems";"08/12/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14952-1";7513546;"11/689,161";"Conformal Gripper";"03/21/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-14960-1";7992760;"11/357,458";"Hardware And Technique For Dead End Welding Of All Types Of Tubing";"02/08/2026" -"NASA Goddard Space Flight Center";"Application";"GSC-16700-1";;"14/041407";"SpaceCube v2.0 Flight Processor Card";"09/30/2033" -"NASA Goddard Space Flight Center";"Issued";"GSC-14968-1";7627538;"11/251,538";"Apoptosis And Self-destruct: Mechanisms For Management Of Autonomic Systems";"09/29/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-14968-2";7925600;"12/603,140";"SWARM AUTONOMIC AGENTS WITH SELF-DESTRUCT CAPABILITY";"10/21/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-14979-1";7601091;"11/426,134";"Modular Gear Bearing";"06/23/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-14994-1";7697759;"11/251,530";"A Split-Remerge Method For Eliminating Processing Window Artifacts In Recursive Hierarchical Segmentation";"09/30/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-15001-1";7924415;"12/389,097";"Light Direction Sensor";"02/19/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15002-1";7240879;"11/124,592";"Space Robotic System For In Space Servicing Of Unmanned Spacecraft Applications";"05/06/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-15002-2";7513459;"11/670,653";"Method And Associated Apparatus For Capturing, Servicing, And De-Orbiting Earth Satellites Using Robotics";"05/06/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-15002-3";7293743;"11/670,270";"Method And Associated Apparatus For Capturing, Servicing, And De-Orbiting Earth Satellites Using Robotics";"11/13/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-15002-4";7438264;"11/670,781";"Method And Associated Apparatus For Capturing, Servicing And De-Orbiting Earth Satellites Using Robotics";"05/06/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-15002-5";7513460;"11/671,062";"Method And Associated Apparatus For Capturing, Servicing, And De-Orbiting Earth Satellites Using Robotics";"05/06/2025" -"NASA Goddard Space Flight Center";"Issued";"GSC-15027-1";7412175;"11/425,352";"Millimeter Wave Polarization Transformer";"06/20/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15027-2";7609978;"12/056,964";"INTERFEROMETRIC POLARIZATION CONTROL";"03/27/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15027-3";7616903;"12/057,060";"INTERFEROMETRIC POLARIZATION CONTROL";"03/27/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15030-1";7907333;"11/460,482";"A Pulsed, 1 Micron, Single Frequency, Diode-Seeded Ytterbium-doped Fiber Amplifier With Variable Output Parameters, P";"07/27/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15038-1";7765171;"11/426,853";"SPAACE: Self Properties For An Autonomous & Autonomic Computing Environment";"06/27/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15039-1";7762523;"11/861,038";"Miniaturized Double Latching Solenoid Valve";"09/25/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15042-1";7622907;"11/535,872";"Driven Ground";"09/27/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15055-1";7746190;"11/748,969";"Broadband High Spurious-suppression Microwave Waveguide Filter For Polarization-preserving And Transformer";"05/15/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15077-1";8068556;"12/147,100";"Low Cost TDRSS Tranceiver (LCT2)";"06/26/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15079-1";7886273;"11/532,800";"Generation And Verification Of Policies For Autonomic Systems";"09/18/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15080-1";7979848;"11/533,837";"A Method Of Deriving Process Based Specifications From Scenarios Via Pattern Matching";"09/21/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15115-1";7465926;"11/537,280";"Miniaturized Radiation Spectrometer Development";"09/29/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15136-1";8093094;"12/137,844";"Blocking Contacts For N-Type Cadmium Zinc Cadmium Zinc Telluride (CdZnTe)";"06/12/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15148-1";7668796;"11/536,132";"Enhancing R2D2C Requirements Based Programming With Automata Learning";"09/28/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15162-1";7796726;"11/706,693";"Instrument And Method For X-Ray Diffraction, Fluorescence, And Crystal Texture Analysis Without Sample Preparation";"02/14/2027" -"NASA Goddard Space Flight Center";"Application";"GSC-15163-2";0;"13/092198";"AIGaN Ultraviolet Detectors For Dual Band UV Detection"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15176-1";7899760;"11/533,855";"Autonomic Quiescence";"09/21/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15177-1";8082538;"11/536378";"A Method For Developing And Maintaining Evolving Systems With Software Product Lines";"09/28/2026" -"NASA Goddard Space Flight Center";"Application";"GSC-15177-2";0;"13/305932";"A Method For Developing And Maintaining Evolving Systems With Software Product Lines"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15178-1";7992134;"11/536,969";"Modeling, Specifying And Deploying Policies In Autonomous And Autonomic Systems Using An AOSE Methodology";"09/29/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15179-1";7904396;"11/533,895";"An Autonomic Smoke Detector";"09/21/2026" -"NASA Goddard Space Flight Center";"Issued";"GSC-15184-1";7978312;"11/933,492";"An Active, Solid-state, 3-Dimensional Range Imaging System";"11/01/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15206-1";8041655;"11/836,352";"Otoacoustic Protection In Biologically-Inspired Systems";"08/09/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15206-2";8140452;"13/230915";"Otoacoustic Protection In Biologically-Inspired Systems";"09/13/2031" -"NASA Goddard Space Flight Center";"Issued";"GSC-15206-3";8140453;"13/230922";"Otoacoustic Protection In Biologically-Inspired Systems";"09/13/2031" -"NASA Goddard Space Flight Center";"Issued";"GSC-15206-4";8275725;"13/230920";"Otoacoustic Protection In Biologically-Inspired Systems";"09/13/2031" -"NASA Goddard Space Flight Center";"Issued";"GSC-15206-5";8165976;"13/230922";"Otoacoustic Protection In Biologically-Inspired Systems";"09/13/2031" -"NASA Goddard Space Flight Center";"Issued";"GSC-15206-6";8165977;"13/230923";"Otoacoustic Protection In Biologically-Inspired Systems";"09/13/2031" -"NASA Goddard Space Flight Center";"Issued";"GSC-15217-1";8139674;"12/173,243";"Spaceflight Ka-Band High Rate Rad Hard Modulator";"07/15/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15301-1";7673089;"11/935,572";"An Extendibe USB Drive That Accepts External Media";"11/06/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15302-1";7673089;"11/935,572";"An Double-Headed USB Drive";"11/06/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15328-1";8499779;"12/014,889";"Non-Pyrotechnic Zero-Leak Normally-Closed Valve";"01/16/2028" -"NASA Goddard Space Flight Center";"Application";"GSC-15333-1";0;"11/860,830";"Improved, Flexure-Base Linear Bearing"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15341-1";7922920;"11/862,550";"Low Conductance Silicon Micro-leak for Mass Spectrometer Inlet";"09/27/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15341-3";8455926;"12/889,014 ";"Low Conductance Silicon Micro-leak for Mass Spectrometer Inlet";"09/23/2030" -"NASA Goddard Space Flight Center";"Issued";"GSC-15349-1";7830527;"12/102,240";"Method And Apparatus For Second Harmonic Generation And Other Frequency Convertion With Multiple Frequency Channels";"04/14/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15353-1";7830224;"11/877,102";"Compact Low-loss Planar Magic-T With Broadband Phase And Amplitude Responses";"10/23/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15357-1";8041661;"11/861,687";"Stability Algorithm For Neural Entities (SANE)";"09/26/2027" -"NASA Goddard Space Flight Center";"Issued";"GSC-15364-1";8155939;"12/170,683";"Hughes Particle – Surface Interaction Model";"07/10/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15377-1";7811406;"12/249,265";"Advanced Adhesive Bond Shape Tailoring for Large Composite Primary Structures Subjected to Cryogenic and Ambient Loading Environments";"10/10/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15416-1";7999427;"12/188,039";"Directed Flux Motor Utilizing Concentric Magnets and Interwoven Flux Channels";"08/07/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15417-1";7735385;"12/187,562";"Actuated Ball and Socket Joint";"08/07/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15419-1";8030873;"12/187,926";"Improvements to the Walk and Roll Robot";"08/07/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15421-1";7968812;"12/353,009";"Spring Joint Package with Overstrain Sensor ( OS Sensor Joint )";"01/13/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15431-1";7921731;"12/327,514";"A two-axis direct fluid shear stress sensor suited for aerodynamic applications";"12/03/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15445-1";7982861;"12/183,820";"Pseudo-Noise Code Modulation using Return to Zero pulses for Ranging, Altimetry and Communications";"07/31/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15458-1";8094731;"12/357,081";"Space Link Extension Return Channel Frames (SLE-RCF) Service (User side) Software Library";"01/21/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15483-1";7817087;"12/116,518";"Relative Spacecraft Navigation using Reflected GPS Signals";"05/07/2028" -"NASA Goddard Space Flight Center";"Issued";"GSC-15520-1";8547531;"12/873373";"Non-scanning laser 3D imager";"09/01/2030" -"NASA Goddard Space Flight Center";"Issued";"GSC-15527-1";8160728;"12/558,672";"Sensor Complete Requirements Algorithm For Autonomous Mobility";"09/14/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15538-1";8198956;"12/535,954";"Compact planar microwave blocking filter";"08/05/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15550-1";8275724;"12/569,422";"A biologically-inspired method of improving system performance and survivability through self-sacrifice";"09/29/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15552-1";7924126;"12/555,634";"Small, High Field Superconducting Magnets";"09/08/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15557-1";8095485;"12/353,637";"Formulation for Emotion Embedding in Logic Systems (FEELS)";"01/14/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15583-1";7970025;"12/496,954";"Tunable Frequency-stabilized Laser via Offset Sideband Locking";"07/02/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15584-1";8144331;"12/487,454";"Hilbert-Transform-Based Phase Referencing Algorithm for Wide-Field Imaging Interferometry.";"06/18/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15655-1";8138961;"12/561,644";"Low Frequency Wideband Step Frequency Inverse Synthetic Aperture Radar For 3-D Imaging of Interior of Near Earth Objects/Planetary Bodies";"09/17/2029" -"NASA Goddard Space Flight Center";"Application";"GSC-15660-1";0;"13/247416";"Extreme Environment Low Temperature Transistor Models"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15662-1";8092031;"12/569,090";"Flight Mirror Mount and Flight Mounting Procedure for an Ultra-Lightweight High-Precision Glass Mirror";"09/29/2029" -"NASA Goddard Space Flight Center";"Application";"GSC-15672-1";0;"13/211413";"Multicolor detectors for ultrasensitive long-wave imaging cameras"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15678-1";8484274;"12/549,159";"Optimal Padding for the Two-Dimensional Fast Fourier Transform";"08/27/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15684-1";8285401;"12/549,898";"Discrete Fourier Transform (DFT) Analysis in a Complex Vector Space";"08/28/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15685-1";8331733;"12/550,141";"Sampling Theorem in Terms of the Bandwidth and Sampling Interval";"08/28/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15692-1";8330644;"12/835,958 ";"Expandable Reconfigurable Instrument Node - Web Sensor Strand Demonstration";"07/19/2030" -"NASA Goddard Space Flight Center";"Application";"GSC-15693-1";0;"12/570,224";"Variable Sampling Mapping: A novel supplement to iterative-transform phase retrieval algorithms for undersampled images, broadband illumination, and noisy detection environments"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15699-1";8480296;"12/560,535";"A Low Cost, Low Temperature Radiometer for Thermal Measurements.";"09/16/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15724-1";8275015;"12/551,212";"Passively Q-switched side pumped Monolithic Ring Laser";"08/31/2029" -"NASA Goddard Space Flight Center";"Application";"GSC-15727-1";0;"13/222575";"An All-metal, Solderless Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15729-1";8674302;"12/789,937";"Novel Superconducting Transition Edge Sensor Design";"05/28/2030" -"NASA Goddard Space Flight Center";"Issued";"GSC-15729-2";8393786;"12/789,954 ";"Novel Superconducting Transition Edge Sensor Design";"05/28/2030" -"NASA Goddard Space Flight Center";"Issued";"GSC-15730-1";8355579;"12/783054";"Automatic Extraction of Planetary Image Features";"05/19/2030" -"NASA Goddard Space Flight Center";"Issued";"GSC-15732-1";8093565;"12/695478";"Crossed Small Deflection Energy Analyzer (SDEA) for Wind/Temperature Spectrometer (WTS)";"01/28/2030" -"NASA Goddard Space Flight Center";"Issued";"GSC-15758-1";8044332;"12/553,613";"Hybrid Architecture Active Wavefront Sensing and Control";"09/03/2029" -"NASA Goddard Space Flight Center";"Issued";"GSC-15771-1";8035081;"12/570,166";"High Precision Electric Gate (HPEG) for Time of Flight Mass Spectrometers";"09/30/2029" -"NASA Goddard Space Flight Center";"Application";"GSC-15774-1";0;"13/154599";"Ensemble Detector"; -"NASA Goddard Space Flight Center";"Application";"GSC-15782-1";0;"13/216479";"Ultra-low Power (< 100mW), 64-Channel Pulse Data Collection System"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15792-1";8406469;"12/838600";"Progressive Band Selection for Hyperspectral Images";"07/19/2030" -"NASA Goddard Space Flight Center";"Application";"GSC-15815-1";0;"12/887988";"LIDAR Luminance Quantizer"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15826-1";8134130;"12/839207";"The Corner Cathode: Making Collimated Electron Beams with a Small Number of Electrodes";"07/19/2030" -"NASA Goddard Space Flight Center";"Application";"GSC-15829-1";0;"13/601293";"Resolution enhanced pseudo random code technique";"08/31/2032" -"NASA Goddard Space Flight Center";"Application";"GSC-15839-1";0;"12/840787";"Low threshold, narrow linewidth optical parametric generator"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15856-1";8196853;"12/779494";"Aerodynamically Stabilized Instrument Platform for Kites and Tethered Blimps ( AeroPod )";"05/13/2030" -"NASA Goddard Space Flight Center";"Application";"GSC-15886-1";0;"12/838963";"Automated Beam Balance Scale Logger"; -"NASA Goddard Space Flight Center";"Application";"GSC-15911-1";0;"13/217965";"Graphite Composite Panel Polishing Fixture"; -"NASA Goddard Space Flight Center";"Application";"GSC-15934-1";0;"12/839125";"Determining Phase Retrieval Sampling from the Modulation Transfer Function"; -"NASA Goddard Space Flight Center";"Application";"GSC-15935-1";0;"13/043257";"New Variables for Iterative Transform Phase Retrieval"; -"NASA Goddard Space Flight Center";"Application";"GSC-15936-1";0;"12/854490";"SpaceCube Version 1.5"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15947-1";8274726;"12/839171";"Sampling and Reconstruction of the Sinc(x) Function";"07/19/2030" -"NASA Goddard Space Flight Center";"Application";"GSC-15948-1";0;"13/204767";"Lateral Kevlar Suspension Device (LKSD)"; -"NASA Goddard Space Flight Center";"Application";"GSC-15949-1";0;"13/600992";"Vectorized Rebinning Algorithm for Fast Data Down-Sampling";"08/31/2032" -"NASA Goddard Space Flight Center";"Application";"GSC-15951-1";0;"13/222839";"An Improved Method of Fabricating Single Crystal Silicon Light Weight Mirrors"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15953-1";8484509;"12/854546";"SpaceCube Demonstration Platform";"08/11/2030" -"NASA Goddard Space Flight Center";"Application";"GSC-15953-2";0;"13/903357";"SpaceCube Demonstration Platform";"09/30/2029" -"NASA Goddard Space Flight Center";"Application";"GSC-15957-1";0;"13/211526";"Imaging System Aperture Masks for Image Plane Exit Pupil Characterization"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15964-1";8525110;"13/247,168 ";"An Instrument Suite for the Vertical Characterization of the Ionosphere-Thermosphere System from 100 km to 700km Altitude";"09/28/2031" -"NASA Goddard Space Flight Center";"Application";"GSC-15970-1";0;"13/034125";"Electrospray Ionization for Chemical Analysis of Organic Molecules for Mass Spectrometry"; -"NASA Goddard Space Flight Center";"Application";"GSC-15976-1";0;"12/872366";"Phase Retrieval System for Assessing Diamond-Turning and other Optical Surface Artifacts"; -"NASA Goddard Space Flight Center";"Issued";"GSC-15977-1";8354952;"12/839060";"Phase Retrieval for Radio Telescope and Antenna Control";"07/19/2030" -"NASA Goddard Space Flight Center";"Application";"GSC-15979-1";0;"12/839187";"Multi-Scale Image Reconstruction using Wavelets"; -"NASA Goddard Space Flight Center";"Application";"GSC-15994-1";;"13/104538";"Photonic Choke-Joints for Dual-Polarization Waveguides"; -"NASA Goddard Space Flight Center";"Application";"GSC-16006-1";;"13/216671";"Programmable High-Rate Multi-Mission Receiver for Space Communication"; -"NASA Goddard Space Flight Center";"Application";"GSC-16008-1";;"13/600826";"Phase controlled magnetic mirror for wavefront correction";"08/31/2032" -"NASA Goddard Space Flight Center";"Application";"GSC-16016-1";;"13/193272";"Carbon Nanotubes on titanium substrates for stray light suppression"; -"NASA Goddard Space Flight Center";"Issued";"GSC-16024-1";8526733;"13/150,316";"Refinement of the HSEG Algorithm for Improved Computational Processing Efficiency";"06/01/2031" -"NASA Goddard Space Flight Center";"Application";"GSC-16789-1";;"14/ 033725";"LEARNS (Logic Expansion for Autonomously Reconfigurable Neural Systems)"; -"NASA Goddard Space Flight Center";"Application";"GSC-16029-1";;"13/193249";"Nanostructure secondary mirror apodization mask for transmitter signal suppression in a duplex telescope."; -"NASA Goddard Space Flight Center";"Application";"GSC-16096-1";;"13/211432";"Prototype Genomics Based keyed-Hash Message Authentication Code Protocol"; -"NASA Goddard Space Flight Center";"Application";"GSC-16100-1";;"12/881587";"Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem"; -"NASA Goddard Space Flight Center";"Application";"GSC-16105-1";;"13/197214";"Molecular Adsorber Coating"; -"NASA Goddard Space Flight Center";"Application";"GSC-16109-1";;"13/240180";"HEXPANDO expanding head for fastener retention hexagonal wrench"; -"NASA Goddard Space Flight Center";"Application";"GSC-16122-1";;"13/474053";"Apparatuses and Methods to Enable Sub-MHz Precision in Fast Laser Frequency Tuning"; -"NASA Goddard Space Flight Center";"Application";"GSC-16135-1";;"13/534427";"A cryptographic approach to microRNA target binding analysis"; -"NASA Goddard Space Flight Center";"Application";"GSC-16146-1";;"13/601194";"Wafer Level Microchannel Fabrication Process for Lap-on-a-Chip Devices";"08/31/2032" -"NASA Goddard Space Flight Center";"Application";"GSC-16182-1";;"13/595604";"A High Event Rate, Zero Dead Time, Multi-Stop Time-to-digital Converter Application Specific Integrated Circuit";"08/27/2032" -"NASA Goddard Space Flight Center";"Application";"GSC-16193-1";;"13/720175";"Fine Control and Maintenance Algorithm for Visible Nulling Coronagraphy";"12/19/2032" -"NASA Goddard Space Flight Center";"Application";"GSC-16223-1";;"13/551649";"SpaceCube Mini"; -"NASA Goddard Space Flight Center";"Application";"GSC-16247-1";;"13/570100";"Enhanced adhesion multiwalled carbon nanotubes on titanium substrates for stray light control"; -"NASA Goddard Space Flight Center";"Application";"GSC-16250-1";;"13/150316";"Further Refinement of the Computationally Efficient HSEG Algorithm"; -"NASA Goddard Space Flight Center";"Application";"GSC-16259-1";;"13/050617";"Spaceflight Refuiling Tools"; -"NASA Goddard Space Flight Center";"Application";"GSC-16299-1";;"13/622465";"V-Assembly Dual Head Efficiency Resonator (VADER) Laser Transmitter";"09/19/2032" -"NASA Goddard Space Flight Center";"Application";"GSC-16301-1";;"13/771815";"Impedance matched to vacuum, invisible-edge diffraction suppressed mirror";"02/20/2033" -"NASA Goddard Space Flight Center";"Application";"GSC-16327-1";;"13/545173";"Miniaturized laser heterodyne radiometer for carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) measurements in the atmospheric column."; -"NASA Goddard Space Flight Center";"Application";"GSC-16328-1";;"13/474367";"Development of the Hilbert-Huang Transform Real-Time Data Processing System with 2-D Capabilities"; -"NASA Goddard Space Flight Center";"Application";"GSC-16438-1";;"13/606174";"Power provision based on self-sacrificing spacecraft"; -"NASA Goddard Space Flight Center";"Application";"GSC-16460-1";;"13/592409";"Autonomic Autopoiesis";"08/23/2032" -"NASA Goddard Space Flight Center";"Application";"GSC-16461-1";;"13/592412";"Autonomic and Apoptotic Cloud, Autonomic and Apoptotic Grid, Autonomic and Apoptotic Highly Distributed System"; -"NASA Goddard Space Flight Center";"Application";"GSC-16485-1";;"14/038381";"Broadband planar impedance transformer";"09/26/2033" -"NASA Goddard Space Flight Center";"Application";"GSC-16516-1";;"14/021812";"Muti-function microposters inside of microfluidic channel for Lab-On-A-Chip device";"09/09/2033" -"NASA Kennedy Space Center";"Application";"KSC-12866";0;"12/843,353";"In-Situ Wire Damage Detection System"; -"NASA Goddard Space Flight Center";"Application";"GSC-16545-1";;"13/534442";"INTEGRATED GENOMIC AND PROTEOMIC INFORMATION SECURITY PROTOCOL"; -"NASA Goddard Space Flight Center";"Application";"GSC-16555-1";;"14/023847";"Green Precision Cleaning System";"09/11/2033" -"NASA Goddard Space Flight Center";"Application";"GSC-16569-1";;"14/041,720";"Mirrorlet array for Integral Field Spectrometers (IFS)"; -"NASA Goddard Space Flight Center";"Application";"GSC-16674-1";;"14/041224";"MISSE-7 Control Center";"09/30/2033" -"NASA Goddard Space Flight Center";"Application";"GSC-16795-1";;"13/781,121 ";"Wallops Flight Facility 6U Advanced CubeSat Ejector (ACE)";"01/04/2033" -"NASA Goddard Space Flight Center";"Application";"GSC-16805-1";;"14/040924";"SpaceCube v2.0 Micro";"09/30/2033" -"NASA Goddard Space Flight Center";"Application";"GSC-16808-1";;"14/040848";"SpaceCube v. 2.0 Flight Power Card";"09/30/2033" -"NASA Goddard Space Flight Center";"Application";"GSC-16859-1";;"14/037484";"Chemical sensors based on 2-dimensional materials";"09/26/2033" -"NASA Goddard Space Flight Center";"Application";"GSC-16887-1";;"14/037458";"Propellant Transfer Assembly Design and Development";"09/26/2033" -"NASA Headquarters";"Issued";"HQN-11248-1";6223143;"09/143,969";"Quantitative Risk Assessment Software (QRAS) System";"08/31/2018" -"NASA Kennedy Space Center";"Issued";"KSC-11641";5730806;"08/437,859";"Gas-Liquid Supersonic Cleaning And Cleaning Verification Spray System"; -"NASA Kennedy Space Center";"Issued";"KSC-11751";5710377;"08/540,616";"Improved Portable Ultrasonic Leak Detector (Combined With KSC-11751-2)"; -"NASA Kennedy Space Center";"Issued";"KSC-11804";5693871;"08/695,071";"Low-Differential Pressure Generator For Evaluating Low Differential Pressure Transducers"; -"NASA Kennedy Space Center";"Issued";"KSC-11866-1";5977773;"08/912,035";"Non-Intrusive Impedance-Based Cable Tester - Standing Wave Reflectometer"; -"NASA Kennedy Space Center";"Issued";"KSC-11884";6039783;"08/772,057";"A New Process And Equipment For Conversion Of NOx Scrubber Liquor To Fertilizer (related To KSC-11994)"; -"NASA Kennedy Space Center";"Issued";"KSC-11884-2";6641638;"09/511,634";"Process And Equipment For Nitrogen Oxide Waste Conversion To Fertilizer - Continuation-In-Part Filed 2/17/00"; -"NASA Kennedy Space Center";"Issued";"KSC-11937-2";7209567;"10/390,259";"Communication System With Adaptive Noise Suppression"; -"NASA Kennedy Space Center";"Issued";"KSC-12035-1";6552521;"09/906,014";"Improved Single-Station Accurate Location Of Lightning Strikes (Combined With KSC-12276 & KSC-12173)"; -"NASA Kennedy Space Center";"Issued";"KSC-12049";6627065;"09/977,531";"Liquid Galvanic Coatings For Protection Of Imbedded Metals"; -"NASA Kennedy Space Center";"Issued";"KSC-12056";6676912;"09/698,607";"New Air Pollution Control Technology For Removal Of Nitrogen Oxides From Stationary Combustion Sources"; -"NASA Kennedy Space Center";"Issued";"KSC-12092-2";6967051;"09/939,286";"Thermal Insulation System And Method (Continuing Patent Application) (Combined With KSC-12092)"; -"NASA Kennedy Space Center";"Issued";"KSC-12107";6742926;"09/906,018";"Thermal Insulation Test Apparatus With Sleeve (Related To KSC-12108)"; -"NASA Kennedy Space Center";"Issued";"KSC-12108";6487866;"09/906,011";"Multipurpose Thermal Insulation Test Apparatus (Related To 12107)"; -"NASA Kennedy Space Center";"Issued";"KSC-12168";6452510;"09/802,535";"Personal Cabin Pressure Monitor And Altitude Warning System"; -"NASA Kennedy Space Center";"Issued";"KSC-12190";6764617;"09/994,996";"A Novel Ferromagnetic Conducting Lignosulfonic Acid-Doped Polyaniline (Related To KSC-11940, KSC-11940-1, KSC-11940-2, KSC-12154, KSC-12191)"; -"NASA Kennedy Space Center";"Issued";"KSC-12191-2";7179404;"11/215,205";"Corrosion Prevention Of Cold Rolled Steel Using Water Dispersible Lignosulfonic Acid Doped Polyaniline"; -"NASA Kennedy Space Center";"Issued";"KSC-12205";6715914;"10/185,378";"Apparatus And Method For Thermal Performance Testing Of Pipelines And Piping Systems"; -"NASA Kennedy Space Center";"Issued";"KSC-12220";6917203;"10/235,020";"Current Signature Sensor (Combined With KSC-12152)"; -"NASA Kennedy Space Center";"Issued";"KSC-12221";6757641;"10/185,830";"Multisensor Transducer And Weight Factor (Combined With KSC-12359 and KSC-13139)"; -"NASA Kennedy Space Center";"Issued";"KSC-12235";6793903;"10/014,140";"High-Temperature Decomposition Of Hydrogen Peroxide"; -"NASA Kennedy Space Center";"Issued";"KSC-12235-2";6955799;"10/923,152";"Temperature Decomposition Of Hydrogen Peroxide"; -"NASA Kennedy Space Center";"Issued";"KSC-12235-3";8029736;"10/923,163";"High Temperature Decomposition Of Hydrogen Peroxide"; -"NASA Kennedy Space Center";"Issued";"KSC-12236";8511396;"10/476,175";"Non-Toxic Environmentally Safe Halon Replacement (HABx)"; -"NASA Kennedy Space Center";"Application";"KSC-12236-2-PCT";0;"/0";"Flame Suppression Agent, System And Users"; -"NASA Kennedy Space Center";"Application";"KSC-12236-CIP";;"13/428,736";"Non-Toxic Environmentally Safe Halon Replacement (HABx)"; -"NASA Kennedy Space Center";"Issued";"KSC-12246";6664298;"09/972,296";"Zero-Valent Metal Emulsion For Reductive Dehalogenation Of DNAPLs"; -"NASA Kennedy Space Center";"Issued";"KSC-12246-2";7037946;"10/701,412";"Zero-Valent Metal Emulsion For Reductive Dehalogenation Of DNAPLs"; -"NASA Kennedy Space Center";"Issued";"KSC-12278";7400766;"10/783,295";"Image Edge Extraction Via Fuzzy Reasoning (FRED) (combined With KSC-12272)"; -"NASA Kennedy Space Center";"Issued";"KSC-12386";7274907;"10/748,915";"Modular Wireless Data Acquisition System (combined With KSC-12479, KSC-12486)"; -"NASA Kennedy Space Center";"Issued";"KSC-12390";6824306;"10/318,665";"Thermal Insulation Test Apparatus For Flat Specimens"; -"NASA Kennedy Space Center";"Issued";"KSC-12394";7239751;"10/750,629";"Hypothesis Support Mechanism For Mid-Level Visual Pattern Recognition (PIPR)"; -"NASA Kennedy Space Center";"Issued";"KSC-12458";7156957;"10/440,543";"UV Induced Oxidation Of Nitric Oxide"; -"NASA Kennedy Space Center";"Issued";"KSC-12490";7298897;"10/779,551";"Noniterative Optimal Binarization Of Gray-Scaled Digital Images Via Fuzzy Reasoning (FRAT) (combined With KSC-12272)"; -"NASA Kennedy Space Center";"Issued";"KSC-12518";7790128;"10/641,581";"Hydrogen Peroxide Catalytic Decomposition"; -"NASA Kennedy Space Center";"Issued";"KSC-12539";7285306;"10/684,064";"Self-Healing Wire Insulation"; -"NASA Kennedy Space Center";"Issued";"KSC-12539-2";8119238;"11/856,218";"Self-Healing Wire Insulation"; -"NASA Kennedy Space Center";"Application";"KSC-12539-3";0;"13/348,861";"Self-Healing Wire Insulation"; -"NASA Kennedy Space Center";"Issued";"KSC-12540";6958085;"10/666,821";"High Performance Immobilized Liquid Membranes For Carbon Dioxide Separations"; -"NASA Kennedy Space Center";"Issued";"KSC-12630";7496237;"11/010,698";"Image Processing For Binarization Enhancement Via Fuzzy Reasoning"; -"NASA Kennedy Space Center";"Issued";"KSC-12631";7582147;"11/208,122";"Metallic Pigment Powder Particle For Use In A Liquid Coating System To Protect Reinforcing Steel In Concrete Structures"; -"NASA Kennedy Space Center";"Issued";"KSC-12637";7271199;"10/977,622";"Micro-scale Particle Emulsion And Their Application For Removal Of PCBs And Metals Found In Ex Situ Structures"; -"NASA Kennedy Space Center";"Issued";"KSC-12664";7404938;"10/845,418";"Emission Control System"; -"NASA Kennedy Space Center";"Issued";"KSC-12664-3-CIP";7582271;"11/40,294";"Emission Control System"; -"NASA Kennedy Space Center";"Issued";"KSC-12666";7122166;"10/845,607";"Hydrogen Peroxide Concentrator"; -"NASA Kennedy Space Center";"Issued";"KSC-12669";7302364;"11/83,420";"Integrated Spaceport Automated Data Management Architecture (Combine With KSC-12581, KSC-12583, KSC-12671and KSC-12582)"; -"NASA Kennedy Space Center";"Issued";"KSC-12697";7309738;"10/962,827";"A New Approach For Achieving Fire Retardancy While Retaining Physical Properties In A Compatible Polymer Matrix"; -"NASA Kennedy Space Center";"Issued";"KSC-12697-3";7968648;"11/935,093";"A New Approach For Achieving Flame Retardancy While Retaining Physical Properties In A Compatible Polymer Matrix"; -"NASA Kennedy Space Center";"Issued";"KSC-12703";8031449;"12/485,979";"Integral Battery Power Limiting Circuit For Intrinsically Safe Applications"; -"NASA Kennedy Space Center";"Issued";"KSC-12723";7790225;"11/239,445";"Coating For Corrosion Detection And Prevention"; -"NASA Kennedy Space Center";"Application";"KSC-12723-DIV";;"12/792,238";"Coating For Corrosion Detection And Prevention"; -"NASA Kennedy Space Center";"Issued";"KSC-12848";7781492;"11/759,672";"New Organic/inorganic Polymeric Thermal Insulators"; -"NASA Kennedy Space Center";"Issued";"KSC-12848-DIV";7977411;"12/835,233";"New Organic/inorganic Polymeric Thermal Insulators"; -"NASA Kennedy Space Center";"Application";"KSC-12871-CIP";0;"13/915,407";"Polyimide Wire Insulation Repair System"; -"NASA Kennedy Space Center";"Application";"KSC-12871-DIV1";0;"14/093,701";"Polyimide Wire Insulation Repair System"; -"NASA Kennedy Space Center";"Application";"KSC-12871-DIV2";0;"14/093,680";"Polyimide Wire Insulation Repair System"; -"NASA Kennedy Space Center";"Issued";"KSC-12875";7841771;"11/777,711";"Self Validating Thermocouple (Combined With KSC-12865)"; -"NASA Kennedy Space Center";"Issued";"KSC-12878-2-CIP";8163972;"12/465,457";"Bimetallic Treatment System and it's application for Removal of PCBs Found in Ex Situ Structures without the Use of a Catalized Agent"; -"NASA Kennedy Space Center";"Issued";"KSC-12890";7790787;"11/740,357";"New Organic/Inorganic Polymeric Materials"; -"NASA Kennedy Space Center";"Application";"KSC-12890-2-DIV";0;"12/834,416";"New Organic/Inorganic Polymeric Materials"; -"NASA Kennedy Space Center";"Issued";"KSC-12899";8425866;"11/466,624";"Gas Phase Oxidation Of NO To NO2"; -"NASA Kennedy Space Center";"Issued";"KSC-12978";7842639;"11/749,767";"Preparation of a Bimetal Using Mechanical Alloying for the Dehalogenation of Compounds"; -"NASA Kennedy Space Center";"Issued";"KSC-12978-DIV";8288307;"12/909,219";"Preparation of a Bimetal Using Mechanical Alloying for the Dehalogenation of Compounds"; -"NASA Kennedy Space Center";"Issued";"KSC-12983";8409534;"11/692,557";"Mercury Emission Control System"; -"NASA Kennedy Space Center";"Application";"KSC-13047";0;"12/813,864";"Insulation Test Cryostat with Lift Mechanism (Combined with KSC-13048)"; -"NASA Kennedy Space Center";"Application";"KSC-13047-DIV";0;"14/090,193";"Insulation Test Cryostat with Lift Mechanism (Combined with KSC-13048)"; -"NASA Kennedy Space Center";"Issued";"KSC-13088";8293178;"11/935,545";"Improved Thermal Reactivity Of Hydrogen Sensing Pigments In Manufactured Polymer Composites"; -"NASA Kennedy Space Center";"Application";"KSC-13088-CON";0;"13/611,856";"Improved Thermal Reactivity Of Hydrogen Sensing Pigments In Manufactured Polymer Composites"; -"NASA Kennedy Space Center";"Application";"KSC-13088-DIV";0;"13/615,850";"Improved Thermal Reactivity Of Hydrogen Sensing Pigments In Manufactured Polymer Composites"; -"NASA Kennedy Space Center";"Application";"KSC-13161";0;"12/855,791";"PH Sensitive Microcapsule With Corrosion Indicator"; -"NASA Kennedy Space Center";"Application";"KSC-13167";0;"12/856,849";"Watercore PH Sensitive Microcapsule"; -"NASA Kennedy Space Center";"Application";"KSC-13265-CIP2";0;"14/150,502";"An Inductive Non-Contact Position Sensor"; -"NASA Kennedy Space Center";"Application";"KSC-13278";0;"13/354,576";"A Method for Making Elongated Microcapsules Under Simple Shear Conditions"; -"NASA Kennedy Space Center";"Issued";"KSC-13285";8593153;"12/843,382";"An improved Online Diagnostic Device (ODD) for Wiring Evaluation"; -"NASA Kennedy Space Center";"Issued";"KSC-13331";8577639;"13/031,182";"A Method for Accurately Calibrating a Spectrometer Using Broadband Light"; -"NASA Kennedy Space Center";"Application";"KSC-13336";0;"12/843,487";"Sputter Coated wire for in-situ wire damage detection"; -"NASA Kennedy Space Center";"Application";"KSC-13343";0;"13/278,710";"Conductive Carbon Nanotube for use with Desktop Inkjet Printing"; -"NASA Kennedy Space Center";"Application";"KSC-13366";0;"13/523,806";"High Performance Self Healing Film"; -"NASA Kennedy Space Center";"Application";"KSC-13579";;"13/895,717";"Green PCB Removal From Sediment Systems (GPRSS)"; -"NASA Kennedy Space Center";"Application";"KSC-13588";;"13/495,862";"Multi-Dimensional Damage Detection For Flat Surfaces"; -"NASA Kennedy Space Center";"Application";"KSC-13592";;"13/542,155";"pH sensitive microparticles"; -"NASA Kennedy Space Center";"Application";"KSC-13595";;"14/192,784";"Aerogel insulation and composites integrated into unique lay-ups (Incorporates Embodiments from KSC-13702)"; -"NASA Kennedy Space Center";"Application";"KSC-13636";;"13/546,880";"Incorporation of Chemochromic Indicator for the Presence of Hypergolic Fuels into a Variety of Manufactured Parts"; -"NASA Kennedy Space Center";"Application";"KSC-13638";;"14/176,824";"A Two Dimensional Inductive Position Sensor"; -"NASA Kennedy Space Center";"Application";"KSC-13664";;"13/896,896";"Regolith Advanced Surface Systems Operations Robot (RASSOR) Excavator"; -"NASA Kennedy Space Center";"Application";"KSC-13689";;"13/961,521";"Coherence Multiplexing of Wireless Surface Acoustic Wave Sensors"; -"NASA Langley Research Center";"Issued";"LAR-14673-1";5736642;"08/778,066";"Nonlinear Ultrasonic Scanning To Detect Material Defects";"01/08/2017" -"NASA Langley Research Center";"Issued";"LAR-14840-1";5841032;"08/792,909";"Variable And Fixed Frequency Pulsed Phase-Locked Loop";"01/24/2017" -"NASA Langley Research Center";"Issued";"LAR-15205-1";5741883;"08/359,752";"Tough, Soluble, Aromatic, Thermoplastic Copolyimides";"04/21/2015" -"NASA Langley Research Center";"Issued";"LAR-15282-1";5755571;"08/712,984";"Ultrasonic Periodontal Structures Mapping Device";"09/09/2016" -"NASA Langley Research Center";"Issued";"LAR-15318-1";5798521;"08/806,732";"Distributed Fiber-optic Strain Sensor";"02/27/2017" -"NASA Langley Research Center";"Issued";"LAR-15348-1";5632841;"08/416,598";"Thin Layer Composite Unimorph Ferroelectric Driver And Sensor, THUNDER";"04/04/2015" -"NASA Langley Research Center";"Issued";"LAR-15348-2";6734603;"08/797,553";"Thin Layer Composite Unimorph Ferroelectric Driver And Sensor";"04/04/2015" -"NASA Langley Research Center";"Issued";"LAR-15351-1-CU";5585083;"08/414,661";"Catalyst For Formaldehyde Oxidation";"03/30/2015" -"NASA Langley Research Center";"Issued";"LAR-15370-1-SB";5640408;"08/593,438";"Quasi Four-Level TM:LuAG Laser (Tm:LuAG Laser)";"01/27/2016" -"NASA Langley Research Center";"Issued";"LAR-15376-1";5771204;"08/754,642";"Relative Phase Measurement Instrument For Multiple-Echo Systems";"11/21/2016" -"NASA Langley Research Center";"Issued";"LAR-15406-1";5617873;"08/449,473";"Noninvasive Meth/Apparatus For Monitoring Intracranial Pressure & Pressure Vols Index In Humans";"05/23/2015" -"NASA Langley Research Center";"Issued";"LAR-15412-1";5606014;"08/511,422";"Imide Oligomers And Co-Oligomers Containing Pendent Phenylethynyl Groups And Polymers Therefrom";"08/04/2015" -"NASA Langley Research Center";"Issued";"LAR-15412-2";5689004;"08/747,472";"Imide Oligomers And Co-Oligomers Containing Pendent Phenylethynyl Groups And Polymers Therefrom";"08/04/2015" -"NASA Langley Research Center";"Issued";"LAR-15449-1";6133401;"09/342,462";"A Method To Prepare Processable Polyimides With Reactive Endgroups Using 1,3 Bis (3-Aminophenoxyl) Benzene";"06/29/2019" -"NASA Langley Research Center";"Issued";"LAR-15449-2";6288209;"09/667,426";"Method To Prepare Processable Polyimides With Reactive Endgroups Using 1,3-Bix(3-Aminophenoxyl)Benzene";"06/29/2019" -"NASA Langley Research Center";"Issued";"LAR-15507-1";6475147;"09/493,044";"Ultrasonic Technique To Measure Intracranial Pressure";"01/27/2020" -"NASA Langley Research Center";"Issued";"LAR-15508-1";6545760;"09/535,659";"Distributed Rayleigh Scatter Fiber Optic Strain Sensor";"03/24/2020" -"NASA Langley Research Center";"Issued";"LAR-15514-1-SB";5991456;"08/654,840";"Method Of Improving A Digital Image";"05/29/2016" -"NASA Langley Research Center";"Issued";"LAR-15524-1";6000844;"08/810,058";"A Method And Apparatus For The Portable Identification Of Material Thickness Of Layers Using A Scanning Linear Heat Source And Infrared Detectorcramer";"03/04/2017" -"NASA Langley Research Center";"Issued";"LAR-15525-1-CU";5948965;"08/845,899";"Solid State Carbon Monoxide Sensor";"04/28/2017" -"NASA Langley Research Center";"Issued";"LAR-15637-1";6015272;"08/673,627";"Magnetically Suspended Miniature Fluid Pump And Method Of Making Same";"06/26/2016" -"NASA Langley Research Center";"Issued";"LAR-15637-2";6447265;"09/398,878";"Magnetically Suspended Miniature Fluid Pump And Method Of Designing The Same";"06/26/2019" -"NASA Langley Research Center";"Issued";"LAR-15652-1-CU";6132694;"08/991,075";"Catalyst For Oxidation Of Hydro-Carbons And Volatile Organic Compounds";"12/16/2017" -"NASA Langley Research Center";"Application";"LAR-15665-1-CU";0;"08/838,596";"Catalyst For Carbon Monoxide Oxidation"; -"NASA Langley Research Center";"Issued";"LAR-15745-1";6222007;"09/093,826";"Prepreg And Composites Made From Polyimide Salt-Like Solution";"05/29/2018" -"NASA Langley Research Center";"Issued";"LAR-15747-1-CU";6200539;"09/357,403";"One-Atmosphere Uniform Glow Discharge Plasma Gas Flow Acceleration";"07/20/2019" -"NASA Langley Research Center";"Issued";"LAR-15767-1";6180746;"09/316,428";"Polyimide Foam From Ether-Containing Monomeric Solutions";"05/21/2019" -"NASA Langley Research Center";"Issued";"LAR-15816-1";6629341;"09/430,677";"Macro-Fiber Composite Actuator With Interdigitated Electrodes";"10/29/2019" -"NASA Langley Research Center";"Issued";"LAR-15816-2";7197798;"10/653,824";"A Method For Fabricating A Piezoelectric Composite Apparatus";"06/30/2020" -"NASA Langley Research Center";"Issued";"LAR-15817-1";6450820;"09/612,412";"A Method Of Encouraging Physiological Self-Regulation Through Modulation Of An Operator's Control Input To A Video Game Or Training Simulator";"07/12/2020" -"NASA Langley Research Center";"Issued";"LAR-15818-3";6922242;"10/465,386";"Optical Path Switching Based Differential Absorption Radiometry For Substance Detection";"06/21/2019" -"NASA Langley Research Center";"Issued";"LAR-15831-1";5994418;"09/316,865";"Hollow Polyimide Microspheres";"05/21/2019" -"NASA Langley Research Center";"Issued";"LAR-15831-2";6235803;"09/408,652";"Hollow Polyimide Microspheres";"05/21/2019" -"NASA Langley Research Center";"Issued";"LAR-15831-3";6084000;"09/394,534";"Hollow Polyimide Microsphere";"05/21/2019" -"NASA Langley Research Center";"Issued";"LAR-15834-1";6359107;"09/575,826";"High Performance / High Temperature Resins For Infusion And Transfer Molding Processes";"05/18/2020" -"NASA Langley Research Center";"Issued";"LAR-15851-1-CU";6753293;"09/607,211";"Process For Coating Substrates With Catalyst Materials";"05/11/2021" -"NASA Langley Research Center";"Issued";"LAR-15854-1";6761695;"10/94,023";"Technique For Non-Invasive Absolute Measurement Of Intra-Cranial Pressure In Humans";"07/28/2022" -"NASA Langley Research Center";"Issued";"LAR-15927-1";6584848;"10/263,292";"Dielectric Electrostatic Ultrasonic Transducer (DEUT)";"09/30/2022" -"NASA Langley Research Center";"Issued";"LAR-15934-1";6566648;"09/535,661";"Edge Triggered Apparatus And Method For Measuring Strain In Bragg Gratings";"03/24/2020" -"NASA Langley Research Center";"Issued";"LAR-15943-1";6746410;"10/121,932";"Transducer Assembly To Measure Changes In Circumferential Expansion Of The Human Skull Due To Changes In Intracranial Pressure";"11/16/2022" -"NASA Langley Research Center";"Issued";"LAR-15954-1";6376830;"09/606,120";"Single Laser Sweep Full S-Parameter Characterization Of Fiber Bragg Gratings";"06/15/2020" -"NASA Langley Research Center";"Issued";"LAR-15959-1";7019621;"09/753,370";"Structural Tailored High Displacement Ferro-Electric Sensors And Actuators";"01/02/2021" -"NASA Langley Research Center";"Issued";"LAR-15977-1";6133330;"09/337,475";"Polyimide Foam From Monomeric Solutions";"05/21/2019" -"NASA Langley Research Center";"Issued";"LAR-15990-1";6551251;"09/784,413";"Dual Transmission Interface For Passive Fetal Heart Monitoring";"02/13/2021" -"NASA Langley Research Center";"Issued";"LAR-16001-1";7371358;"10/975,117";"Catalyst For Treatment And Control Of Post-Combustion Emissions";"10/25/2024" -"NASA Langley Research Center";"Issued";"LAR-16005-1";6426496;"09/648,529";"High Precision Solid State Wavelength Monitor";"11/26/2020" -"NASA Langley Research Center";"Issued";"LAR-16012-1-CU";6834125;"09/888,701";"Improvement To The Multiscale Retinex With Color Restoration";"06/25/2021" -"NASA Langley Research Center";"Issued";"LAR-16020-1";6629446;"09/758,115";"Single Vector Force Balance Calibration System";"01/26/2022" -"NASA Langley Research Center";"Issued";"LAR-16079-1";6939940;"09/757,398";"Liquid Crystalline Thermosets From Oligo-Esters, Ester-Imides And Ester-Amides";"01/05/2021" -"NASA Langley Research Center";"Issued";"LAR-16083-1";8062129;"11/536,811";"A Method And System For Multi-Player Game Playing Where Physiological Characteristics Of The Players Modulate Their Relative Advantage Over Opponents Or Competitors";"05/22/2030" -"NASA Langley Research Center";"Issued";"LAR-16116-1";6888346;"10/21,683";"Giant Magnetoresistive Based Self-Nulling Probe For Deep Flaw Detection";"11/28/2021" -"NASA Langley Research Center";"Issued";"LAR-16176-2";7109287;"10/988,407";"Space Environmentally Durable Polyimides And Copolyimides";"03/03/2025" -"NASA Langley Research Center";"Issued";"LAR-16220-1";6867533;"09/696,527";"Shaping, Tuning, And Positioning Membrane Structures Using Electroactive Polymer Actuators";"10/23/2020" -"NASA Langley Research Center";"Issued";"LAR-16231-1-CU";7092539;"09/997,113";"MEMS Based Acoustic Array";"11/28/2021" -"NASA Langley Research Center";"Issued";"LAR-16256-1";8628333;"11/129,756";"Method And System For Training Psychophysiological Skills Conducive To Optimal Performance Through Perturbation Of Training Tasks, Environments And Devices";"08/27/2029" -"NASA Langley Research Center";"Application";"LAR-16256-1-CON";0;"14/153,434";"Method And System For Training Psychophysiological Skills Conducive To Optimal Performance Through Perturbation Of Training Tasks, Environments And Devices";"05/13/2025" -"NASA Langley Research Center";"Issued";"LAR-16299-1";7871682;"10/956,520";"Composite Roll Press And Processes";"12/07/2025" -"NASA Langley Research Center";"Issued";"LAR-16307-1-SB";7390768;"10/056,845";"Methodology For The Effective Stabilization Of Tin-Oxide-Based Oxidation/Reduction Catalysts";"01/22/2022" -"NASA Langley Research Center";"Issued";"LAR-16307-2";7985709;"10/956,515";"Methodology For The Effective Stabilization Of Tin-Oxide-Based Oxidation/Reduction Catalysts";"04/16/2027" -"NASA Langley Research Center";"Application";"LAR-16308-2";0;"12/726,403";"Catalyst For Decomposition Of Nitrogen Oxides (Divisional of LAR 16308-1-CU)"; -"NASA Langley Research Center";"Issued";"LAR-16311-1";6777525;"10/115,812";"Heat, Moisture, Chemical Resistant Polyimide Compositions And Methods For Making And Using The Same";"04/01/2022" -"NASA Langley Research Center";"Issued";"LAR-16323-1";7253903;"11/27,930";"Method To Linearize Non-Linear Physical Measurements";"06/24/2025" -"NASA Langley Research Center";"Issued";"LAR-16324-1";6714132;"10/011,229";"Proximity Sensor";"11/27/2021" -"NASA Langley Research Center";"Issued";"LAR-16324-2";7106203;"10/783,486";"Self-Activating System And Method For Alerting When An Object Or Person Is Left Unattended";"11/27/2021" -"NASA Langley Research Center";"Issued";"LAR-16326-1";7060991;"10/410,605";"Method For Measuring Thickness Of Small Radius Of Curvature Structures Using A Thermal Line Scanner";"04/10/2023" -"NASA Langley Research Center";"Issued";"LAR-16332-1-CU";6842543;"09/888,816";"Method Of Improving A Digital Image Having White Zones";"06/25/2021" -"NASA Langley Research Center";"Issued";"LAR-16363-1";6856073;"10/390,675";"Radial Electric Field Piezo-Diaphragm Fluidic Control Systems";"03/13/2023" -"NASA Langley Research Center";"Issued";"LAR-16383-1-NP";7588699;"10/288,797";"Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites And Process For Preparation Thereof";"07/02/2023" -"NASA Langley Research Center";"Issued";"LAR-16383-2";7972536;"12/546,724";"Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites And Process For Preparation Thereof";"10/12/2029" -"NASA Langley Research Center";"Issued";"LAR-16390-1-SB";7318915;"10/342,660";"Ruthenium Stabilization Mechanism For Next Generation Oxidation And Reduction Catalyst Systems";"01/13/2023" -"NASA Langley Research Center";"Issued";"LAR-16393-1";6919669;"10/392,491";"Sonic Transducers And Sensors Using Radial Field Diaphragms";"05/31/2023" -"NASA Langley Research Center";"Issued";"LAR-16406-1-CU";7491169;"10/805,816";"Ultrasonic Method And Means To Assess Compartment Syndrome (Hyper Pressure States In Arm, Leg Muscle/Tendon Compartments)";"09/20/2025" -"NASA Langley Research Center";"Issued";"LAR-16409-1";8015819;"11/536,790";"Wet Active Chevron Nozzle For Controllable Jet Noise Reduction";"09/17/2028" -"NASA Langley Research Center";"Issued";"LAR-16432-1";7692116;"10/188,525";"Synthesis Of Carbon Nanotubes Using High Average Power Ultrafast Laser Ablation";"07/03/2022" -"NASA Langley Research Center";"Issued";"LAR-16437-1-NP";7169374;"11/129,751";"Templated Growth Of Carbon Nanotubes";"05/11/2025" -"NASA Langley Research Center";"Issued";"LAR-16440-1";6740048;"10/263,285";"Method Of Determining Intracranial Pressure From Skull Expansion Measurements";"09/25/2022" -"NASA Langley Research Center";"Issued";"LAR-16475-1";7194912;"10/890,843";"Carbon Nanotube-Based Structural Health Monitoring Sensor";"08/07/2024" -"NASA Langley Research Center";"Issued";"LAR-16496-1";7104498;"10/867,114";"Blown Channel-Wing System For Thrust Deflection And Force/Moment Generation";"10/03/2024" -"NASA Langley Research Center";"Issued";"LAR-16499-1";7491428;"10/730,188";"Method for the controlled deposition and alignment of single walled carbon nanotubes";"11/15/2025" -"NASA Langley Research Center";"Issued";"LAR-16510-1";6773407;"10/263,286";"Non-Invasive Method Of Determining Absolute Intracranial Pressure";"12/25/2022" -"NASA Langley Research Center";"Issued";"LAR-16516-1";6879893;"10/675,502";"Autonomous Health Monitoring Architecture Hardware";"09/30/2023" -"NASA Langley Research Center";"Issued";"LAR-16517-1";7048228;"10/678,474";"Partial-Span Slotted Wing For Transonic Aircraft";"10/03/2023" -"NASA Langley Research Center";"Issued";"LAR-16532-1";7334998;"11/5,624";"Low-Noise Fan Exit Guide Vanes";"12/06/2024" -"NASA Langley Research Center";"Issued";"LAR-16538-1";7675619;"12/129,967";"Micro-LiDAR For In-Flight Flow Velocimetry And Boundary Layer Control";"11/11/2028" -"NASA Langley Research Center";"Issued";"LAR-16549-1";7262543;"10/943,655";"Inductor (L)-Capacitor ( C ) (aka, LC) Sensor Circuit For Piezo Material Monitoring";"04/17/2025" -"NASA Langley Research Center";"Application";"LAR-16565-1";0;"13/020,025";"e-Sensor: Quantitative Imaging of Electric Fields and Electric Potentials"; -"NASA Langley Research Center";"Issued";"LAR-16566-1";7285932;"10/975,119";"Method And Apparatus For Loss Of Control Inhibitor Systems";"10/27/2024" -"NASA Langley Research Center";"Issued";"LAR-16571-1";7075295;"10/839,448";"LC Sensing Element For Closed Cavities Having Low Radio Frequency Transmissivity";"04/30/2024" -"NASA Langley Research Center";"Issued";"LAR-16571-2";7589525;"11/421,886";"Magnetic Field Response Sensor For Conductive Media";"09/26/2024" -"NASA Langley Research Center";"Issued";"LAR-16571-3";7759932;"12/533,520";"Magnetic Field Response Sensor For Conductive Media";"07/31/2029" -"NASA Langley Research Center";"Issued";"LAR-16573-1";7129467;"10/943,831";"Carbon Nanotube Based Light Sensor";"09/29/2024" -"NASA Langley Research Center";"Issued";"LAR-16575-1";7181942;"10/943,649";"Instrumented Crimping Tool For Critical Wiring Applications";"11/24/2024" -"NASA Langley Research Center";"Issued";"LAR-16605-1";7623993;"10/731,742";"Energy-extraction-based active noise control system";"11/27/2026" -"NASA Langley Research Center";"Issued";"LAR-16615-1";6956066;"10/779,552";"Polyimide Foams";"02/11/2024" -"NASA Langley Research Center";"Issued";"LAR-16615-2";7541388;"11/124,640";"Polyimide Foams";"05/05/2025" -"NASA Langley Research Center";"Issued";"LAR-16616-1";7758927;"10/956,704";"Laser-Induced Fabrication Of Metallic Interlayers And Patterns In Polyimide Films";"09/30/2024" -"NASA Langley Research Center";"Issued";"LAR-16640-1";8089677;"12/135,180";"Programmable Smart Grating Device With Quantum Aperture Array";"08/05/2029" -"NASA Langley Research Center";"Issued";"LAR-16696-1";7048235;"10/678,397";"Slotted Aircraft Wing (a.k.a. Full Span Slotted Wing)";"10/03/2023" -"NASA Langley Research Center";"Issued";"LAR-16698-1";7394181;"11/76,824";"High Performance High Efficiency Hybrid Actuator Systems (HYBAS)";"03/04/2025" -"NASA Langley Research Center";"Issued";"LAR-16736-1";7962252;"11/422,984";"Semi Autonomous Flight System With Avionics Sensor Board, Processing Board, And Flight Control Board";"04/07/2027" -"NASA Langley Research Center";"Issued";"LAR-16845-1";8083986;"12/315,520";"Advanced Thermo-Electric Materials with Nano-Voids";"12/04/2028" -"NASA Langley Research Center";"Issued";"LAR-16854-1";7381186;"10/911,755";"Ultrasonic Method And Means To Assess Compartment Syndrome Part B";"08/02/2024" -"NASA Langley Research Center";"Issued";"LAR-16858-1";7667847;"11/533,921";"Thin, High-Contrast Targets for Ultralightweight Structures";"12/15/2026" -"NASA Langley Research Center";"Issued";"LAR-16867-1";7402264;"11/076,460";"Electroactive polymer-carbon nanotube-ceramic nanocomposites";"02/27/2026" -"NASA Langley Research Center";"Issued";"LAR-17548-1";8236413;"12/166,852";"Fail Safe High-Temperature Composite Structure";"07/07/2030" -"NASA Langley Research Center";"Issued";"LAR-16867-2";7527751;"12/109,490";"Sensing/Actuating Materials Made From Carbon Nanotube Polymer Composites And Methods For Making Same";"04/25/2028" -"NASA Langley Research Center";"Issued";"LAR-16868-1";7341883;"11/242,415";"Lattice Matched SiGe Layer On Single Crystalline Sapphire Substrate";"09/27/2025" -"NASA Langley Research Center";"Issued";"LAR-16871-1";6413227;"09/459,384";"Optimization Of Ultrasonic Method For Assessment Of Changes In Intracranial Pressure Through Measurement Of Skull Expansion";"12/02/2019" -"NASA Langley Research Center";"Issued";"LAR-16872-1";7514726;"11/387,086";"Graded Indexed SiGe Layers on Lattice Matched SiGe Layers on Sapphire";"06/10/2027" -"NASA Langley Research Center";"Issued";"LAR-16874-1";7723464;"11/674,321";"Novel Aromatic/Aliphatic Diamine Derivatives For Advanced Compositions And Polymers";"02/13/2027" -"NASA Langley Research Center";"Issued";"LAR-16877-1";7186367;"11/110,996";"Double-Vacuum Bag (DVB) Process For Volatile Management In Resin Matrix Composite Manufacturing";"07/08/2025" -"NASA Langley Research Center";"Issued";"LAR-16885-1";7890311;"11/177,664";"Method Of Simulating Flow-Through Area Of A Pressure Regulator";"12/15/2029" -"NASA Langley Research Center";"Issued";"LAR-16886-1";7375808;"11/536,120";"Dual Sensing Capable Germ Or Toxic Chemical (GTC) Sensor Using Quantum Aperture Array With Surface Plasmon Polariton (SPP)";"09/28/2026" -"NASA Langley Research Center";"Issued";"LAR-16900-1";7278324;"11/155,923";"CNT based crack growth detector and strain field monitor";"08/07/2024" -"NASA Langley Research Center";"Issued";"LAR-16906-1";8529825;"12/928,128";"Fabrication of Nanovoid-imbedded Bismuth Telluride with Low Dimensional System";"02/01/2028" -"NASA Langley Research Center";"Issued";"LAR-16907-1";7783060;"11/126,518";"A Deconvolution Approach For The Mapping Of Acoustic Sources (DAMAS) Determined From Phased Microphone Arrays";"03/27/2029" -"NASA Langley Research Center";"Issued";"LAR-16908-1";7086593;"10/839,445";"Magnetic Field Response Measurement Acquisition System (Includes LAR-16138-1, LAR-16554-1, LAR-16591-1, LAR-16614-1, LAR-16617-1, & LAR-16908-1)";"05/04/2024" -"NASA Langley Research Center";"Issued";"LAR-16946-1";7484930;"11/169,256";"Blowing Flap Side Edge";"07/01/2025" -"NASA Langley Research Center";"Issued";"LAR-16950-1";7379231;"11/470,771";"Ferroelectric Light Control Device";"09/07/2026" -"NASA Langley Research Center";"Issued";"LAR-16958-1";7510802;"11/371,575";"Fabrication of Multilayer Ferritin Array for Bionanobattery";"08/24/2027" -"NASA Langley Research Center";"Issued";"LAR-16970-1";7231832;"11/229,439";"Method For Determining Cracks On And Within Composite Panels";"12/02/2025" -"NASA Langley Research Center";"Issued";"LAR-16974-1";7047807;"11/203,583";"Methods Of Mounting Erectable, Flexible And Fixed Magnetic Field Response Sensors";"08/08/2025" -"NASA Langley Research Center";"Issued";"LAR-17003-1";7467921;"11/239,436";"Rotor Blade Vortex Management Via Boundary Layer Separation Control";"09/22/2025" -"NASA Langley Research Center";"Issued";"LAR-17013-1";7647771;"11/374,480";"Thermally Driven Miniature Piston Actuator";"11/12/2026" -"NASA Langley Research Center";"Issued";"LAR-17017-1";7537182;"11/250,700";"Enhanced Separation Control Via Simultaneous Multiple-Location Forcing";"06/18/2027" -"NASA Langley Research Center";"Issued";"LAR-17032-1";7321185;"11/370,377";"A New Concept For Active Bistable Twisting Structures";"03/06/2026" -"NASA Langley Research Center";"Issued";"LAR-17044-1";7558371;"12/254,150";"Applications Of Twin-Detection XRD Methods On SiGe (111) Layers On Sapphire (0001) Substrate";"10/20/2028" -"NASA Langley Research Center";"Issued";"LAR-17073-1";7580323;"11/419,818";"Interdigitated Electrode Actuators For Straining Optical Fibers (IDEAS)";"05/27/2026" -"NASA Langley Research Center";"Application";"LAR-17088-1";0;"13/032,045";"Nanotubular Toughening Inclusions For Improved Mechanical Reinforcement"; -"NASA Langley Research Center";"Issued";"LAR-17112-1";7507472;"11/81,888";"Multi-Layer Electroactive Devices";"09/08/2025" -"NASA Langley Research Center";"Issued";"LAR-17116-1";7506541;"11/328,468";"Wireless Fuel Volume Measurement Techniques";"10/18/2026" -"NASA Langley Research Center";"Issued";"LAR-17126-1";7666939;"11/432,201";"A Method For Producing Stable Dispersions Of Single Walled Carbon Nanotubes In Polymer Matrices Using Noncovalent Interactions";"05/11/2026" -"NASA Langley Research Center";"Issued";"LAR-17128-1";7285933;"11/188,227";"Method And Apparatus For Loss Of Control Inhibitor Systems";"07/20/2025" -"NASA Langley Research Center";"Issued";"LAR-17135-1";8217143;"11/827,567";"Fabrication of Metal Nanoshells Derived by a Biotemplate";"11/17/2030" -"NASA Langley Research Center";"Issued";"LAR-17149-2";8608993;"13/053,633";"A Method For Producing Multifunctional Structural Thermally Stable Nanocomposites With Aligned Carbon Nanotubes";"05/20/2026" -"NASA Langley Research Center";"Issued";"LAR-17154-1";7655595;"11/421,924";"Sprayable Low Temperature Oxidation Catalyst Coating Based on Sol-Gel Technology";"08/11/2027" -"NASA Langley Research Center";"Issued";"LAR-17154-2";7781366;"12/369,932";"Sol-Gel Based Oxidation Catalyst And Coating System Using Same (Divisional of -1)";"02/12/2029" -"NASA Langley Research Center";"Issued";"LAR-17155-1";7255004;"11/229,438";"Wireless Fluid-Lead Measuring Dipstick Assembly (Broken Out Of LAR-16974-1)";"03/22/2026" -"NASA Langley Research Center";"Issued";"LAR-17157-1";7507784;"11/124,508";"Liquid Crystalline Thermosets From Ester, Ester-Imide, And Ester-Amide Oligomers";"01/05/2021" -"NASA Langley Research Center";"Issued";"LAR-17163-1";7467536;"11/428,017";"Multi-axis Accelerometer Calibration System Using a Cuboidal Attitude Positioning Device";"08/18/2027" -"NASA Langley Research Center";"Issued";"LAR-17165-1";7595112;"11/461,150";"Method To Prepare Hybrid Metal/Composite Laminates By Resin Infusion";"02/01/2028" -"NASA Langley Research Center";"Issued";"LAR-17168-1";7732998;"11/462,114";"Cylindrical Shaped Micro Fiber Composite (CMFC) Actuators";"09/24/2027" -"NASA Langley Research Center";"Issued";"LAR-17169-1";7446459;"11/486,200";"Hybrid Force/Stress Amplified Piezoelectric Energy Harvesting Transducer System";"07/13/2026" -"NASA Langley Research Center";"Application";"LAR-17211-1";0;"13/557,250";"Floating Ultrasonic Transducer Inspection System For Nondestructive Evaluation"; -"NASA Langley Research Center";"Issued";"LAR-17213-1";8020805;"11/831,233";"New Configuration and Power Technology for Application-Specific Scenarios of High Altitude Airships";"03/25/2030" -"NASA Langley Research Center";"Issued";"LAR-17224-1";7998368;"12/272,826";"Effective Dispersion of Carbon Nanotubes in an Aqueous Solution and Their Application on Bionanotechnology";"06/04/2029" -"NASA Langley Research Center";"Issued";"LAR-17229-1";7760778;"11/670,044";"Thin-film evaporative cooling concept for a solid-state laser diode crystal";"02/01/2027" -"NASA Langley Research Center";"Issued";"LAR-17235-1";7414708;"11/461,569";"Multi-Point, Multi-Component Interferometric Rayleigh/Mie Doppler Velocimeter";"08/01/2026" -"NASA Langley Research Center";"Issued";"LAR-17237-1";8294989;"12/512,344";"Photonic DART (Densely Accumulated Ray-point by micro-zone-plaTe)";"04/25/2031" -"NASA Langley Research Center";"Issued";"LAR-17240-1";8111943;"12/423,907";"Computational Visual Servo:Automatic Measurement and Control for Smart Image Enhancement";"09/14/2030" -"NASA Langley Research Center";"Issued";"LAR-17241-1";8018815;"12/490,747";"Optical Data Storage System with Micro Zone Plate";"12/05/2029" -"NASA Langley Research Center";"Issued";"LAR-17242-1";8174695;"12/508,018";"MICRO-RING THIN-FILM SPECTROMETER ARRAY";"09/03/2030" -"NASA Langley Research Center";"Issued";"LAR-17243-1";8411214;"12/144,937";"Variable Visibility Glasses for Flight Training";"02/01/2032" -"NASA Langley Research Center";"Issued";"LAR-17245-1";8344281;"12/751,075";"Use of Beam Deflection to Control Electron Beam Wire Deposition Processes";"04/26/2031" -"NASA Langley Research Center";"Issued";"LAR-17257-1";7590904;"11/531,703";"Detecting the loss of configuration access of reprogrammable Field Programmable Gate Array (FPGA) without external circuitry";"10/07/2027" -"NASA Langley Research Center";"Issued";"LAR-17267-1";7704553;"11/710,386";"Method of Depositing Metals onto Carbon Allotropes and Compositions Therefrom";"06/26/2028" -"NASA Langley Research Center";"Issued";"LAR-17268-1";7647543;"11/535,574";"Integrated mitigation for single event upset (SEU) of reprogrammable field programmable gate arrays (FPGA) operating in radiation environments";"09/27/2026" -"NASA Langley Research Center";"Issued";"LAR-17280-1";7159774;"11/305,854";"Magnetic Field Response Measurement Acquisition System";"04/30/2024" -"NASA Langley Research Center";"Issued";"LAR-17286-1";8081734;"12/628,446";"Miniature, Low-Power X-Ray Tube Using A Microchannel Electron Generator Electron Source";"02/26/2030" -"NASA Langley Research Center";"Issued";"LAR-17290-1";7737867;"11/696,333";"Advance Display Media for Improved Airport Surface Operations";"06/11/2028" -"NASA Langley Research Center";"Issued";"LAR-17293-1";7991491;"11/559,420";"Control Device And Method For Generating Control Signals For Technical Devices";"03/04/2030" -"NASA Langley Research Center";"Issued";"LAR-17294-1";8430327;"11/671,089";"Low Profile Sensors Using Self-Resonating Inductors";"08/22/2028" -"NASA Langley Research Center";"Issued";"LAR-17295-1";7683797;"11/671,131";"System For Providing Damage Detection And Thermal Protection";"02/15/2028" -"NASA Langley Research Center";"Issued";"LAR-17300-1";7538860;"11/840,363";"A Method and Apparatus for Determination of the Reflection Wavelength of Multiple Low-Reflectivity Bragg Gratings in a Single Fiber";"12/31/2027" -"NASA Langley Research Center";"Application";"LAR-17307-1";0;"11/466,569";"Low Mass Free Piston Space Radiator"; -"NASA Langley Research Center";"Issued";"LAR-17317-1";8401217;"11/780,500";"Extreme Low Frequency Acoustic Measurement Portable System";"11/29/2030" -"NASA Langley Research Center";"Application";"LAR-17317-2";;"13/771,735";"Extreme Low Frequency Acoustic Measurement System";"07/20/2027" -"NASA Langley Research Center";"Application";"LAR-17318-1";0;"13/082,734";"Preparation of Metal Nanowire Decorated Carbon Allotropes";"08/29/2027" -"NASA Langley Research Center";"Issued";"LAR-17321-1";8545986;"12/043,276";"Ultra High-Temperature, Lightweight Insulation Material Compositions And Methods For Making And Using Them";"06/27/2030" -"NASA Langley Research Center";"Application";"LAR-17323-1";0;"11/757,780";"Concept And Design Of Oxygen Band Radar For Surface Air Pressure Remote Sensing"; -"NASA Langley Research Center";"Issued";"LAR-17325-1";8060350;"12/56,686";"Unsteady aerodynamic reduced-order models (ROMs) for efficient aeroelastic analysis";"03/04/2030" -"NASA Langley Research Center";"Issued";"LAR-17327-1";8117013;"12/002,857";"Standardized Radiation Shield Design Method: 2005 HZETRN";"07/05/2030" -"NASA Langley Research Center";"Application";"LAR-17330-1";0;"11/946,207";"Multi Functional Composite And Honeycomb Panels"; -"NASA Langley Research Center";"Issued";"LAR-17332-1";7958733;"11/762,827";"Active Flow Effectors by Embedded Shape Memory Alloy Actuation";"11/04/2029" -"NASA Langley Research Center";"Application";"LAR-17332-2";;"13/096,305";"Jet Engine Exhaust Nozzle Flow Effector";"07/05/2027" -"NASA Langley Research Center";"Issued";"LAR-17335-1";8170234;"12/108,562";"Extension Of DAMAS Phased Array Processing For Spatial Coherence Determination (DAMAS-C)";"03/02/2031" -"NASA Langley Research Center";"Issued";"LAR-17346-1";7649439;"11/465,503";"Thermoelectric Devices From Thin Metal System To Include Flexible Substrate And Method Of Making Same";"04/28/2027" -"NASA Langley Research Center";"Issued";"LAR-17355-1";8164485;"11/863,964";"A Method of Providing a Synthetic Vision System Flight Management Visualization Display for Aiding Pilot Preview, Rehearsal and/or Review and Real-Time Visual Acquisition of Flight Mission Progress";"06/24/2029" -"NASA Langley Research Center";"Application";"LAR-17361-1";0;"12/138,709";"Airfoil/ Wing Flow Control Using Flexible Extended Trailing Edge"; -"NASA Langley Research Center";"Issued";"LAR-17365-1";7784732;"11/958,673";"Boundary-Layer-Ingesting S-Duct Diffusing Inlet Flow Control Using Hybrid Vane/Jet Approach at Transonic Flow Conditions";"04/26/2029" -"NASA Langley Research Center";"Issued";"LAR-17381-1";8044294;"12/254,016";"Thermoelectric material made with highly oriented twinned alloy of Si, Ge, C, and Sn on the basal plane of trigonal substrate and thermoelectric device made with the same material";"10/11/2029" -"NASA Langley Research Center";"Issued";"LAR-17382-1";8052069;"12/393,238";"Advanced High Performance Vertical Hybrid Electroactive Synthetic Jet Actuator (ASJA-V)";"10/18/2029" -"NASA Langley Research Center";"Issued";"LAR-17384-1";8662412;"12/354,808";"Advanced Modified High Performance Synthetic Jet Actuator With Optimized Curvature Shape Chamber (ASJA-M)";"10/27/2031" -"NASA Langley Research Center";"Issued";"LAR-17385-1";7671306;"11/589,011";"Apparatus For Free Electron Laser Ablative Synthesis Of Carbon Nanotubes";"03/10/2028" -"NASA Langley Research Center";"Application";"LAR-17386-1";0;"12/851,584";"Fine-Grained Targets For Free Electron Laser Synthesis Of Carbon Nanotubes"; -"NASA Langley Research Center";"Issued";"LAR-17387-1";7663077;"11/589,010";"Process For Optimizing The Yield And Production Rate Of Single-Walled Carbon Nanotubes Using Free Electron Laser Synthesis";"01/23/2028" -"NASA Langley Research Center";"Issued";"LAR-17390-1";8235309;"12/355,782";"Advanced High Performance Horizontal Piezoelectric Hybrid Synthetic Jet Actuator (ASJA-H)";"04/02/2031" -"NASA Langley Research Center";"Issued";"LAR-17391-1";7792015;"12/187,458";"A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems";"08/14/2028" -"NASA Langley Research Center";"Issued";"LAR-17402-1";7964698;"11/935,036";"Wholly Aromatic Liquid Crystalline Polyetherimide (LC-PEI) Resin for manufacturing high modulus fibers, films, injection molded articles and foams";"09/27/2029" -"NASA Langley Research Center";"Issued";"LAR-17405-1";8226767;"12/254,134";"Hybrid Bandgap Engineering for Rhombohedral Super-Hetero-Epitaxy";"05/11/2031" -"NASA Langley Research Center";"Application";"LAR-17413-2";0;"12/641,603";"Nanoparticle-Containing Thermoplastic Composites and Methods of Preparing Same"; -"NASA Langley Research Center";"Issued";"LAR-17425-1";8059273;"12/496,788";"Micro Spectrometer for Parallel Light";"08/19/2029" -"NASA Langley Research Center";"Application";"LAR-17427-1";0;"12/174,360";"Tailorable Dielectric Materials with Complex Permittivity Characteristics providing High Dielectric Constants and Low Loss Factors"; -"NASA Langley Research Center";"Issued";"LAR-17432-1";8112243;"12/118,172";"Forward Voltage Short Pulse (FVSP) Technique for Measuring High Power Laser Diode Array (LDA) Junction Temperature";"11/27/2030" -"NASA Langley Research Center";"Issued";"LAR-17433-1";7902815;"11/856,807";"A Multi-Measurement Wheel Sensor";"06/19/2029" -"NASA Langley Research Center";"Issued";"LAR-17440-1";7845215;"11/844,571";"Resonant Difference-Frequency Atomic Force Ultrasonic Microscope";"02/03/2029" -"NASA Langley Research Center";"Issued";"LAR-17444-1";8042739;"11/864,012";"Wireless Tamper Detection Sensor Requiring No Electrical Connection";"11/08/2029" -"NASA Langley Research Center";"Issued";"LAR-17447-1";8002219;"11/941,119";"Multifunctional Boost Protective Cover (MBPC) For A Launch Abort System (LAS)";"01/16/2030" -"NASA Langley Research Center";"Application";"LAR-17455-3";;"13/938,622";"A Nanotube Film Electrode and an Electroactive Device Fabricated with the Nanotube Film Electrode and Methods for Making Same";"10/28/2031" -"NASA Langley Research Center";"Issued";"LAR-17469-1";8094306;"12/487,735";"Micro Ring Grating Spectrometer with Moveable Aperture Slit";"08/27/2030" -"NASA Langley Research Center";"Issued";"LAR-17477-1";7993567;"12/131,420";"Auxiliary Electrode For Electrospinning Process";"10/02/2029" -"NASA Langley Research Center";"Issued";"LAR-17478-1";7883052;"11/954,452";"Integration Of A Turbo-Fan Engine Above An Aircraft's Wing Which Reduces Drag And Community Noise";"09/24/2029" -"NASA Langley Research Center";"Issued";"LAR-17480-1";7711509;"11/930,222";"A Method To Calibrate Magnetic Response Fluid-Level Sensors Using Complete Sensor Immersion In Fluid";"03/18/2028" -"NASA Langley Research Center";"Issued";"LAR-17485-1";7851062;"12/124,273";"Composition of and Method to Prepare Hybrid Laminates from Metal Plasma Coated Fibers and Polymer Matrix Resins";"09/09/2028" -"NASA Langley Research Center";"Issued";"LAR-17485-2";8017190;"12/906,633";"Metal/Fiber Laminate and Fabrication Using A Porous Metal/Fiber Preform";"05/21/2028" -"NASA Langley Research Center";"Issued";"LAR-17487-1";8157207;"11/836,517";"Jet Engine Nozzle Exit Configurations And Associated Systems And Methods";"04/15/2029" -"NASA Langley Research Center";"Issued";"LAR-17488-1";7814786;"12/015,626";"Thin-Film Sensor For Measuring Liquid-Level And Temperature Having No Electrical Connections";"08/26/2028" -"NASA Langley Research Center";"Issued";"LAR-17493-1";8424200;"12/098,000";"Conducting Nanotubes Or Nanostructures Based Composites, Method Of Making Them And Applications";"05/16/2031" -"NASA Langley Research Center";"Issued";"LAR-17502-1";8529249;"11/860,703";"Quick Change Ceramic Flame Holder for High Output Torch";"03/14/2030" -"NASA Langley Research Center";"Application";"LAR-17502-1-CON";;"14/021,325";"Flame Holder System";"09/25/2027" -"NASA Langley Research Center";"Issued";"LAR-17514-1";8196858;"12/721,833";"Mars Airplane";"02/15/2031" -"NASA Langley Research Center";"Issued";"LAR-17526-1";7991595;"12/138,768";"Adaptive Refinement Tools (ARTs) for Tetrahedral Unstructured Grids";"06/07/2029" -"NASA Langley Research Center";"Issued";"LAR-17528-1";7878348;"12/248,339";"Lightweight Lunar Surface Remote Manipulator System (LSRMS)";"10/09/2028" -"NASA Langley Research Center";"Issued";"LAR-17535-1";8206674;"12/152,414";"High Pressure Boron Vaporization Synthesis Of Few-Walled Boron Nitride Nanotube Fibers";"04/13/2030" -"NASA Langley Research Center";"Issued";"LAR-17539-1";8164328;"12/493,573";"Development Of Eddy Current Techniques For The Detection Of Stress Corrosion Cracking In Space Shuttle Primary Reaction Control Thrusters";"01/08/2030" -"NASA Langley Research Center";"Issued";"LAR-17547-1";7848381;"12/366,722";"Line Tunable Visible and Ultraviolet Laser";"07/05/2029" -"NASA Langley Research Center";"Issued";"LAR-17553-1";8257491;"12/288,379";"NEW RHOMBOHEDRAL ALIGNMENT OF CUBIC SEMICONDUCTOR ON TRIGONAL SUBSTRATE AT A HIGH TEMPERATURE";"07/06/2031" -"NASA Langley Research Center";"Issued";"LAR-17554-1";7769135;"12/288,380";"X-ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy";"10/20/2028" -"NASA Langley Research Center";"Application";"LAR-17555-1";0;"13/020,194";"Front-Flight-Path Turbulence & Vortex Detection System"; -"NASA Langley Research Center";"Issued";"LAR-17573-1";7855368;"12/178,173";"Air Coupled Acoustic Thermography Nondestructive Evaluation System And Method";"10/09/2028" -"NASA Langley Research Center";"Issued";"LAR-17576-1";7742663;"12/261,376";"Innovative Structural Design And Materials For Transmission To And Protection Of Ultraviolet And Infrared Radiation Sensors";"10/30/2028" -"NASA Langley Research Center";"Issued";"LAR-17579-1";8673649;"12/463,475";"Wireless Chemical Sensing Using Changes To An Electrically Conductive Reactant Within Sensor's Magnetic Field";"01/04/2031" -"NASA Langley Research Center";"Issued";"LAR-17593-1";8167204;"12/253,422";"Open Circuit Damage Location Sensor Having No Electrical Connections";"10/30/2030" -"NASA Langley Research Center";"Issued";"LAR-17608-1";7901611;"12/274,652";"Methodology for calculating fiber distribution during electrospinning";"01/12/2029" -"NASA Langley Research Center";"Issued";"LAR-17609-1";8255732;"12/429,603";"A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization Protocol";"12/30/2030" -"NASA Langley Research Center";"Issued";"LAR-17629-1";7813599;"12/390,606";"A Method for Shape Determination of Multi-Core Optical Fiber";"02/23/2029" -"NASA Langley Research Center";"Issued";"LAR-17634-1";7893602;"12/328,162";"Distributed transducer capable of generating or sensing a transverse point load";"03/14/2029" -"NASA Langley Research Center";"Application";"LAR-17636-1";0;"13/752,495";"PICA on Edge: Edgewise strips of PICA ablator to eliminate gaps in capsule heat shield";"01/29/2033" -"NASA Langley Research Center";"Issued";"LAR-17638-1";8508413;"13/082,839";"Fractal Dielectric Microstrip Antenna using Patterned Substrate Material Geometries";"03/02/2032" -"NASA Langley Research Center";"Issued";"LAR-17651-1";8259104;"12/493,666";"Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation";"03/09/2031" -"NASA Langley Research Center";"Issued";"LAR-17655-1";8111832;"12/424,793";"Local Intelligence Based Impedance Optimization Scheme for Adaptive Noise Reduction";"06/25/2030" -"NASA Langley Research Center";"Issued";"LAR-17656-1";8108178;"12/467,475";"DIRECTED DESIGN OF EXPERIMENTS FOR VALIDATING PROBABILITY OF DETECTION CAPABILITY OF NDE SYSTEMS (DOEPOD)";"05/05/2030" -"NASA Langley Research Center";"Application";"LAR-17668-1";0;"12/322,591";"Device for the Large-Scale synthesis of High-Quality Boron Nitride Nanotubes";"02/04/2029" -"NASA Langley Research Center";"Issued";"LAR-17681-1";8347479;"12/849,906";"Thermally-Activated Crack Healing Mechanism for Metallic Materials";"04/30/2031" -"NASA Langley Research Center";"Application";"LAR-17681-2";;"13/719,740";"System for Repairing Cracks in Structures";"08/04/2030" -"NASA Langley Research Center";"Issued";"LAR-17681-3";8679642;"14/037,850";"System for Repairing Cracks in Structures";"08/04/2030" -"NASA Langley Research Center";"Application";"LAR-17689-1";0;"12/393,289";"Negative Dielectric Constant Material Based on Ion Conducting Materials";"08/20/2031" -"NASA Langley Research Center";"Application";"LAR-17694-1";0;"12/974,359";"A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Spectrometers";"03/09/2032" -"NASA Langley Research Center";"Issued";"LAR-17695-1";8658004;"12/470,689";"Vapor-Barrier Vacuum Isolation System";"08/01/2032" -"NASA Langley Research Center";"Application";"LAR-17696-1";0;"12/543,686";"Asymmetric Dielectric Elastomer Composite Material";"03/16/2031" -"NASA Langley Research Center";"Issued";"LAR-17705-1";8672107;"13/042,655";"Tunable damper capable of tailoring the structural damping for individual modes of vibration using minimal space and minimal impact on the system frequencies and mode shapes.";"11/28/2031" -"NASA Langley Research Center";"Issued";"LAR-17709-1";7912101;"12/628,423";"Increased Efficiency Nonlinear Optical Interactions";"12/01/2029" -"NASA Langley Research Center";"Issued";"LAR-17711-1";8179203;"12/569,984";"Wireless Electrical Applications/Devices Using floating Electrodes Electromagnetically Coupled to Open-Circuit Devices";"07/09/2030" -"NASA Langley Research Center";"Application";"LAR-17723-1";0;"12/699,334";"Novel material for wound healing applications."; -"NASA Langley Research Center";"Issued";"LAR-17724-1";8378659;"12/703,221";"Electroactive polymer fibers for structural health monitoring.";"01/22/2031" -"NASA Langley Research Center";"Issued";"LAR-17735-1";8490463;"12/881,431";"Assessment and Calibration of Crimp Tool Equipped with Ultrasonic Analysis, including Phantom Construction";"10/22/2031" -"NASA Langley Research Center";"Issued";"LAR-17736-1";8147920;"12/370,755";"Controlled Deposition And Alignment Of Carbon Nanotubes (Continuation of LAR 16499-1)";"02/13/2029" -"NASA Langley Research Center";"Application";"LAR-17738-1";0;"12/685,280";"Sensory Metallic Materials"; -"NASA Langley Research Center";"Issued";"LAR-17743-1";8473663;"13/011,198";"Reconfigurable Peripheral Component Interconnect local bus controller and target design.";"10/07/2031" -"NASA Langley Research Center";"Issued";"LAR-17745-1";7906043;"12/550,431";"Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites And Process For Preparation Thereof";"11/01/2022" -"NASA Langley Research Center";"Application";"LAR-17877-1";;"13/277,859";"Autonomous Leading-Edge Slat Device for Reduction of Aeroacoustic Noise Associated with Aircraft Wings"; -"NASA Langley Research Center";"Application";"LAR-17747-1";0;"13/029,471";"Temperature Sensing Using Temperature Sensitive Dielectric Material in Proximity to Open-Circuit Sensors Having No Electrical Connections"; -"NASA Langley Research Center";"Application";"LAR-18090-1";;"13/786,608";"No Moving Part - Variable Frequency Fluidic Oscillator";"03/06/2033" -"NASA Langley Research Center";"Application";"LAR-17747-1-CON";;"14/193,861";"Wireless Temperature Sensor Having No Electrical Connections and Sensing Method for Use Therewith";"02/17/2031" -"NASA Langley Research Center";"Issued";"LAR-17748-1";8303922;"12/546,185";"Exfoliation of Hexagonal Boron Nitride";"11/19/2030" -"NASA Langley Research Center";"Issued";"LAR-17759-1";7935414;"12/406,315";"Multilayer Electroactive Polymer Composite Material (Continuation of LAR 17112-1)";"03/18/2029" -"NASA Langley Research Center";"Issued";"LAR-17766-1";8452073;"12/750,991";"Method for Closed Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes";"10/02/2031" -"NASA Langley Research Center";"Application";"LAR-17769-1";0;"12/894,279";"Modifying Surface Energy via Laser Ablative Surface Patterning"; -"NASA Langley Research Center";"Application";"LAR-17777-1";;"13/443,940";"Process to Fabricate Specific Sized Monodisperse Polystryene Microparticles"; -"NASA Langley Research Center";"Application";"LAR-17780-1";0;"12/387,703";"Boron Nitride Nanotube Fibrils and Yarns (Filed by JLabs, their ref: ID 1248/Docket 2025(JSA)"; -"NASA Langley Research Center";"Application";"LAR-17786-1";0;"12/964,381";"Smart Optics Material Characterization System"; -"NASA Langley Research Center";"Application";"LAR-17789-1";0;"12/969,076";"Electroactive scaffold"; -"NASA Langley Research Center";"Application";"LAR-17791-1";0;"13/070,552";"Apparatus and Method for Selective Enhancement of Surface Plasmon Polaritons to Initiate and Sustain Low Energy Nuclear Reactions in Metal Hydride Systems"; -"NASA Langley Research Center";"Issued";"LAR-17799-1";8655513;"13/046,030";"Realtime 3-D Image Processing and Enhancement";"05/25/2031" -"NASA Langley Research Center";"Application";"LAR-17800-1";0;"13/527,638";"Method for generating laser linear frequency modulation waveform"; -"NASA Langley Research Center";"Application";"LAR-17801-1";0;"13/566,077";"Coherent Doppler lidar for measuring altitude, ground velocity, and air velocity of aircraft and spaceborne vehicles";"08/03/2032" -"NASA Langley Research Center";"Application";"LAR-17813-1";0;"13/198,817";"Durable Joining Technology for Uniformly-Curved Composite Sandwich Structures";"08/17/2032" -"NASA Langley Research Center";"Application";"LAR-17813-1-CON";;"14/200,708";"Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures";"08/05/2031" -"NASA Langley Research Center";"Application";"LAR-17830-1";0;"12/925,047";"Actuators and Sensors Fabricated with Boron Nitride Nanotubes (BNNTs) and BNNT Polymer Composites"; -"NASA Langley Research Center";"Issued";"LAR-17831-1";8651429;"13/214,453";"Blended Cutout Flap Design for the Reduction of Jet-Flap Interaction Noise";"08/22/2031" -"NASA Langley Research Center";"Application";"LAR-17832-1";0;"13/214,469";"Aircraft Engine Nozzle Systems for Jet Noise Reduction by Acoustic Shielding"; -"NASA Langley Research Center";"Application";"LAR-17833-1";0;"13/214,481";"Active Aircraft Pylon Noise Control System"; -"NASA Langley Research Center";"Issued";"LAR-17836-1";8671763;"12/850,708";"Sub-Surface Windscreen for Outdoor Measurement of Infrasound";"02/18/2031" -"NASA Langley Research Center";"Application";"LAR-17841-1";0;" 14/202,699";"High Mobility Transport Layer Structures for Rhombohedral Si/Ge/SiGe Devices";"03/10/2034" -"NASA Langley Research Center";"Application";"LAR-17848-1";0;"13/796,626";"Spectroscopy using Electric Permittivity, Magnetic Permeability and Electrical Conductivity Spatial Profiles";"03/12/2033" -"NASA Langley Research Center";"Issued";"LAR-17856-1";8198976;"12/688,309";"Flexible Thin Metal Film Thermal Sensing System (CIP of LAR 17346-1)";"09/20/2030" -"NASA Langley Research Center";"Application";"LAR-17857-1";0;"12/967,690";"A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization"; -"NASA Langley Research Center";"Application";"LAR-17869-1";;"13/166,226";"Team Electronic Gameplay Combining Different Means of Control"; -"NASA Langley Research Center";"Application";"LAR-17886-1";;"13/324,527";"Method and Apparatus to Detect Wire Pathologies Near Crimped Connector"; -"NASA Langley Research Center";"Application";"LAR-17887-1";;"13/743,750";"Interrogations Leading to Recertification of Wire Crimps and Other Joining Technologies.";"01/17/2033" -"NASA Langley Research Center";"Issued";"LAR-17888-1";8605262;"13/167,093";"Time Shifted PN Codes for CW LIDAR, RADAR, and SONAR";"12/28/2031" -"NASA Langley Research Center";"Issued";"LAR-17894-1";8494687;"13/166,121";"3-D Super Resolution Algorithm for Flash LIDAR Image Enhancement";"12/11/2031" -"NASA Langley Research Center";"Application";"LAR-17895-1";;"13/166,166";"Method and System for Physiologically Modulating Videogames or Simulations Which Use Motion-Sensing Input Devices"; -"NASA Langley Research Center";"Application";"LAR-17902-1";;"13/068,329";"Neutron and Ultraviolet Radiation Shielding Films Fabricated Using Boron Nitride Nanotubes and Boron Nitride Nanotube Composites"; -"NASA Langley Research Center";"Application";"LAR-17906-1";;"13/272,027";"Abnormal Grain Growth Suppression in Aluminum Alloys"; -"NASA Langley Research Center";"Issued";"LAR-17908-1";8655094;"13/105,004";"New Photogrammetry System to Measure Relative 6-Degree-of-Freedom Motion Between Two Bodies Using Heterogeneous Cameras Having Arbitrary Wide-Angle Lenses with Non-Overlapping Fields of View";"04/23/2032" -"NASA Langley Research Center";"Application";"LAR-17918-1";;"13/136,216";"High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTs) and BNNT Polymer Composites"; -"NASA Langley Research Center";"Issued";"LAR-17919-1";8661653;"13/191,882";"Z-Shields from Fiber Metal Laminate";"07/27/2031" -"NASA Langley Research Center";"Application";"LAR-17919-2";;"13/963,484";"Z-Shields from Fiber Metal Laminate";"07/27/2031" -"NASA Langley Research Center";"Application";"LAR-18097-1";;"13/591,320";"Arbitrary Shape Initialization of Fiber Optic Shape Sensing Systems";"08/22/2032" -"NASA Langley Research Center";"Application";"LAR-17923-1";;"13/411,793";"A Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanospheres as Nano-bridges for Thermoelectric Application";"11/14/2032" -"NASA Langley Research Center";"Application";"LAR-17947-1";;"13/775,809";"Linear Fresnel Spectrometer Chip with Gradient Line Grating";"02/25/2033" -"NASA Langley Research Center";"Application";"LAR-17952-1";;"13/411,891";"Multi-Point Interferometric Phase Change Detection Algorithm"; -"NASA Langley Research Center";"Application";"LAR-17958-1";;"13/195,251";"Wireless Open-Circuit In-Plane Strain and Displacement Sensors Having No Electrical Connections";"07/16/2032" -"NASA Langley Research Center";"Issued";"LAR-17959-1";8087494;"12/894,326";"Method of Making a Composite Panel Having Subsonic Transverse Wave Speed Characteristics (Continuation of LAR 16535-1)";"09/30/2030" -"NASA Langley Research Center";"Application";"LAR-17966-1";;"13/457,687";"Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe"; -"NASA Langley Research Center";"Application";"LAR-17967-1";;"13/293,846";"Relaxor Piezoelectric Single Crystal Multilayer Stacks for Energy Harvesting Transducers (RPSEHT)"; -"NASA Langley Research Center";"Application";"LAR-17972-1";;"13/200,314";"BxCyNz Nanotube Formation via the Pressurized Vapor/Condenser"; -"NASA Langley Research Center";"Application";"LAR-17973-1";;"13/200,316";"Efficient Boron Nitride Nanotube (BNNT) and BxCyNz Nanotube Formation via Combined Laser-Gas Flow Levitation (JLab's ref: 2010-09-13-RRW)"; -"NASA Langley Research Center";"Application";"LAR-17977-1";;"13/447,513";"Variable Stiffness Shape Adaptive Multi-Layered Polymer Composite"; -"NASA Langley Research Center";"Application";"LAR-17980-1";;"13/457,540";"Space Utilization Optimization Tools"; -"NASA Langley Research Center";"Application";"LAR-17984-1";;"13/326,779";"FLEXible Side Edge Link (FLEXSEL) for Trailing-Edge Flap Aeroacoustic Noise Reduction";"12/15/2031" -"NASA Langley Research Center";"Application";"LAR-17985-1";;"13/231,386";"An Acoustic Beamforming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response (Michigan State University's ref: TEC2011-0045)"; -"NASA Langley Research Center";"Application";"LAR-17987-1";;"13/364,814";"A Self-Stabilizing Distributed Clock Synchronization Protocol For Arbitrary Digraphs"; -"NASA Langley Research Center";"Application";"LAR-17991-1";;"13/200,315";"Production Rig for the Synthesis of BNNTs via the PVC Method"; -"NASA Langley Research Center";"Issued";"LAR-17993-1";8662213;"13/342,264";"Locomotion of Amorphous Surface Robots";"05/06/2032" -"NASA Langley Research Center";"Application";"LAR-17993-2";;"14/189,019";"Locomotion of Amorphous Surface Robots";"01/03/2033" -"NASA Langley Research Center";"Application";"LAR-17994-1";;"13/273,516";"Manufacturing of Low Mass, Large-Scale Hierarchical Thin Film Structural Systems"; -"NASA Langley Research Center";"Application";"LAR-17996-1";;"14/202,289";"Nanostructure Neutron Converter Layer Development";"03/10/2034" -"NASA Langley Research Center";"Issued";"LAR-18006-1";8671551;"13/363,413";"Crimp Quality Assessment from Jaw Position-Ultrasonic Transmission Analysis";"02/01/2032" -"NASA Langley Research Center";"Application";"LAR-18006-2";;"14/193,086";"Crimp Quality Assessment from Jaw Position-Ultrasonic Transmission Analysis";"02/01/2032" -"NASA Langley Research Center";"Issued";"LAR-18016-1";8636407;"13/029,426";"Wireless Temperature Sensor Having No Electrical Connections and Sensing Method For Use Therewith";"11/23/2031" -"NASA Langley Research Center";"Application";"LAR-18021-1";;"13/417,347";"Flap Side Edge Liners for Airframe Noise Reduction";"07/31/2032" -"NASA Langley Research Center";"Application";"LAR-18023-1";;"13/417,349";"Landing Gear Door Liners for Airframe Noise Reduction";"03/12/2032" -"NASA Langley Research Center";"Application";"LAR-18024-1";;"13/417,351";"External Acoustic Liners for Multi-Functional Aircraft Noise Reduction"; -"NASA Langley Research Center";"Application";"LAR-18026-1";;"13/286,715";"Synthesis of Novel Copoly(imide oxetane)s with Unique Surface Properties"; -"NASA Langley Research Center";"Application";"LAR-18257-1";;"14/105,757";"A Structural Joint With Multi-Axis Load Carrying Capacity";"12/13/2033" -"NASA Langley Research Center";"Issued";"LAR-18032-1";8229716;"12/981,432";"Fast Tracking Methods and Systems for Air Traffic Modeling Using a Monotonic Lagrangian Grid (US Naval Research Laboratory ref: 100148-US2)";"12/29/2030" -"NASA Langley Research Center";"Application";"LAR-18034-1";;"13/291,372";"Compact Active Vibration Control System"; -"NASA Langley Research Center";"Application";"LAR-18037-1";;"13/453,717";"A Multifunctional Lightning Protection and Detection System for Aerospace Vehicles"; -"NASA Langley Research Center";"Application";"LAR-18040-1";;"13/986,089";"Multi-Functional BN-BN Composite";"03/29/2033" -"NASA Langley Research Center";"Application";"LAR-18065-1";;"13/860,697";"Variable Acceleration Force Calibration System";"04/11/2033" -"NASA Langley Research Center";"Application";"LAR-18070-1";;"13/923,307";"Transparent and Ubiquitous Sensing Technology";"06/20/2033" -"NASA Langley Research Center";"Application";"LAR-18071-1";;"13/923,312";"Using Ubiquitous Conductor to Power and Interrogate Wireless Passive Sensors and Construct Sensor Network"; -"NASA Langley Research Center";"Application";"LAR-18073-1";;"13/941,441";"Doped Chiral Polymer Negative Index Materials (DCPNIM)";"07/12/2033" -"NASA Langley Research Center";"Application";"LAR-18077-1";;"13/630,459";"Flight Deck Technology and Procedure for Pilots to Generate Flight-Optimizing Trajectory Requests that Avoid Nearby Traffic";"09/28/2032" -"NASA Langley Research Center";"Application";"LAR-18089-1";;"13/786,713";"Synchronized Sweeping Jet Actuators";"03/06/2033" -"NASA Langley Research Center";"Application";"LAR-18127-1";;"13/913,782";"Synergistic Chemical and Topographical Surface Modifications and Articles of Manufacture for Dynamic Insect Adhesion Mitigation";"06/10/2033" -"NASA Langley Research Center";"Application";"LAR-18131-1";;"13/774,422";"Puncture- healing Thermoplastic Resin Carbon Fiber Reinforced Composites towards More Damage/Impact Tolerant Systems"; -"NASA Langley Research Center";"Application";"LAR-18132-1";;"13/673,360";"Modeling of Laser Ablation and Plume Chemistry in a Boron Nitride Nanotube Production Rig";"11/09/2032" -"NASA Langley Research Center";"Application";"LAR-18143-1";;"13/694,286";"In-situ Mechanical Property Measurements of Amorphous Carbon-boron Nitride Nanotube";"11/15/2032" -"NASA Langley Research Center";"Application";"LAR-18144-1";;"13/836,609";"Method and System for Physiologically Modulating Videogames and Simulations Which Use Gesture and Body Image Sensing Control Input Devices";"03/15/2033" -"NASA Langley Research Center";"Application";"LAR-18160-1";;"13/864,396";"Tension Stiffened and Tendon Actuated Space Manipulators";"04/17/2033" -"NASA Langley Research Center";"Application";"LAR-18166-1";;"13/764,062";"Reactive Orthotropic Lattice Diffuser (ROLD) for Reducing Aerodynamic Noise from Aircraft Flap Tips";"03/12/2032" -"NASA Langley Research Center";"Application";"LAR-18179-1";;"13/792,489";"Extreme Reduced Instruction Set Computing (xRISC) for High Speed Execution of Computing Algorithms";"03/11/2033" -"NASA Langley Research Center";"Application";"LAR-18183-1";;"13/834,294";"Height Control and Deposition Measurement for the Electron Beam Free Form Fabrication (EBF3) Process";"03/15/2033" -"NASA Langley Research Center";"Application";"LAR-18184-1";;"13/987,706";"Conductive Polymer/Carbon Nanotube Structural Materials and Methods for Making Same";"08/23/2033" -"NASA Langley Research Center";"Application";"LAR-18186-1";;"12/482,503";"Flexible Volumetric Structure"; -"NASA Langley Research Center";"Application";"LAR-18202-1";;"13/713,033";"Ground-to-Space Laser Calibration System";"12/13/2032" -"NASA Langley Research Center";"Application";"LAR-18204-1";;"13/800,379";"Quasi-Static Electric Field Generator";"03/13/2033" -"NASA Langley Research Center";"Application";"LAR-18211-1";;"13/781,918";"A Statistically Based Approach to Broadband Liner Design and Assessment";"03/01/2033" -"NASA Langley Research Center";"Application";"LAR-18217-1";;"13/771,116";"A Graphical Acoustic Liner Design and Analysis Tool";"02/20/2033" -"NASA Langley Research Center";"Application";"LAR-18246-1";;"13/765,714";"Tethered Vehicle Control and Tracking System";"02/13/2033" -"NASA Langley Research Center";"Application";"LAR-18266-1";;"14/079,914";"Airborne Wind Profiling Algorithm for Doppler Wind Lidar (APOLO)";"11/14/2033" -"NASA Langley Research Center";"Application";"LAR-18267-1";;"13/838,260";"Method and System for Physiologically Modulating Action Role-playing Open World Video Games and Simulations Which Use Gesture and Body Image Sensing Control Input Devices"; -"NASA Langley Research Center";"Application";"LAR-18270-1";;"14/079,965";"Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV";"11/14/2033" -"NASA Langley Research Center";"Application";"LAR-18301-1";;"13/838,163";"Flap Edge Noise Reduction Fins (FENoRFins)";"03/15/2033" -"NASA Langley Research Center";"Application";"LAR-18318-1";;"14/191,898";"In-Situ Load System (ILS) for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-based Aerospace Testing Applications";"02/27/2034" -"NASA Langley Research Center";"Application";"LAR-18374-1";;"14/072,019";"Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System";"06/23/2031" -"NASA Glenn Research Center";"Issued";"LEW-16183-1";5866518;"08/786,360";"PS300 - Self Lubricating Readily Polished High Temperature Composite";"01/16/2017" -"NASA Glenn Research Center";"Issued";"LEW-16519-2";6291838;"09/448,406";"Gas Sensing Diode";"11/15/2019" -"NASA Glenn Research Center";"Issued";"LEW-16901-1";7190741;"10/274,756";"A Real-Time Signal-To-Noise Ratio Estimation Technique For BPSK And QPSK Modulation Using The Active Communications Channel";"10/21/2022" -"NASA Glenn Research Center";"Issued";"LEW-17153-1";6550696;"09/794,794";"Lean Direct Injection Combustor/Multi Point Integrate Module Fuel-Air Mixer";"02/27/2021" -"NASA Glenn Research Center";"Issued";"LEW-17157-1";6869480;"10/198,668";"Method For Production Of Atomic Scale Step Height Reference Specimens With Atomically Flat Surfaces";"07/17/2022" -"NASA Glenn Research Center";"Issued";"LEW-17166-1";7497443;"11/121,850";"Resilient, Flexible, Pressure-Activated Seal";"05/03/2025" -"NASA Glenn Research Center";"Issued";"LEW-17167-1";6667725;"10/196,391";"Radio Frequency (RF) Telemetry System For Sensors And Actuators";"07/11/2022" -"NASA Glenn Research Center";"Issued";"LEW-17170-1";6706549;"10/124,689";"Common-Layered Architecture For Semiconductor Silicon Carbide (CLASSiC) Bulk Fabrication";"04/12/2022" -"NASA Glenn Research Center";"Issued";"LEW-17182-1";7086648;"10/652,088";"Acoustic Seal";"08/22/2023" -"NASA Glenn Research Center";"Issued";"LEW-17240-1";7427428;"10/601,657";"Mechanically Improved Interphase Coating For Silicon-Carbide Fiber-Reinforced Silicon-Carbide Matrix Composites";"06/24/2023" -"NASA Glenn Research Center";"Issued";"LEW-17256-1";6845664;"10/263,980";"MEMS Direct Chip Attach (MEMS-DCA) Packaging Methodologies For Harsh Environments";"10/03/2022" -"NASA Glenn Research Center";"Issued";"LEW-17256-2";7518234;"10/926,206";"MEMS Direct Chip Attach Packaging Methodologies And Apparatus For Harsh Environments";"08/25/2024" -"NASA Glenn Research Center";"Issued";"LEW-17269-2";8212138;"11/696,441";"Reverse-Bias Protected Solar Array With Integrated ByPass Battery";"04/04/2027" -"NASA Glenn Research Center";"Application";"LEW-17269-3";0;"13/482,493";"Reverse-Bias Protected Solar Array With Integrated ByPass Battery"; -"NASA Glenn Research Center";"Issued";"LEW-17291-1";6784276;"10/202,643";"Improved Processing For Polyimdes Via Concentrated Solid Monomer Reactants Approach";"07/25/2022" -"NASA Glenn Research Center";"Issued";"LEW-17293-1";7023118;"10/390,256";"A Comprehensive C++ Controller For A Magnetically Supported Vertical Rotor: Version 1.0";"03/12/2023" -"NASA Glenn Research Center";"Issued";"LEW-17293-2";6809450;"10/729,580";"Software For System For Controlling A Magnetically Levitated Rotor";"12/04/2023" -"NASA Glenn Research Center";"Issued";"LEW-17299-1";6881820;"10/147,477";"Polyimide Rod-Coil Block Copolymers As Membrane Materials For Ion Conduction";"05/13/2022" -"NASA Glenn Research Center";"Issued";"LEW-17317-1";7687016;"10/777,630";"Process For Improving Properties Of Silicon Carbide (SiC) Fibers And SiC Fiber-Reinforced Ceramic Matrix Composites";"02/13/2024" -"NASA Glenn Research Center";"Application";"LEW-17317-2";0;"12/709,086";"Process For Improving Properties Of Silicon Carbide (SiC) Fibers And SiC Fiber-Reinforced Ceramic Matrix Composites"; -"NASA Glenn Research Center";"Issued";"LEW-17345-2";7813406;"11/402,997";"Temporal Laser Pulse Manipulation Using Multiple Optical Ring Cavities";"04/13/2026" -"NASA Glenn Research Center";"Issued";"LEW-17383-1";6967462;"10/455,139";"Wireless Consumer Power";"06/05/2023" -"NASA Glenn Research Center";"Application";"LEW-17458-2";0;"13/113,458";"Compact Solid-state Entangled Photon Source"; -"NASA Glenn Research Center";"Issued";"LEW-17483-1";7191013;"10/983,230";"Hand Held Device For Wireless Powering And Interrogation Of BioMEMS Sensors And Actuators";"11/08/2024" -"NASA Glenn Research Center";"Issued";"LEW-17484-5";7268939;"11/363,300";"Tracking Of Cells With A Compact Microscope Imaging System Using Intelligent Controls";"02/24/2026" -"NASA Glenn Research Center";"Issued";"LEW-17494-1";7458221;"10/693,850";"Self-Sealing, Smart, Variable Area Nozzle (S3VAN) For Dynamic Flow Control In Gas Turbine Engines";"10/23/2023" -"NASA Glenn Research Center";"Issued";"LEW-17498-1";7187835;"11/44,063";"Selective Wavelength Filtering";"01/28/2025" -"NASA Glenn Research Center";"Issued";"LEW-17510-1";7416062;"10/693,853";"Torsional Magnetorheological Fluid Resistant Device (TMRFRD)";"10/23/2023" -"NASA Glenn Research Center";"Issued";"LEW-17517-1";7326027;"10/856,361";"Flow-Field Control-Rods To Stabilize Flow In A Centrifugal Compressor";"05/25/2024" -"NASA Glenn Research Center";"Issued";"LEW-17520-1";7259692;"10/931,205";"Hybrid Power Management (HPM) Upgrade";"09/01/2024" -"NASA Glenn Research Center";"Issued";"LEW-17551-1";7410714;"10/891,599";"Unitized Regenerative Fuel Cell System";"07/15/2024" -"NASA Glenn Research Center";"Issued";"LEW-17561-1";7400096;"10/894,225";"Large Area Permanent Magnet ECR Plasma Source";"07/19/2024" -"NASA Glenn Research Center";"Issued";"LEW-17589-1";7305935;"10/925,499";"Slotted Antenna Rectangular Waveguide Plasma Source For Ion Beam And Electron Beam Production";"08/25/2024" -"NASA Glenn Research Center";"Issued";"LEW-17592-1";7704622;"10/926,457";"New Ion Conducting Organic/Inorganic Hybrid Polymers";"08/26/2024" -"NASA Glenn Research Center";"Application";"LEW-17595-1";0;"13/018,611";"A Method Of Improving The Thermo-Mechanical Properties Of Fiber-Reinforced Silicon Carbide Matrix Composites"; -"NASA Glenn Research Center";"Issued";"LEW-17605-1";8394492;"10/974,991";"Skin Modified Aerogel Monoliths For Improved Ruggedness And Lower Hydrophylicity";"10/28/2024" -"NASA Glenn Research Center";"Issued";"LEW-17618-1";7015304;"10/897,279";"High Tg Polyimides For Resin Transfer Molding (RTM)";"07/23/2024" -"NASA Glenn Research Center";"Issued";"LEW-17618-1-REIS";"RE43,880";"11/429,639";"Solvent-Free Low Melt Viscosity Imide Oligomers and Thermosetting Polyimide Composites";"05/08/2026" -"NASA Glenn Research Center";"Application";"LEW-17618-3";;"13/952,872";"High Tg Polyimides For Resin Transfer Molding (RTM)";"07/29/2033" -"NASA Glenn Research Center";"Issued";"LEW-17630-1";7534519;"11/228,185";"Bi-Electrode Supported Cell For High Power Density Solid Oxide Fuel Cells";"09/16/2025" -"NASA Glenn Research Center";"Application";"LEW-17634-1";0;"11/228,184";"Solid Oxide Fuel Cell Stack Design With Bi-Electrode Supported Cells"; -"NASA Glenn Research Center";"Application";"LEW-17634-2";0;"12/860,210";"Solid Oxide Fuel Cell Stack Design With Bi-Electrode Supported Cells"; -"NASA Glenn Research Center";"Issued";"LEW-17642-2";7308164;"11/398,734";"Energetic Atomic And Ionic Oxygen Textured Optical Surfaces For Blood Glucose Monitoring";"03/23/2026" -"NASA Glenn Research Center";"Issued";"LEW-17642-4";7305154;"11/483,887";"Energetic Atomic And Ionic Oxygen Textured Optical Surfaces For Blood Glucose Monitoring";"07/11/2026" -"NASA Glenn Research Center";"Issued";"LEW-17661-1 with LEW-17765-1";7438030;"11/213,604";"Method of Fabricating Silicon Carbide Corrugated Diaphragms and Modular Actuator";"08/26/2025" -"NASA Glenn Research Center";"Issued";"LEW-17664-1";7500350;"11/44,471";"Elimination Of Lifetime Limiting Mechanism Of Hall Thrusters";"01/28/2025" -"NASA Glenn Research Center";"Issued";"LEW-17671-1";7493869;"11/311,183";"Very Large Area/Volume Microwave ECR Plasma And Ion Source";"12/16/2025" -"NASA Glenn Research Center";"Issued";"LEW-17672-1";7261783;"10/946,286";"Low Density High Creep Resistant Single Crystal Superalloy For Turbine Airfoils";"09/22/2024" -"NASA Glenn Research Center";"Issued";"LEW-17678-1";7624566;"11/40,304";"Magnetic Circuit For Hall Effect Plasma Accelerator";"01/18/2025" -"NASA Glenn Research Center";"Issued";"LEW-17694-1";7397978;"11/180,990";"Carrier Structure For Packaging Microphotonic Millimeter-Wave Receiver Based On Lithium Niobate Electro-Optic Resonator Disk Technology";"07/13/2025" -"NASA Glenn Research Center";"Issued";"LEW-17704-1";7250723;"11/16,735";"Cathode Luminescence Light Source For Broad Band Application In The Visible";"12/21/2024" -"NASA Glenn Research Center";"Issued";"LEW-17765-1 with LEW-17661-1";7438030;"11/213,604";"Side Sliding Microactuator";"10/21/2025" -"NASA Glenn Research Center";"Issued";"LEW-17786-1";8197249;"11/412,935";"Fully-Premixed Low-Emissions High-Pressure Multi-fuel Burner";"04/28/2026" -"NASA Glenn Research Center";"Issued";"LEW-17814-1";7574137;"11/418,304";"Multi-wavelength Time-coincident Optical Communications System";"05/05/2026" -"NASA Glenn Research Center";"Issued";"LEW-17820-1";7755292;"11/625,545";"Method For Ultraminiature Fiber Light Source";"01/22/2027" -"NASA Glenn Research Center";"Issued";"LEW-17820-2";8264134;"12/795,356";"Method For Ultraminiature Fiber Light Source";"09/11/2032" -"NASA Glenn Research Center";"Issued";"LEW-17825-1";8163243;"11/517,555";"Zero G Condensing Heat Exchanger With Integral Disinfection";"09/07/2026" -"NASA Glenn Research Center";"Issued";"LEW-17826-1";7385692;"11/412,924";"Method And System For Fiber Optic Determination Of Nitrogen And Oxygen Concentrations In Ullage Of Liquid Fuel Tanks";"04/28/2026" -"NASA Glenn Research Center";"Issued";"LEW-17859-1";7389675;"11/434,578";"Miniaturized Metal (Metal Alloy)/PdOx/SiC Schottky Diode Gas Sensors For Hydrogen And Hydrocarbons Detection At High Temperatures";"05/12/2026" -"NASA Glenn Research Center";"Issued";"LEW-17859-2";8001828;"12/143,139";"Miniaturized Metal (Metal Alloy) PdOx/Sic Hydrogen And Hydrocarbon Gas Sensors";"06/20/2028" -"NASA Glenn Research Center";"Issued";"LEW-17877-1";7876276;"11/499,982";"Antenna Near-Field Probe Station Scanner";"08/02/2026" -"NASA Glenn Research Center";"Application";"LEW-17877-2";;"12/857,004";"Antenna Near-Field Probe Station Scanner"; -"NASA Glenn Research Center";"Issued";"LEW-17904-1";7425650;"11/378,553";"Syntheis Of Asymmetric Dianhydrides";"03/15/2026" -"NASA Glenn Research Center";"Issued";"LEW-17904-2";7381849;"11/890,104";"Synthesis Of Asymmetrical Benzophenone Dianhydride And Asymmetrical 6F-Dianhydride And Polyimides Therefrom (ALSO See LEW 18236-1)";"07/19/2027" -"NASA Glenn Research Center";"Application";"LEW-17915-1";0;"12/536,969";"Secure Optical Communications Using Quantum Two-Photon Transparency Modulation Spectroscopy"; -"NASA Glenn Research Center";"Issued";"LEW-17916-1";8052854;"11/754,255";"Miniature Amperometric Solid Electrolyte Carbon Dioxide Sensor";"05/25/2027" -"NASA Glenn Research Center";"Application";"LEW-17916-2";;"13/267,978";"Miniature Amperometric Solid Electrolyte Carbon Dioxide Sensor"; -"NASA Glenn Research Center";"Application";"LEW-17945-1";0;"11/677,654";"Portable Unit For Metabolic Analysis PUMA"; -"NASA Glenn Research Center";"Issued";"LEW-17951-1";8545786;"10/621,752";"Manufacture Of Porous Net-Shaped Materials Comprising Alpha Or Beta Tricalcium Phosphate Or Mixtures Thereof";"07/16/2023" -"NASA Glenn Research Center";"Issued";"LEW-17954-1";8016543;"11/695,435";"Composite Case Armor";"04/02/2027" -"NASA Glenn Research Center";"Application";"LEW-17963-1";0;"11/860,661";"Passive Gas/Liquid Separation Within a Fuel Cell or Electrolysis Cell Using A Conductive Porous Separator"; -"NASA Glenn Research Center";"Issued";"LEW-17975-1";7382944;"11/489,813";"Aluminization And Hyperthermal Atomic Oxygen Texturing Of Polymethylmethacralate Optical Fibers For Blood Glucose Monitoring";"07/14/2026" -"NASA Glenn Research Center";"Issued";"LEW-17991-1";7390161;"/0";"Toughened Composite Structures";"06/24/2025" -"NASA Glenn Research Center";"Issued";"LEW-18003-1";7583169;"11/689,770";"RF MEMS Switches Utilizing Non-Metallic Thin Film Cantilevers/Bridges With Controlled Stress And Conductivity";"03/22/2027" -"NASA Glenn Research Center";"Issued";"LEW-18042-1";8067478;"11/582,693";"A Method of Crosslinking Aerogels Using a One-pot Reaction Scheme";"10/16/2026" -"NASA Glenn Research Center";"Application";"LEW-18042-2";0;"13/242,425";"A Method of Crosslinking Aerogels Using a One-pot Reaction Scheme"; -"NASA Glenn Research Center";"Application";"LEW-18043-1";7341040;"11/486,460";"Supercharged Two-Cycle Engines Employing Novel Single Element Reciprocating Shuttle Inlet Valve Mechanisms And With A Variable Compression Ratio";"07/14/2026" -"NASA Glenn Research Center";"Application";"LEW-18048-1";0;"12/285,157";"Two And Three Dimensional Near Infrared Subcutaneous Structure Imager Using Adaptive Nonlinear Video Processing"; -"NASA Glenn Research Center";"Issued";"LEW-18049-1";7909897;"11/946,079";"Direct Fuel Impingement Planar-Array-Microreactor";"11/28/2028" -"NASA Glenn Research Center";"Issued";"LEW-18054-1";7501032;"11/364,283";"High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys And Associated Processing Methods";"02/28/2026" -"NASA Glenn Research Center";"Issued";"LEW-18059-1";8242162;"11/956,848";"Fluorescent On-Off Chemical Sensors";"11/30/2019" -"NASA Glenn Research Center";"Issued";"LEW-18076-1";7999173;"11/689,431";"Dust removal from solar cells";"03/21/2027" -"NASA Glenn Research Center";"Application";"LEW-18076-2";;"13/198,896";"Dust Removal from Solar Cells"; -"NASA Glenn Research Center";"Issued";"LEW-18089-1";8077103;"11/774,574";"Cup Cylindrical Waveguide Antenna";"07/06/2027" -"NASA Glenn Research Center";"Issued";"LEW-18138-1";7904282;"11/689,874";"In-Flight Fault Accommodation Through Automated Control Parameter Changes";"03/22/2027" -"NASA Glenn Research Center";"Application";"LEW-18205-1";0;"12/317,232";"Branched Rod-Coil Polyimide-poly(ethylene Oxide) (PEO) Copolymers That Are Cured In The Solid State At Ambient Temperatures"; -"NASA Glenn Research Center";"Application";"LEW-18207-1";0;"11/759,570";"Circuit For Communication Over DC Power Line Using High Temperature Electronics"; -"NASA Glenn Research Center";"Issued";"LEW-18221-1";7763325;"11/864,607";"A Method For Thermal Spraying Of Coatings Using Resonant Pulsed Combustion";"09/28/2027" -"NASA Glenn Research Center";"Application";"LEW-18221-2";;"12/835,345";"A Method For Thermal Spraying Of Coatings Using Resonant Pulsed Combustion"; -"NASA Glenn Research Center";"Issued";"LEW-18236-1";8093348;"11/894,290";"Synthesis Of Asymmetrical Benzophenone Dianhydride And Asymmetrical 6F-Dianhydride And Polyimides Therefrom";"08/22/2027" -"NASA Glenn Research Center";"Application";"LEW-18236-2";0;"13/325,626";"Synthesis Of Asymmetrical Benzophenone Dianhydride And Asymmetrical 6F-Dianhydride And Polyimides Therefrom"; -"NASA Glenn Research Center";"Issued";"LEW-18248-1";7791552;"11/871,237";"Cellular Reflectarray Antenna";"10/12/2027" -"NASA Glenn Research Center";"Issued";"LEW-18248-2";7990327;"12/874,370";"Cellular Reflectarray Antenna";"09/02/2030" -"NASA Glenn Research Center";"Issued";"LEW-18253-1";8191426;"12/133,743";"Low TCR Nanocomposite Strain Gages";"06/05/2028" -"NASA Glenn Research Center";"Issued";"LEW-18254-1";7876423;"12/163,382";"Simultaneous Non-Contact Precision Measurement Of Microstructual And Thickness Variation In Dielectric Materials Using Terahertz Energy";"06/27/2028" -"NASA Glenn Research Center";"Issued";"LEW-18255-1";7630736;"11/541,102";"Autonomous Wireless Sensor Transceiver";"05/09/2028" -"NASA Glenn Research Center";"Issued";"LEW-18256-1";7688117;"12/081,762";"An N Channel JFET Based Digital Logic Gate Structure Using Resistive Level Shifters And Having Direct Application To High Temperature Silicon Carbide Electronics";"04/21/2028" -"NASA Glenn Research Center";"Issued";"LEW-18261-1";7933027;"12/326,436";"A Software Platform For Post-Processing Waveform-Based NDE";"12/02/2028" -"NASA Glenn Research Center";"Application";"LEW-18291-1";0;"12/214,114";"Adaptive Morphological Feature-Based Object Classifier For A Color Imaging System"; -"NASA Glenn Research Center";"Application";"LEW-18296-1";0;"13/193,160";"Modular Battery Charge Controller"; -"NASA Glenn Research Center";"Issued";"LEW-18313-1";7923715;"12/336,503";"A Novel Nanoionics-based Switch For Radiofrequency (RF) Applications";"12/06/2028" -"NASA Glenn Research Center";"Issued";"LEW-18313-2";8410469;"13/050,229";"A Novel Nanoionics-based Switch For Radiofrequency (RF) Applications";"03/17/2031" -"NASA Glenn Research Center";"Application";"LEW-18324-1";0;"12/195,358";"Semiconductor Metal Oxide Modified Solid Electrolyte Carbon Dioxide Microsensors With Reduced Operation Temperature"; -"NASA Glenn Research Center";"Issued";"LEW-18325-1";8415839;"12/319,617";"External Magnetic Field Reduction Techniquie For Advanced Stirling Radioisotope Generator";"01/09/2029" -"NASA Glenn Research Center";"Application";"LEW-18325-2";;"13/859,179";"External Magnetic Field Reduction Techniquie For Advanced Stirling Radioisotope Generator";"01/09/2029" -"NASA Glenn Research Center";"Issued";"LEW-18338-1";8506787;"12/533/258";"Advancd Lightweight, High-Strength Electrochemical Cell Design and Structures";"07/31/2029" -"NASA Glenn Research Center";"Issued";"LEW-18340-1";8091445;"12/431,456";"Offset Compound Gear Inline Two-Speed Drive";"04/28/2029" -"NASA Glenn Research Center";"Issued";"LEW-18340-2";8668613;"13/346,959";"Offset Compound Gear Inline Two-Speed Drive";"01/10/2032" -"NASA Glenn Research Center";"Issued";"LEW-18356-1";8220989;"12/571,215";"Device for Measuring the Thermal Conductivity of Small, Highly Insulating Materials";"09/30/2029" -"NASA Glenn Research Center";"Issued";"LEW-18356-2";8573835;"13/492,181";"Device for Measuring the Thermal Conductivity of Small, Highly Insulating Materials";"06/08/2032" -"NASA Glenn Research Center";"Issued";"LEW-18362-1";7872750;"12/285,173";"Space Radiation Detector with Spherical Geometry";"09/30/2028" -"NASA Glenn Research Center";"Issued";"LEW-18362-2";8159669;"12/972,624";"Space Radiation Detector with Spherical Geometry";"12/20/2030" -"NASA Glenn Research Center";"Issued";"LEW-18373-1";8353209;"12/570,841";"A Radio Frequency Tank Eigenmode Sensor For Propellant Quantity Gauging";"02/04/2031" -"NASA Glenn Research Center";"Issued";"LEW-18426-1";8484980;"12/894,346";"A Free-Jet Dual-Mode Combustor Concept for Wide Operating Range Ramjet Propulsion";"09/30/2030" -"NASA Glenn Research Center";"Application";"LEW-18426-2";0;"13/941,987";"A Free-Jet Dual-Mode Combustor Concept for Wide Operating Range Ramjet Propulsion";"07/15/2033" -"NASA Glenn Research Center";"Issued";"LEW-18432-1";7935601;"12/584,497";"Addendum of Self-Aligned Ion Implant to Design and Processing of SiC High Temperature Transistors for Durable Operation Above 400 C";"09/04/2029" -"NASA Glenn Research Center";"Application";"LEW-18432-2";0;"13/078,510";"Addendum of Self-Aligned Ion Implant to Design and Processing of SiC High Temperature Transistors for Durable Operation Above 400 C"; -"NASA Glenn Research Center";"Issued";"LEW-18458-1";8386121;"12/791,907";"Optimal Tuner Selection For Kalman Filter-Based Aircraft Engine Performance Estimation";"06/02/2030" -"NASA Glenn Research Center";"Issued";"LEW-18461-1";8159238;"12/570,742";"Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space";"09/30/2029" -"NASA Glenn Research Center";"Application";"LEW-18461-2";;"13/448,801";"Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space"; -"NASA Glenn Research Center";"Application";"LEW-18466-1";0;"12/616,952";"Spring Tire"; -"NASA Glenn Research Center";"Application";"LEW-18473-1";0;"12/879,713";"Ka-Band Waveguide 2-Way Hybrid Combiner for MMIC Amplifiers With Unequal and Arbitrary Power Output Ratio"; -"NASA Glenn Research Center";"Issued";"LEW-18474-1";8609750;"12/792,380";"Selective Clay Placement Within A Silicate Clay-Epoxy Blend Nanocomposite";"06/02/2030" -"NASA Glenn Research Center";"Issued";"LEW-18476-1";8182741;"12/544,742";"Ball Bearings Comprising Nickel-Titanium And Methods Of Manufacture Thereof";"08/20/2029" -"NASA Glenn Research Center";"Application";"LEW-18476-2";0;"12/544,674";"Ball Bearings Comprising Nickel-Titanium And Methods Of Manufacture Thereof"; -"NASA Glenn Research Center";"Application";"LEW-18477-1";0;"13/242,300";"Graphene Based Reversible Nano-Switch/Sensor Schottky Diode (nanoSSSD) Device"; -"NASA Glenn Research Center";"Issued";"LEW-18483-1";8310671;"12/893,627";"Frame-Transfer Gating (FTG) Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics";"09/29/2030" -"NASA Glenn Research Center";"Application";"LEW-18486-2";0;"14/168,830";"Polyimide Aerogels With Three Dimensional Cross-Linked Structure";"01/30/2034" -"NASA Glenn Research Center";"Issued";"LEW-18491-1";8209976;"12/323,091";"Shape Memory Based Actuators and Release Mechanisms";"11/25/2028" -"NASA Glenn Research Center";"Application";"LEW-18492-1";0;"13/036,887";"Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications"; -"NASA Glenn Research Center";"Issued";"LEW-18496-1";8283172;"12/711,465";"Process to Produce Iron Nanoparticles - Lunar Dust Simulant Composite";"02/24/2030" -"NASA Glenn Research Center";"Application";"LEW-18500-1";0;"12/848,903";"Precision Time Protocol Base Trilateration for Planetary Navigation"; -"NASA Glenn Research Center";"Application";"LEW-18516-1";0;"13/542,163";"Hybrid Gear"; -"NASA Glenn Research Center";"Issued";"LEW-18538-1";8373175;"12/791,276";"Ohmic Contact to N- and P-type Silicon Carbide";"06/01/2030" -"NASA Glenn Research Center";"Application";"LEW-18542-1";0;"12/870,475";"Functionalization of Single Wall Carbon Nanotubes (SWCNTs) by Photooxidation"; -"NASA Glenn Research Center";"Application";"LEW-18554-1";0;"12/845,998";"Internal Limit Sensor (ILS)"; -"NASA Glenn Research Center";"Application";"LEW-18561-1";0;"12/726,926";"NASA PS400: A New High Temperature Solid Lubricant Coating for High Temperature Wear Applications"; -"NASA Glenn Research Center";"Application";"LEW-18565-1";0;"13/646,100";"Catalytic Microtube Rocket Igniter";"10/05/2032" -"NASA Glenn Research Center";"Application";"LEW-18566-1";0;"12/829,663";"Low Density, High Creep Resistant Single Crystal Superalloy with Lower Manufacturing Cost"; -"NASA Glenn Research Center";"Application";"LEW-18586-1";;"13/030,342";"Shock Sensing Apparatus"; -"NASA Glenn Research Center";"Issued";"LEW-18593-1";8653693;"13/014,849";"Integrated Exciter/Igniter";"01/27/2031" -"NASA Glenn Research Center";"Issued";"LEW-18594-1";8409372;"12/874,523";"Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response";"09/02/2030" -"NASA Glenn Research Center";"Application";"LEW-18594-2";;"13/845,526";"Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response"; -"NASA Glenn Research Center";"Issued";"LEW-18601-1";8577504;"12/954,009";"Inductive Power Device (IDP)";"11/24/2030" -"NASA Glenn Research Center";"Application";"LEW-18604-1";;"12/894,444";"Shock Resistant, Debris Tolerant, Lightweight, Corrosion Proof Bearings, Mechanical Components and Mechanisms Made From Hard, Highly Elastic Materials"; -"NASA Glenn Research Center";"Issued";"LEW-18605-1";8468794;"12/894,565";"Dual-Mode Hybrid-Engine (DMH-Engine): A Next-Generation Electric Propulsion Thruster";"09/30/2030" -"NASA Glenn Research Center";"Application";"LEW-18605-2";;"13/713,907";"Dual-Mode Hybrid-Engine (DMH-Engine): A Next-Generation Electric Propulsion Thruster"; -"NASA Glenn Research Center";"Application";"LEW-18605-3";;"14/152,125";"Dual-Mode Hybrid-Engine (DMH-Engine): A Next-Generation Electric Propulsion Thruster"; -"NASA Glenn Research Center";"Application";"LEW-18608-1";;"12/892,339";"Liquid Tin Electrodes for Directo Conversion of JP-8 Fuel using the NASA BSC Solid Oxide Fuel Cell"; -"NASA Glenn Research Center";"Application";"LEW-18614-1";;"13/303,292";"High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence"; -"NASA Glenn Research Center";"Application";"LEW-18615-1";;"12/892,278";"Purify Nanomaterials By Dissolving Excess Reactants And Catalysts In Ferric Chloride"; -"NASA Glenn Research Center";"Application";"LEW-18629-1";;"13/731,314";"Electrospray Collection of Lunar Dust"; -"NASA Glenn Research Center";"Application";"LEW-18631-1";;"13/218,847";"Circuit for Communication Over Power Lines"; -"NASA Glenn Research Center";"Application";"LEW-18632-1";;"13/311,987";"Method For Fabricating Diamond-Dispersed Fiber-Reinforced Composite Coating On Low Temperature Sliding Thrust Bearing Interfaces"; -"NASA Glenn Research Center";"Application";"LEW-18634-1";;"13/134,959";"Multi-Parameter Aerosol Scattering Sensor"; -"NASA Glenn Research Center";"Issued";"LEW-18636-1";8416007;"13/098,918";"A Source Coupled N Channel JFET Based Digital Logic Gate Structure Using Resistive Level Shifters and Having Direct Application to High Temperature Silicon Carbide Electronics";"05/02/2031" -"NASA Glenn Research Center";"Application";"LEW-18639-1";;"13/112,293";"Atomic Oxygen Fluence Monitor"; -"NASA Glenn Research Center";"Application";"LEW-18649-1";;"12/870,443";"Ultracapacitor Based Uninterruptible Power Supply (UPS) System"; -"NASA Glenn Research Center";"Application";"LEW-18652-1";;"13/476,470";"Polarization Dependent Whispering Gallery Modes in Microspheres"; -"NASA Glenn Research Center";"Application";"LEW-18658-1";;"13/250,300";"Levitated Ducted Fan (LDF) Aircraft Auxiliary Generator"; -"NASA Glenn Research Center";"Application";"LEW-18674-1";;"13/552,760";"Polymer Electrolyte Based Ambient Temperature Oxygen Microsensors with Extremely Low Power Consumption for Enviromental Monitoring Applications"; -"NASA Johnson Space Center";"Application";"MSC-25349-1";0;"13/922036";"Robonaut Teleoperation System"; -"NASA Glenn Research Center";"Issued";"LEW-18691-1";7588746;"11/431,815";"Process and Apparatus for Hydrogen and Carbon Production via Carbon Aerosol-Catalyzed Dissociation of Hydrocarbons";"05/10/2026" -"NASA Glenn Research Center";"Issued";"LEW-18692-1";7332146;"11/148,778";"Method For Zero Emission Liquid Hydrogen Production From Methane & Landfill Gas";"06/08/2025" -"NASA Glenn Research Center";"Application";"LEW-18693-1";;"/";"Process For Hydrogen Production via Integrated Processing of Landfill Gas and Biomass"; -"NASA Glenn Research Center";"Application";"LEW-18694-1";;"13/075,879";"Discrete Data Qualification System and Method Comprising Noise Series Fault Detection"; -"NASA Glenn Research Center";"Application";"LEW-18704-1";;"13/531,763";"A Hybrid Power Management (HPM) Based Vehicle Architecture"; -"NASA Glenn Research Center";"Application";"LEW-18714-1";;"13/361,220";"High Strength Nanocomposite Glass Fibers"; -"NASA Glenn Research Center";"Issued";"LEW-18717-1";8476979;"13/178,101";"A Novel Wideband GaN MMIC Distributed Amplifier Based Microwave Power Module for Space Communications, Navigation, and Radar";"07/07/2031" -"NASA Glenn Research Center";"Application";"LEW-18717-2";;"13/847,779";"A Novel Wideband GaN MMIC Distributed Amplifier Based Microwave Power Module for Space Communications, Navigation, and Radar"; -"NASA Glenn Research Center";"Application";"LEW-18724-1";;"13/339,521";"VESGEN Software for Mapping and Quantification of Vascular Remodeling in Botanical Plant Leaves"; -"NASA Glenn Research Center";"Application";"LEW-18732-1";;"13/514,582";"Water Purification by High Voltage, Nanosecond, Non-Equilibrium Plasma: Applications to Human Spaceflight and Terrestrial Point-of-Use";"08/16/2032" -"NASA Glenn Research Center";"Application";"LEW-18736-1";;"13/534,745";"Iridium Interfacial Stack (IrIS) Final"; -"NASA Glenn Research Center";"Application";"LEW-18738-1";;"13/474,948";"Atmospheric Turbulence Modeling for Aero Vehicles"; -"NASA Glenn Research Center";"Application";"LEW-18752-1";;"13/686,000";"Large Strain Transparent Magneto-active Polymer Nanocomposites";"11/28/2031" -"NASA Glenn Research Center";"Application";"LEW-18754-1";;"13/534,870";"Method For Making Measurements Of The Post-Combustion Residence Time In A Gas Turbine Engine"; -"NASA Glenn Research Center";"Application";"LEW-18761-1";;"13/247,601";"Temperature Sensitive Coating Sensor Based On Hematite"; -"NASA Glenn Research Center";"Application";"LEW-18762-1";;"13/364691";"Selenium Interlayer for High-efficiency Multijunction Solar Cell"; -"NASA Glenn Research Center";"Application";"LEW-18768-1";;"13/788,041";"Processing of Nanosensors Using a Sacrificial Template Approach";"03/23/2032" -"NASA Glenn Research Center";"Application";"LEW-18769-1";;"13/537,816";"Compact, Lightweight, CMC (Ceramic Matrix Composite)-Based Acoustic Liner for Subsonic Jet Aircraft Engines--Offering High Temperature Capability, Weight Reduction, and Broadband Acoustic Treatment"; -"NASA Glenn Research Center";"Application";"LEW-18771-1";;"13/301,249";"Integrated Temperature and Capacitive Ablation Recession Rate Sensors"; -"NASA Glenn Research Center";"Application";"LEW-18785-1";;"13/246,440";"Method to Pre-Stress Shock Resistant Mechanical Components and Mechanisms made from Hard, Highly Elastic Materials"; -"NASA Glenn Research Center";"Application";"LEW-18789-1";;"13/771,833";"Method to Increase Performance of Foil Bearings Through Passive Thermal Management";"02/27/2032" -"NASA Glenn Research Center";"Application";"LEW-18797-1";;"13/714,906";"High Speed, Compliant, Planetary Flywheel Touchdown Bearing";"12/16/2031" -"NASA Glenn Research Center";"Application";"LEW-18802-1";;"13/534,804";"Alpha-STREAM Convertor - A Stirling Engine with no moving parts, eliminated streaming losses, high efficiency, low cost fabrication, and electronic wave modulation."; -"NASA Glenn Research Center";"Application";"LEW-18809-1";;"13/410,663";"Sampling and Control Circuit Board for an Inertial Measurement Unit";"08/03/2032" -"NASA Glenn Research Center";"Application";"LEW-18816-1";;"13/749,773";"High Speed Edge Detecting Circuit For Use With Linear Image Sensor";"06/01/2032" -"NASA Glenn Research Center";"Application";"LEW-18821-1";;"13/561,359";"Dopant Selective Reactive Ion Etching of Silicon Carbide";"07/30/2032" -"NASA Glenn Research Center";"Application";"LEW-18822-1";;"13/524,327";"Planar Modular Package"; -"NASA Glenn Research Center";"Application";"LEW-18825-1";0;"13/804,546";"Porous Cross-Linked Polyimide-UREA Networks";"03/14/2033" -"NASA Glenn Research Center";"Application";"LEW-18837-1";;"13/527,181";"In-Situ Solid Particle Generator"; -"NASA Glenn Research Center";"Application";"LEW-18844-1";;"13/918,333";"Electrospun Nanofiber Coating Of Fiber Materials: A Composite Toughening Approach";"06/14/2033" -"NASA Glenn Research Center";"Application";"LEW-18849-1";;"13/906,521";"Paired Threaded Film Cooling Holes for Improved Turbine Film Cooling";"05/31/2033" -"NASA Glenn Research Center";"Application";"LEW-18858-1";;"13/904,513";"V-Cess: A Novel Flow Control Method Using A Shaped Recess";"05/29/2033" -"NASA Glenn Research Center";"Application";"LEW-18862-1";;"13/474,972";"Cascading TESLA oscillating flow diode for Stirling Engine Gas Bearings"; -"NASA Glenn Research Center";"Application";"LEW-18864-1";;"13/756,855";"Polyimide Aerogel Thin Films";"02/03/2032" -"NASA Glenn Research Center";"Application";"LEW-18873-1";;"13/968,000";"High Temperature Single Crystal Preloader";"08/15/2033" -"NASA Glenn Research Center";"Application";"LEW-18887-1";;"13/756,604";"Fuzzy Neuron: Method and Hardware Realization";"02/01/2033" -"NASA Glenn Research Center";"Application";"LEW-18889-1";;"13/713,846";"High Speed Idle Engine Control Mode";"12/13/2032" -"NASA Glenn Research Center";"Application";"LEW-18890-1";;"13/871,114";"Suppression Of Unwanted Noise And Howl In A Test Configuration Where A Jet Exhaust Is Discharged Into A Duct"; -"NASA Glenn Research Center";"Application";"LEW-18891-1 with LEW-18611-1 and LEW-18895-1";;"13/723,598";"G6 Flywheel Design";"12/23/2031" -"NASA Glenn Research Center";"Application";"LEW-18893-1";;"13/653,027";"Novel Aerogel-Based Antennas (ABA) for Aerospace Applications"; -"NASA Glenn Research Center";"Application";"LEW-18900-1";;;"High Efficiency, High Temperature Titanium Heat Pipe Radiator for Space Power and Propulsion Systems"; -"NASA Glenn Research Center";"Application";"LEW-18902-1";;"14/094,006";"Analog Correlator Based on One Bit Digital Correlator";"12/02/2033" -"NASA Glenn Research Center";"Application";"LEW-18903-1";;"13/923,441";"Modeling and Simulation of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation";"06/21/2033" -"NASA Glenn Research Center";"Application";"LEW-18919-1";;"13/645,799";"Wireless Controlled Chalcogenide Nanoionic Radio Frequency Switch";"04/04/2032" -"NASA Glenn Research Center";"Application";"LEW-18923-1";;"13/963,060";"New Power Source For Deep Space Missions- Utilizing The Doubly Exothermic Reaction Between Deuterium And Palladium To Produce Electrical Power";"08/09/2033" -"NASA Glenn Research Center";"Application";"LEW-18928-1";;;"Pt-Ti-Si Simultaneous Ohmic Contacts to N- and P-Type Silicon Carbide"; -"NASA Glenn Research Center";"Application";"LEW-18934-1";;"13/900,642";"Conditionally Active Min-Max Limit Regulators";"05/23/2033" -"NASA Glenn Research Center";"Application";"LEW-18939-1";;"13/916,797";"Magnetostrictive Alternator - Low cost, No moving part, High Efficiency, Oscillating Acoustic Pressure Wave to Electric Power Transducer";"06/13/2033" -"NASA Glenn Research Center";"Application";"LEW-18942-1";;"13/771,920";"Adaptive Phase Delay Generator";"02/20/2033" -"NASA Glenn Research Center";"Application";"LEW-18949-1";;"13/923,450";"Advanced High Temperature and Fatigue Resistant Environmental Barrier Coating Bond Coat Systems for SiC/SiC Ceramic Matrix Composites";"06/21/2033" -"NASA Glenn Research Center";"Application";"LEW-18952-1";;;"A Novel Real Time Adaptive Filter For The Reduction Of Artifacts In Functional Near Infrared Spectroscopy Signals"; -"NASA Glenn Research Center";"Application";"LEW-18957-1";;"14/048,895";"Dynamic Range Enhancement Of High-Speed Data Acquisition Systems By Reversible Non-Linear Amplitude Compression";"10/08/2033" -"NASA Glenn Research Center";"Application";"LEW-18960-1";;"13/891,461";"Dry Snorkel Cold Immersion Suit for Hypothermia Prevention";"05/11/2032" -"NASA Glenn Research Center";"Application";"LEW-18963-1";;"13/853,308";"Flywheel Pulse & Glide System for Vehicles"; -"NASA Glenn Research Center";"Application";"LEW-18964-1";;"13/905,333";"High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications";"05/30/2033" -"NASA Glenn Research Center";"Application";"LEW-18970-1";;"14/158,080";"Methods for Intercalating and Exfoliating Hexagonal Boron Nitride";"01/17/2034" -"NASA Glenn Research Center";"Application";"LEW-18986-1";;;"Generation Of High Pressure Oxygen Via Electrochemical Pumping In A Multi-Stage Electrolysis Stack"; -"NASA Glenn Research Center";"Application";"LEW-19013-1";;"14/095,442";"Spoked Wheel Assembly With Two Rotational Modes";"12/03/2033" -"NASA Glenn Research Center";"Application";"LEW-19029-1";;"14/191,708";"Superelastic Ternary Ordered Intermetallic Compounds";"02/27/2034" -"NASA Glenn Research Center";"Application";"LEW-19040-1";;"14/193,024";"Fast, Large Area, Wide Band Gap UV Photodetector for Cherenkov Light Detection";"02/28/2034" -"NASA Glenn Research Center";"Application";"LEW-19045-1";;"13/968,531";"Multimode Directional Coupler for Measurement and Utilization of Harmonic Frequencies from Traveling Wave Tube Amplifiers";"08/16/2033" -"NASA Glenn Research Center";"Application";"LEW-19053-1";;"14/193,719";"Process for Preparing Aerogels from Polyamides";"02/28/2034" -"NASA Glenn Research Center";"Application";"LEW-19067-1";;;"Plasma Spray-Physical Vapor Deposition (PS-PVD) of Advanced Environmental Barrier Coatings"; -"NASA Glenn Research Center";"Application";"LEW-19077-1";;;"Improved Composite Damage Tolerance and Through Thickness Conductivity By Interleaving Carbon Fiber Veil Nanocomposites"; -"NASA Glenn Research Center";"Application";"LEW-19080-1";;;"Crosslinked Polyethylene Aerogels from Low Density Polyethylene, Linear Low Density Polyethylene, and Repurposed Polyethylene"; -"NASA Glenn Research Center";"Application";"LEW-19098-1";;"61/866,585";"High Temperature, Flexible Composite Seals for Aeronautics and Space Environments Incorporating Aerogel Insulation"; -"NASA Glenn Research Center";"Application";"LEW-19171-1";;"61/931,189";"Low Power Charged Particle Counter for Space Radiation Monitoring"; -"NASA Marshall Space Flight Center";"Issued";"MFS-28402-2";5780594;"08/448,196";"Biologically Active Protein Fragments Containing Specific Binding Regions Of Serum Albumin Or Related Proteins";"07/14/2015" -"NASA Marshall Space Flight Center";"Issued";"MFS-28985-1";5641681;"08/422,963";"Device And Method For Screening Crystallization Conditions In Solution Crystal Growth";"04/17/2015" -"NASA Marshall Space Flight Center";"Issued";"MFS-31175-2-CIP";6578851;"09/693,098";"Gasket Assembly For Sealing Mating Surfaces";"10/16/2020" -"NASA Marshall Space Flight Center";"Issued";"MFS-31243-1";6459822;" 09/364,919";"Video Image Stabilization And Registration (VISAR)";"07/26/2019" -"NASA Marshall Space Flight Center";"Issued";"MFS-31243-2-CON";6560375;"10/143,539";"Video Image Stabilization And Registration";"05/10/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31258-1";6135255;"09/207,710";"Releasable Conical Roller Clutch";"12/09/2018" -"NASA Marshall Space Flight Center";"Issued";"MFS-31294-2-CIP2";6592687;"10/196,389";"Aluminum Alloy And Article Cast Therefrom";"07/11/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31294-5-CIP";6399020;"09/688,729";"Aluminum-Silicon Alloy Having Improved Properties At Elevated Temperatures And Articles Cast Therefrom";"10/11/2020" -"NASA Marshall Space Flight Center";"Issued";"MFS-31294-6-CIP";6419769;"09/749,503";"Aluminum-Silicon Alloy Having Improved Properties At Elevated Temperatures And Process For Producing Cast Articles Therefrom";"12/22/2020" -"NASA Marshall Space Flight Center";"Issued";"MFS-31294-7-CIP";6669792;"09/800,312";"Process For Producing A Cast Article From A Hypereutectic Aluminum-Silicon Alloy";"03/02/2021" -"NASA Marshall Space Flight Center";"Issued";"MFS-31303-1";6748349;"09/313,576";"Generalized Fluid System Simulation Program (GFSSP) Version 2.01c";"05/07/2019" -"NASA Marshall Space Flight Center";"Issued";"MFS-31387-1";6361961;"09/560,532";"GRAVITY RESPONSIVE NADH OXIDASE OF THE PLASMA MEMBRANE";"04/25/2020" -"NASA Marshall Space Flight Center";"Issued";"MFS-31399-1";6658329;"10/138,887";"Addition Of Rangefinder To The Video Guidance Sensor";"06/05/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31413-1";6497355;"09/690,035";"Precision Penetration Control System For The Friction Stir Welding (FSW) Retractable Pin Tool";"10/19/2020" -"NASA Marshall Space Flight Center";"Issued";"MFS-31475-1";6424470;"09/616,624";"Panoramic Refracting Optic (PRO)";"07/28/2020" -"NASA Marshall Space Flight Center";"Issued";"MFS-31475-2-DIV";6580567;"10/173,410";"Panoramic Refracting Conical Optic";"06/17/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31488-1";6028693;"09/7,124";"Microresonator And Associated Method For Producing And Controlling Photonic Signals With A Photonic Bandgap Delay Apparatus";"01/14/2018" -"NASA Marshall Space Flight Center";"Issued";"MFS-31490-1";7118074;"10/690,161";"Electrodynamic Tether System Design For Spacecraft Deorbit";"10/17/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31529-1";7081730;"10/857,375";"Micro-Commanding Servo Motor Controller With Greater Than Fifty Million To One Dynamic Rate Range";"06/19/2024" -"NASA Marshall Space Flight Center";"Issued";"MFS-31559-1-CON";8127977;"13/157,895";"Phase/Matrix Transformation Weld Process And Apparatus";"11/27/2021" -"NASA Marshall Space Flight Center";"Issued";"MFS-31559-1-DIV";7980449;"10/385,168";"Phase/Matrix Transformation Weld Process And Apparatus";"11/27/2021" -"NASA Marshall Space Flight Center";"Issued";"MFS-31559-2-DIV";8225984;"13/157988";"Phase/Matrix Transformation Weld Process And Apparatus";"11/27/2021" -"NASA Marshall Space Flight Center";"Issued";"MFS-31565-1";6885779;"09/877,801";"Full-Cycle, Low Loss, Low Distortion Phase Modulation From Multi-Layered Dielectric Stack With Terahertz Optical Bandwidth";"08/17/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31584-1";6497091;"09/877,800";"Hypergolic Ignitor Assembly";"06/06/2021" -"NASA Marshall Space Flight Center";"Issued";"MFS-31584-1-CIP";6845605;"10/288,800";"Hypergolic Ignitor";"01/26/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31593-1";6939610;"10/212,564";"Smart Thermal Management Coating";"09/20/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31596-1";6873762;"10/118,626";"Fabrication Of Fiber-Optic Gratings Over A Wide Range Of Bragg Wavelength And Bandwidth Using A Single Phase Mask";"10/12/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31616-1";6540426;"09/949,408";"Passive Ball Capture Latch Docking Mechanism";"09/04/2021" -"NASA Marshall Space Flight Center";"Issued";"MFS-31646-1";6860099;"10/263,297";"Liquid Propellant Tracing Impingement Injector";"05/24/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31649-1";7446860;"11/527,648";"Nonintrusive, Remote, Micron Accuracy, Laser Fresnel Ranging System";"10/19/2026" -"NASA Marshall Space Flight Center";"Issued";"MFS-31698-1";6802999;"10/173,536";"Method Of Fabricating A Protective Crucible Wall Coating Incorporating Designed Multi-Use Channels";"05/02/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31706-1";6886392;"10/622,174";"Single Ball Bearing Lubricant And Material Evaluator";"07/17/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31727-1";6953129;"10/231,428";"Impact And Fire Resistant Coating For Pressure Vessels";"11/07/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31761-1";6802488;"10/232,974";"Electro-Mechanically Actuated Propellant Valve";"01/29/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31768-1";6745942;"10/214,482";"Magnetic Symbology Reader";"08/05/2022" -"NASA Marshall Space Flight Center";"Issued";"MFS-31776-1";7735265;"11/780,610";"Foam-Rigidized Inflatable Tubular Space Booms";"07/20/2027" -"NASA Marshall Space Flight Center";"Issued";"MFS-31785-1";7006203;"10/646,000";"Integrated Rangefinding Measurement In Video Guidance Sensor";"08/21/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31789-1";7265476;"10/975,121";"MEMS- Micro-Translation Stage With Indefinite Linear Travel Capability";"11/01/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-31807-1";7050161;"10/637,085";"Global Radius Of Curvature Estimation And Control System For Segmented Mirrors (GRoCECS)";"01/07/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-31813-1";7802799;"11/527,653";"Joining Metallic To Composite Components";"07/29/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-31815-1";7325749;"10/738,352";"Distributed Solid State Programmable Thermostat / Power Controller";"01/29/2026" -"NASA Marshall Space Flight Center";"Issued";"MFS-31817-1";7515257;"11/14,455";"Short-Range / Long-Range Integrated Target (SLIT) For Video Guidance Sensor Rendezvous And Docking";"06/07/2027" -"NASA Marshall Space Flight Center";"Issued";"MFS-31823-1-DIV";7095000;"10/943,827";"Radio-Frequency Driven Dielectric Heaters For Non-Nuclear Testing In Nuclear Core Development";"11/27/2024" -"NASA Marshall Space Flight Center";"Issued";"MFS-31828-1";6918970;"10/120,226";"High Strength Aluminum Alloy For High Temperature Applications";"04/12/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31838-1";7641949;"10/857,379";"Improved Pressure Vessel Impact Resistance Utilizing Filament Wound Hybrid Fibers";"10/15/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-31842-1";7347089;"11/215,749";"Gas Volume Contents Within A Container, Smart Volume Instrument";"11/26/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-31843-1";7174077;"10/631,220";"Fiber-Coupled Laser Diodes With Even Illumination Pattern";"07/30/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31852-1";7106457;"10/857,372";"Achromatic Shearing Phase Sensor For Phase Alignment Of A Segmented Telescope";"01/21/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-31865-1";6888476;"10/615,369";"Advanced Video Guidance Sensor Software";"07/21/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31886-1";6850592;"10/321,873";"Digital Equivalent System (DEDS) For X-Ray Flourescent Spectral Output";"01/08/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-31891-1";7375801;"11/108,140";"Video Sensor With Range Measurement Capability";"11/06/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-31918-1";7275675;"10/928,876";"Optimal Design Geometry For All Friction Stir Weld Tools";"01/15/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-31944-1";7017812;"10/730,191";"Variable Distance Angular Symbology Reader";"11/26/2023" -"NASA Marshall Space Flight Center";"Issued";"MFS-32024-1";8297468;"10/857,380";"Liquefied Natural Gas Fuel Tank";"07/13/2021" -"NASA Marshall Space Flight Center";"Issued";"MFS-32031-1";7738084;"11/543,284";"Fiber Optic Liquid Mass Flow Sensor - Improved Prototype Design";"09/29/2026" -"NASA Marshall Space Flight Center";"Issued";"MFS-32099-1-CON";8561829;"13/544,066";"Composite Pressure Vessel Including Crack Arresting Barrier";"10/23/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32102-1";7540143;"11/172,665";"Heated Pressure Balls Monopropellant Thermal Rocket Engine Cycle";"12/12/2026" -"NASA Marshall Space Flight Center";"Issued";"MFS-32105-1-DIV";7568608;"11/700,972";"Ultrasonic Stir Welding Process And Apparatus";"01/29/2027" -"NASA Marshall Space Flight Center";"Issued";"MFS-32115-1";7686202;"11/543,287";"Gimbling Shoulder For Friction Stir Welding";"06/18/2027" -"NASA Marshall Space Flight Center";"Issued";"MFS-32136-1";7595841;"11/174,210";"Video Image Stabilization And Registration - Plus (VISAR+)";"12/03/2027" -"NASA Marshall Space Flight Center";"Issued";"MFS-32137-1";7177164;"11/376,632";"Multi-loop High Voltage Power Supply with Fast Rise/Fall Time";"03/10/2026" -"NASA Marshall Space Flight Center";"Issued";"MFS-32175-1";7228241;"11/152,810";"An Extended Lee-Kesler Equation-of-State (ELK-EoS) For The Volumetric And Thermodynamic Properties Of Propellant Fluids, Including The Non-Polar Quantum And Polar Fluids";"06/13/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-32192-1";7116098;"11/357,454";"Absolute Limit Sensor (ALS)";"02/16/2026" -"NASA Marshall Space Flight Center";"Issued";"MFS-32208-1";7259981;"11/296,719";"Analog Nonvolatile Computer Memory";"12/14/2025" -"NASA Marshall Space Flight Center";"Issued";"MFS-32214-1";7418814;"11/172,666";"Dual Expander Cycle Rocket Engine Cycle with an Intermediate Brayton Cycle Heat Exchanger";"12/19/2026" -"NASA Marshall Space Flight Center";"Issued";"MFS-32228-1";8290435;"12/241,322";"Short Range Antenna / Close Proximity Transmitter and Receiver";"08/17/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32253-1";7469878;"11/518,733";"Magnetorestrictive Valves";"10/17/2026" -"NASA Marshall Space Flight Center";"Issued";"MFS-32307-1";7908079;"11/527,658";"Portable Runway Intersection Display And Monitoring System";"01/13/2030" -"NASA Marshall Space Flight Center";"Issued";"MFS-32311-1";7623621;"12/47,686";"Identification And Authentication System Using Integrated Optical And X-ray Fluorescene Spectral Methods";"03/13/2028" -"NASA Marshall Space Flight Center";"Issued";"MFS-32318-1";8098060;"12/173,318";"SCAPS(Single Coil Absolute Position Sensor) GAPSYN (Inductive Gap Sensor) Digital Signal Conditioning Electronics";"09/29/2030" -"NASA Marshall Space Flight Center";"Issued";"MFS-32323-1";8169620;"12/563,819";"Sub-Pixel Spatial Resolution Interferometry With Interlaced Stitching";"10/15/2030" -"NASA Marshall Space Flight Center";"Issued";"MFS-32324-1";7594530;"11/942,322";"Orbital Foamed Metal Extruder";"06/09/2028" -"NASA Marshall Space Flight Center";"Issued";"MFS-32341-1";8550468;"12/210,843";"High Load Fully Retained Dynamic Cryogenic Seal";"01/09/2032" -"NASA Marshall Space Flight Center";"Issued";"MFS-32364-1";7808353;"11/513,433";"Plasmoid Thruster for Electrode-less, High Specific Impulse Propulsion";"07/22/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32390-1";7867589;"11/780,561";"Hybrid composite cryogenic tank structure";"10/14/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32400-1";7900436;"11/780,626";"Gas Generator Augmented Expander Cycle Rocket Engine";"01/04/2030" -"NASA Marshall Space Flight Center";"Issued";"MFS-32402-1";7911174;"12/39,506";"Inexpensive, Rate Insensitive, Linear, Load Compensating System for Hybrid Stepper Motors";"01/25/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32429-1";7807097;"12/123,170";"Orbital Batch Process Foamed Aluminum Facility";"07/11/2028" -"NASA Marshall Space Flight Center";"Issued";"MFS-32438-1";8004364;"11/828,563";"16-Kilowatt (KW) 2-30MHz Solid State Power Amplifier using innovative combining methods";"11/03/2028" -"NASA Marshall Space Flight Center";"Issued";"MFS-32439-1";7831225;"11/828,590";"H2O-NaCl based radio frequency power load";"04/07/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32497-1";7848606;"12/047,805";"Reprocessing Non-Oxide Optical Fiber Preforms Utilizing an Axial Magnetic Field";"05/26/2029" -"NASA Marshall Space Flight Center";"Application";"MFS-32518-1-CIP";;"13/452,303";"Liquid Propellant Injection Elements with Self-Adjusted Inlet Area for Rocket and Other Combustor-Type Engines Applications";"10/03/2028" -"NASA Marshall Space Flight Center";"Issued";"MFS-32521-1";7804600;"12/44,740";"Dispersive Filter For Enhancement Of Laser Gyroscopes";"06/10/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32548-1";7409875;"11/862,793";"Optical Hotspot Conductive Fluid Flow Sensor";"09/27/2027" -"NASA Marshall Space Flight Center";"Issued";"MFS-32558-1";8490470;"12/569,555";"True Shear Parallel Plate Viscometer";"12/04/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32584-1";7929144;"12/336,260";"Local Leak Detection and Health Monitoring of Pressurized Tanks in a Space Environment";"11/17/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32588-1";8052860;"11/957,051";"ELECTROCHEMICALLY-ENHANCED MECHANICAL POLISHING OF OPTICS";"09/06/2030" -"NASA Marshall Space Flight Center";"Issued";"MFS-32605-1";8309944;"12/240,626";"Grazing Incidence Optics for Neutron Analysis and Imaging";"12/07/2030" -"NASA Marshall Space Flight Center";"Application";"MFS-32605-1-CIP";0;"12/717,450";"Novel Grazing Incidence Neutron Optics";"09/29/2028" -"NASA Marshall Space Flight Center";"Issued";"MFS-32605-1-DIV";8575577;"13/534,951";"Novel Grazing Incidence Neutron Optics";"09/29/2028" -"NASA Marshall Space Flight Center";"Application";"MFS-32612-1-CIP";;"13/796,693";"Protective Safety Cover for Pool and Spa Drains";"03/24/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32614-1";464750;"12/826,887";"Magnetostrictive Regulator";"04/03/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32615-1";8132772;"12/567,451";"Avionics/Electronics Box Rail Mount System";"11/27/2030" -"NASA Marshall Space Flight Center";"Issued";"MFS-32638-1";8291776;"12/827,515";"Magnetostrictive Force-to-Angle Sensor";"03/12/2031" -"NASA Marshall Space Flight Center";"Application";"MFS-32642-1";0;"12/827,598";"Cryogenic and Non-Cryogenic Optical Liquid Level Instrument for Stratified Conditions";"04/05/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32651-1";8090484;"12/403,096";"A Planar Translation Device for Solar Sail Spacecraft Attitude Control and Maneuvering";"07/03/2030" -"NASA Marshall Space Flight Center";"Application";"MFS-32655-1";0;"12/862,510";"AEROSPACE LASER IGNITION/ABLATION VARIABLE, HIGH PRECISION THRUSTER"; -"NASA Marshall Space Flight Center";"Issued";"MFS-32667-1";8357884;"12/839,848";"Extraction of Water from the Soil of Space Bodies Using Microwave processes";"04/22/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32697-1";8252734;"12/634,502";"Multi Layered or Mixed Element Aqueous Ionic Fluids As Fuel or Lubrication Friction Modifiers";"08/26/2030" -"NASA Marshall Space Flight Center";"Issued";"MFS-32697-1-CIP";8563487;"13/525,623";"Multi Layered or Mixed Element Aqueous Ionic Fluids As Fuel or Lubrication Friction Modifiers";"12/09/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32715-1";8535440;"12/758169";"Improvement of Crystalline Quality during Melt Growth of Semiconductors by Mechanically Induced Nucleation";"07/18/2032" -"NASA Marshall Space Flight Center";"Issued";"MFS-32719-1";8564770;"13/150832";"Field-Deployable Spectral Estimator of Trichloroacetic Acid (TCAA) in Plants";"05/18/2032" -"NASA Marshall Space Flight Center";"Issued";"MFS-32733-1";7621670;"12/392,867";"Unbalanced Flow Distribution Mixer with Flow Metering Capability";"02/25/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32737-1";8448498;"12/870,468";"Hermetic Seal Leak Detection Apparatus";"06/06/2031" -"NASA Marshall Space Flight Center";"Application";"MFS-32737-1-CIP";;"13/874182";"Hermetic Seal Leak Detection Apparatus";"08/27/2030" -"NASA Marshall Space Flight Center";"Issued";"MFS-32748-1";8132961;"12/397,973";"Optimized Length-to-Diameter Ratio Flow Meter";"08/16/2030" -"NASA Marshall Space Flight Center";"Application";"MFS-32757-1";0;"13/118086";"Compliant Mechanical Motor"; -"NASA Marshall Space Flight Center";"Application";"MFS-32761-1-CIP";;"13/673,309";"Multi-Channel Flow Plug with Eddy Current Minimization for Metering, Mixing, and Conditioning";"07/23/2029" -"NASA Marshall Space Flight Center";"Application";"MFS-32761-1-CON";;"13/729,861";"Multi-Channel Flow Plug with Eddy Current Minimization for Meeting, Mixing, and Conditioning";"07/23/2029" -"NASA Marshall Space Flight Center";"Issued";"MFS-32777-1";8425751;"13/020144";"Electrodeposited Nickel-Cobalt Alloy Development";"05/31/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32797-1";8330961;"12/837,173";"A compact sensor for in-situ measurements of gas leaks";"08/24/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32803-1";8133768;"12/560,371";"Method of Manufacturing Light Emmitting, Photovoltaic or other Electronic Apparatus";"05/31/2027" -"NASA Marshall Space Flight Center";"Application";"MFS-32809-1";0;"13/369,704";"Telemetry encoder/decoder"; -"NASA Marshall Space Flight Center";"Issued";"MFS-32817-1";8290006;"13/281,025";"Variable Power Handheld Laser Torch for Joining Processes";"10/25/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32826-1";8316884;"12/846,429";"Drain System for Pools, Spas, and Tanks. (Reference MFS 32612-1)";"03/23/2031" -"NASA Marshall Space Flight Center";"Application";"MFS-33054-1";;"14/020,326";"Multi-spacecraft Autonomous Positioning System / Network-Based Navigation";"09/06/2033" -"NASA Marshall Space Flight Center";"Issued";"MFS-32830-1";8420582;"13/027472";"FRICTION MANAGEMENT USING SOLVENT PARTITIONING OF SINGLE ELEMENT AND MULTI-ELEMENT HYDROPHILIC SURFACE-INTERACTIVE CHEMICALS CONTAINED IN HYDROPHILIC TARGETED EMULSIONS";"02/15/2031" -"NASA Marshall Space Flight Center";"Application";"MFS-32830-1-CIP";;"13/900,452";"Friction and Wear Management Using Solvent Partioning of Hydrophilic Surface-Interactive Chemicals contains in Boundary Layer-Targeted Emulsions";"03/07/2033" -"NASA Marshall Space Flight Center";"Issued";"MFS-32840-1";8322685;"12/842,218";"Non-collinear Valve Actuator";"04/02/2031" -"NASA Marshall Space Flight Center";"Application";"MFS-32841-1";;"13/424,754";"DUPLICATE of Telemetry encoder/decoder"; -"NASA Marshall Space Flight Center";"Application";"MFS-32853-1";;"14/196,203";"Particle Damping for Vibration Mitigation of Circuit Cards";"03/04/2034" -"NASA Marshall Space Flight Center";"Issued";"MFS-32857-1";8668168;"13/326,513";"Rocket Vent Design with Variable Flow Control and Rain Protection";"01/21/2032" -"NASA Marshall Space Flight Center";"Issued";"MFS-32859-1";8393520;"13/240,075";"Variably Pulsed High Power Ultrasonic (HPU) Energy for Ultrasonic Stir Welding (USW)";"11/07/2031" -"NASA Marshall Space Flight Center";"Issued";"MFS-32859-1-DIV";8393523;"13/523,310";"Pulsed Ultrasonic Stir Welding Method";"09/22/2031" -"NASA Marshall Space Flight Center";"Application";"MFS-32865-1";;"13/302,734";"Easily Installed, In-situ Adaptable Flow Measurement Device and Method."; -"NASA Marshall Space Flight Center";"Issued";"MFS-32865-2";8555731;"13/302,773";"Easily Installed, In-situ Adaptable Flow Measurement Device and Method.";"06/04/2032" -"NASA Marshall Space Flight Center";"Application";"MFS-32865-3";;"13/302,817";"Easily Installed, In-situ Adaptable Flow Measurement Device and Method."; -"NASA Marshall Space Flight Center";"Application";"MFS-32865-4";;"13/302,845";"Easily Installed, In-situ Adaptable Flow Measurement Device and Method.";"08/23/2032" -"NASA Marshall Space Flight Center";"Issued";"MFS-32871-1";8577519;"13/424,898";"Low Cost Telemetry System for Small/micro satellites";"06/13/2032" -"NASA Marshall Space Flight Center";"Application";"MFS-32873-1";;"13/523210";"High-current, high-voltage switch using non-hazardous liquid metals";"11/29/2032" -"NASA Marshall Space Flight Center";"Application";"MFS-32889-1";;"13/174,084";"Pyrotechnic Pipe Plug and Variable Area Flow Meter"; -"NASA Marshall Space Flight Center";"Application";"MFS-32895-1";;"13/242,734";"High Powered Ultrasonically Assisted Thermal Stir Welding"; -"NASA Marshall Space Flight Center";"Application";"MFS-32912-1";;"13/299,930";"Salt Water Power Load - Part II"; -"NASA Marshall Space Flight Center";"Application";"MFS-32916-1";;"13/333283";"Improved Impact Toughness and Heat Treatment for Cast Aluminum Wheels"; -"NASA Marshall Space Flight Center";"Application";"MFS-32924-1";;"13/312,481";"Partial Automated Alignment & Integration System";"07/09/2032" -"NASA Marshall Space Flight Center";"Application";"MFS-32934-1";;"12/833,894";"Methods, Devices, and Systems Relating to a Sensing Device"; -"NASA Marshall Space Flight Center";"Issued";"MFS-32940-1";8657179;"13/430,268";"Closed Loop Temperature Control for the Thermal Stir Welding Process";"03/26/2032" -"NASA Marshall Space Flight Center";"Application";"MFS-32944-1";;"13/896,137";"Mitigation of Sonic Boom from Supersonic Vehicles by means of Long Penetration Mode (LPM) Counter-Flowing Cold Gas Jets";"05/16/2033" -"NASA Marshall Space Flight Center";"Application";"MFS-32945-1";;"14/082,956";"Piezoelectric Gravity Gradient and Multiple Purpose Sensor Detection System";"11/18/2033" -"NASA Marshall Space Flight Center";"Application";"MFS-32986-1";;"13/961,573";"Non-Explosively-Actuated Pressurization Start Valve";"08/07/2033" -"NASA Marshall Space Flight Center";"Application";"MFS-33007-1";;"14/192,350";"Carbon Nanotube Tape Vibrating Gyroscope Update";"02/27/2034" -"NASA Marshall Space Flight Center";"Application";"MFS-33022-1";;"14/192,395";"A Design Technology to Eliminate Dribble Volume in Rocket Engine Manifolds for Swirl-Coaxial Injectors";"02/27/2034" -"NASA Marshall Space Flight Center";"Application";"MFS-33031-1";;"13/949,361";"An aerodynamic design concept for rocket nozzle side load reduction";"07/24/2033" -"NASA Marshall Space Flight Center";"Application";"MFS-33060-1";;"14/104,881";"Carbon Nanotube Tape Single Axis Accelerometer";"12/12/2033" -"NASA Johnson Space Center";"Issued";"MSC-21715-2";5869238;"08/390,904";"Quantitative Method Of Measuring Cancer Cell Urokinase And Metastatic Potential";"02/09/2016" -"NASA Johnson Space Center";"Issued";"MSC-21947-1";7541159;"10/828,531";"MOLECULAR SPECIFIC ANTIBODIES AGAINST UROKINASE";"08/28/2025" -"NASA Johnson Space Center";"Issued";"MSC-22119-1";5851816;"08/172,962";"A PROCESS FOR DEVELOPING HIGH-FIDELITY THREE-DIMENSIONAL TUMOR MODELS OF HUMAN PROSTATE CARCINOMA";"12/22/2015" -"NASA Johnson Space Center";"Issued";"MSC-22122-1";6117674;"08/366,065";"HORIZONTAL ROTATING-WALL VESSEL PROPAGATION IN IN VITRO HUMAN TISSUE MODELS";"09/12/2017" -"NASA Johnson Space Center";"Issued";"MSC-22489-1";5827531;"08/349,169";"Multi-Lamellar, Immiscible-Phase Microencapsulation of Drugs";"10/27/2015" -"NASA Johnson Space Center";"Issued";"MSC-22616-2";6133036;"09/7,239";"Preservation Of Liquid Biological Samples";"12/12/2015" -"NASA Johnson Space Center";"Issued";"MSC-22616-3";6716392;"09/630,979";"Preservation Of Liquid Biological Samples";"01/14/2018" -"NASA Johnson Space Center";"Issued";"MSC-22633-1";6485963;"09/587,028";"Electrically Potentiated Growth Of Mammalian Neuronal Tissue Facilitated By Rotating Wall Vessel Culture";"06/02/2020" -"NASA Johnson Space Center";"Issued";"MSC-22633-2";6673597;"09/798,854";"Growth Stimulation Of Biological Cells And Tissue By Electromagnetic Fields And Uses Thereof";"02/28/2021" -"NASA Johnson Space Center";"Issued";"MSC-22695-1";6261844;"09/213,988";"A Unique Urine Preservative With Combined Antibacterial And Antioxidant Properties";"12/17/2018" -"NASA Johnson Space Center";"Issued";"MSC-22721-2";6254359;"09/354,915";"Blood Pump Bearing System";"07/09/2019" -"NASA Johnson Space Center";"Issued";"MSC-22724-1";6047216;"09/129,832";"Millimeter Wave/Microwave Ablation For Treatment Of Atherosclerotic Lesions";"08/05/2018" -"NASA Johnson Space Center";"Issued";"MSC-22724-2";6226553;"09/501,150";"Endothelium Preserving Microwave Treatment For Atherosclerosis";"02/09/2020" -"NASA Johnson Space Center";"Issued";"MSC-22724-3";6223086;"09/504,768";"Endothelium Preserving Microwave Treatment For Atherosclerosis";"02/09/2020" -"NASA Johnson Space Center";"Issued";"MSC-22724-5";6496736;"09/500,538";"Endothelium Preserving Microwave Treatment For Atherosclerosis";"02/09/2020" -"NASA Johnson Space Center";"Issued";"MSC-22757-1";5879079;"08/917,581";"Automated Propellant Blending Machine";"08/20/2017" -"NASA Johnson Space Center";"Issued";"MSC-22797-1";6312398;"08/786,842";"A Method Of Applying External Power To Assist In The Operation Of Joints In Pressure Suits And Inflatable Structures2283";"12/19/2016" -"NASA Johnson Space Center";"Issued";"MSC-22839-1";6501414;"09/826,402";"Locating Concealed Objects Using Spectral Signatures";"04/02/2021" -"NASA Johnson Space Center";"Issued";"MSC-22859-1";6730498;"09/56,363";"Production Of 1-25diOH Vitamin D3, Erythropoietin And Other Products By Epithelial And Interstitial Cells In Response To Shear Stress";"04/08/2017" -"NASA Johnson Space Center";"Issued";"MSC-22859-2";6946246;"09/532,001";"Production Of Functional Proteins: Balance Of Shear Stress And Gravity";"03/21/2020" -"NASA Johnson Space Center";"Issued";"MSC-22859-3";7198947;"10/734,759";"Production Of Functional Proteins: Balance Of Shear Stress And Gravity";"12/22/2023" -"NASA Johnson Space Center";"Issued";"MSC-22859-5";7972821;"12/174,221";"Production of Functional Proteins: Balance of Shear Stress and Gravity";"02/11/2029" -"NASA Johnson Space Center";"Issued";"MSC-22863-1";7122071;"10/263,280";"Centrifugal Adsorption Cartridge System (CACS)";"12/21/2022" -"NASA Johnson Space Center";"Issued";"MSC-22866-1";6099864;"09/79,741";"INSITU Activation Of Microcapsules";"05/15/2018" -"NASA Johnson Space Center";"Issued";"MSC-22900-1";6231010;"09/236,785";"Advanced Structural/Inflatable Hybrid Spacecraft Habitation Module";"01/25/2019" -"NASA Johnson Space Center";"Issued";"MSC-23563-2";8039099;"11/848,332";"Nanoencapsulated Aerogels Produced By Monomer Vapor Deposition And Polymerization";"08/13/2028" -"NASA Johnson Space Center";"Issued";"MSC-22931-1";6354540;"09/405,301";"Electro-Mechanically Actuated Magnetic Ring With Load Sensing Feedback And Closed Loop Control Docking/Berthing System For Alignment And Mating Of Multiple Vehicles, Structures, And/or Assemblies";"09/20/2019" -"NASA Johnson Space Center";"Issued";"MSC-22936-1";6387399;"09/79,766";"Protein Crystal Encapsulation Process";"05/15/2018" -"NASA Johnson Space Center";"Issued";"MSC-22936-2";6558698;"09/733,391";"Microencapsulated Bioactive Agents And Method Of Making";"12/06/2020" -"NASA Johnson Space Center";"Issued";"MSC-22936-3";6676964;"09/774,168";"Method For Determining The Three-Dimensional Structure Of A Protein";"01/26/2021" -"NASA Johnson Space Center";"Issued";"MSC-22936-4";6599449;"09/774,169";"X-Ray Crystallography Reagent";"01/24/2021" -"NASA Johnson Space Center";"Issued";"MSC-22937-1";6214300;"09/79,833";"Microencapsulation And Electrostatic Processing Device (MEPS)";"05/15/2018" -"NASA Johnson Space Center";"Issued";"MSC-22938-1";6103271;"09/79,770";"Low-Shear Microencapsulation & Electrostatic Coating Process";"05/15/2018" -"NASA Johnson Space Center";"Issued";"MSC-22939-4";7968117;"12/100,009";"Externally Triggered Microcapsules";"07/09/2029" -"NASA Johnson Space Center";"Issued";"MSC-22970-1";6253563;"09/337,208";"Solar-Powered Refrigeration System";"06/03/2019" -"NASA Johnson Space Center";"Issued";"MSC-22970-2";6469487;"09/838,679";"Solar Powered Refrigeration System";"06/03/2019" -"NASA Johnson Space Center";"Issued";"MSC-22970-3";6453693;"09/838,680";"Solar Powered Refrigeration System";"06/03/2019" -"NASA Johnson Space Center";"Issued";"MSC-23029-1";6651739;"09/793,817";"Medium Frequency Pseudo Noise Geological Radar";"07/20/2021" -"NASA Johnson Space Center";"Issued";"MSC-23037-1";6864473;"09/988,855";"Variable Shadow Screen For Optical Devices";"11/14/2021" -"NASA Johnson Space Center";"Issued";"MSC-23041-1";6334302;"09/351,152";"Variable Specific Impulse Magnetoplasma Rocket (VASIMR)";"06/28/2019" -"NASA Johnson Space Center";"Issued";"MSC-23049-3";6592579;"09/746,542";"Method For Selective Thermal Ablation";"06/28/2021" -"NASA Johnson Space Center";"Issued";"MSC-23049-4";6675050;"09/746,533";"Computer Program For Microwave Antenna";"05/07/2021" -"NASA Johnson Space Center";"Issued";"MSC-23076-1";6321746;"09/574,758";"Collapsable, Light, Portable Human Hyperbaric Chamber/Airlock System";"05/17/2020" -"NASA Johnson Space Center";"Issued";"MSC-23092-1";6547189;"09/826,403";"Advanced, Large Volume, Highly Loaded, Hybrid Inflatable Pressure Vessel";"05/26/2021" -"NASA Johnson Space Center";"Issued";"MSC-23153-1";6995572;"09/803,613";"Coplanar Waveguide Ice Detection Sensor";"11/04/2023" -"NASA Johnson Space Center";"Issued";"MSC-23154-1";7113820;"09/906,013";"A Real-Time, High Frequency QRS Electrocardiograph.";"05/03/2023" -"NASA Johnson Space Center";"Issued";"MSC-23154-2";7539535;"11/345,687";"A Real-Time, High Frequency QRS Electrocardiograph";"07/13/2027" -"NASA Johnson Space Center";"Issued";"MSC-23178-1";6997637;"10/5,820";"Deceleration Limiting Safety Crash Wall";"05/19/2022" -"NASA Johnson Space Center";"Issued";"MSC-23193-1";6618010;"09/994,989";"Passive Noncoherent Tracking Of A Data-Modulated Signal";"11/14/2021" -"NASA Johnson Space Center";"Issued";"MSC-23277-1";7295309;"10/734,753";"Microcapsule Flow Sensor";"11/12/2024" -"NASA Johnson Space Center";"Issued";"MSC-23303-1";7397774;"10/446,283";"Downlink Data Multiplexer";"01/16/2026" -"NASA Johnson Space Center";"Issued";"MSC-23307-1";6559645;"10/28,962";"Detection Of Subterranean Metal Objects Using Differential Spectral Processing";"11/17/2020" -"NASA Johnson Space Center";"Issued";"MSC-23309-1";7040319;"10/87,866";"Oxygen Partial Pressure Monitoring Device For Aircraft Oxygen Masks.";"04/27/2022" -"NASA Johnson Space Center";"Issued";"MSC-23311-1";6650280;"09/953,612";"Mass Measurement During Fluid Flow Using An Integrated Sonic/Microwave Detector.";"09/14/2021" -"NASA Johnson Space Center";"Issued";"MSC-23314-1";6899009;"09/892,355";"Flexshield (Flexible Multi-Shock Shield Technology)";"06/26/2021" -"NASA Johnson Space Center";"Issued";"MSC-23349-1";7415005;"10/283,354";"MCC Voice Over Internet Protocol (VOIP)";"08/08/2026" -"NASA Johnson Space Center";"Application";"MSC-23349-2-SB";0;"12/170,614";"Ad Hoc Selection of Voice Over Internet Streams"; -"NASA Johnson Space Center";"Issued";"MSC-23424-1";6985606;"10/212,579";"Global Distribution Of Large Fluvial Fans/Potential Hydrocarbon Exploration Guide";"06/12/2024" -"NASA Johnson Space Center";"Issued";"MSC-23427-1";6944504;"10/302,323";"Microwave Ablation Of Prostatic Cells Using A Separated Antenna Array";"07/23/2023" -"NASA Johnson Space Center";"Issued";"MSC-23436-1";7126553;"10/679,688";"Tri-Sector Deployable Array Antenna";"08/11/2024" -"NASA Johnson Space Center";"Issued";"MSC-23443-1";6647855;"10/263,293";"Method And Apparatus For Deploying A Hypervelocity Shield";"09/30/2022" -"NASA Johnson Space Center";"Issued";"MSC-23444-1";6932090;"10/361,046";"A Simple Countermeasure For Management Of Motion Sickness And Vestibular/Sensory-Motor Problems Associated With Space Flight And Terrestial Motion Sickness";"07/01/2023" -"NASA Johnson Space Center";"Issued";"MSC-23449-1";7386340;"10/402,866";"Method For Diagnosis Of Coronary Artery Disease And Related Conditions Using 12-Lead High Frequency QRS Electrocardiography";"12/30/2025" -"NASA Johnson Space Center";"Issued";"MSC-23510-1";6851647;"10/417,377";"Portable Catapult Launcher For Small Aircraft";"04/03/2023" -"NASA Johnson Space Center";"Issued";"MSC-23518-1";7168935;"10/637,086";"Low Voltage Electron Beam Solid Freeform Fabrication System";"09/29/2024" -"NASA Johnson Space Center";"Issued";"MSC-23538-1";6943619;"10/443,233";"Practical Active Capacitor Filter";"05/21/2023" -"NASA Johnson Space Center";"Issued";"MSC-23539-1";6943621;"10/443,234";"Auto-Routable, Configurable, Daisy Chainable Data Acquisition System";"08/16/2023" -"NASA Johnson Space Center";"Issued";"MSC-23563-1";7270851;"10/985,081";"Nano-Encapsulated Aerogel";"05/14/2025" -"NASA Johnson Space Center";"Issued";"MSC-23594-1";7125370;"10/845,608";"Articulating Subject Support For Resistive Exercise In The Horizontal Position";"02/22/2025" -"NASA Johnson Space Center";"Issued";"MSC-23623-1";7212934;"11/370,379";"String Resistance Detector Concept";"03/06/2026" -"NASA Johnson Space Center";"Issued";"MSC-23659-1";7094045;"10/734,754";"Pulse-Flow Microencapsulation System";"06/09/2024" -"NASA Johnson Space Center";"Issued";"MSC-23659-2";7588703;"11/428,465";"Microencapsulation System And Method";"03/14/2027" -"NASA Johnson Space Center";"Issued";"MSC-23668-1";7250075;"10/874,004";"Water Outlet Control Mechanism For Fuel Cell System Operation In Variable Gravity Environments";"11/04/2025" -"NASA Johnson Space Center";"Issued";"MSC-23695-1";7249540;"11/177,652";"Torquing Tool Attachment For Round Connectors With Attached Cables";"08/27/2025" -"NASA Johnson Space Center";"Issued";"MSC-23781-1";7410485;"11/40,613";"Directional Microwave Applicator/Antenna";"10/16/2026" -"NASA Johnson Space Center";"Issued";"MSC-23805-1";7462141;"11/31,942";"Advanced Resistive Exercise Device (ARED)";"01/10/2027" -"NASA Johnson Space Center";"Issued";"MSC-23881-1";7686529;"11/958,908";"Low Friction, Low Profile, High Moment Two-Axis Joint";"12/18/2027" -"NASA Johnson Space Center";"Application";"MSC-23882-1";0;"12/899654";"Analog Strain Gage Conditioning System for Space Environment"; -"NASA Johnson Space Center";"Issued";"MSC-23906-1";7295884;"11/158,354";"Method for the Design and Analysis of the Primary Load Bearing Layer of an Inflatable Vessel";"07/20/2026" -"NASA Johnson Space Center";"Issued";"MSC-23933-1";7543779;"11/625,066";"Low Impact Docking System (LIDS) A.k.a, International Berthing Docking Mechanism (IBDM)";"02/22/2028" -"NASA Johnson Space Center";"Issued";"MSC-23954-1";7357606;"11/357,461";"Self-Advancing Step-Tap Drill";"08/14/2026" -"NASA Johnson Space Center";"Issued";"MSC-23988-1";8343740;"12/58,227";"Micro-Organ Device";"10/31/2031" -"NASA Johnson Space Center";"Issued";"MSC-23988-2";8580546;"13/688982";"Micro-Organ Device";"11/29/2032" -"NASA Johnson Space Center";"Issued";"MSC-23997-2";7815149;"12/388,345";"Magnetic Capture Docking Mechanism";"04/01/2025" -"NASA Johnson Space Center";"Issued";"MSC-24000-1";8076136;"/0";"Development And Characterization Of A Three-Dimensional Tissue Culture Model Of Bone";"10/31/2021" -"NASA Johnson Space Center";"Issued";"MSC-24042-1";7411198;"11/421,174";"New Architecture for Space Radiation Detection";"02/01/2027" -"NASA Johnson Space Center";"Issued";"MSC-24106-1";7577482;"11/683,770";"Network System Plug And Play Through Positional And Functional Connectivity Identification";"04/21/2028" -"NASA Johnson Space Center";"Issued";"MSC-24115-1";8022307;"11/772,999";"Method and Apparatus for Fabric Circuits and Antennas";"06/19/2030" -"NASA Johnson Space Center";"Issued";"MSC-24149-1";8122646;"12/402,986";"A Description Of An Improved Method For Folding, Assembling, And Weight Relief Of An Inflatable Shell";"02/04/2030" -"NASA Johnson Space Center";"Issued";"MSC-24149-2";8266866;"13/346137";"A Description Of An Improved Method For Folding, Assembling, And Weight Relief Of An Inflatable Shell";"03/12/2029" -"NASA Johnson Space Center";"Issued";"MSC-24164-1";8338114;"11/789,117";"Methods For Growing Tissue-Like 3D Assemblies (TLA) Of Human Broncho-Epithelial Cells";"05/04/2030" -"NASA Johnson Space Center";"Issued";"MSC-24169-1";7862946;"11/671,210";"Self-Regulating Control of Parasitic Electric Loads in Fuel Cell Power Systems";"11/05/2029" -"NASA Johnson Space Center";"Issued";"MSC-24180-1";7935259;"12/167,332";"Water Filtering Device, 100% Effective";"09/14/2029" -"NASA Johnson Space Center";"Issued";"MSC-24184-1";8116350;"12/353,755";"Ultra-Wideband (UWB) Two-Cluster Angle Of Arrival (AOA) Passive Tracking System Design";"07/22/2030" -"NASA Johnson Space Center";"Issued";"MSC-24201-1";7509774;"11/610,295";"A Description Of An Improved Method For Attaching An Inflatable Shell To A Rigid Interface";"06/13/2027" -"NASA Johnson Space Center";"Issued";"MSC-24207-1";7604782;"11/625,670";"X-38 Advanced Sublimator";"04/12/2028" -"NASA Johnson Space Center";"Issued";"MSC-24215-1";8070105;"11/956,826";"A Description Of A Concentric Nested Torroidal Inflatable Habitat";"10/04/2030" -"NASA Johnson Space Center";"Issued";"MSC-24216-1";8047473;"12/240,537";"A Description Of An Octonode Connecting Node Concept And Method";"01/10/2030" -"NASA Johnson Space Center";"Issued";"MSC-24228-1";7521682;"11/421,196";"New Architecture For Space Radiation Detection";"03/07/2027" -"NASA Johnson Space Center";"Issued";"MSC-24238-1";8388613;"12/757657";"Microwave Tissue Welding For Wound Closure";"11/17/2031" -"NASA Johnson Space Center";"Issued";"MSC-24263-1";7805276;"11/958,937";"Impact Detection System";"02/12/2029" -"NASA Johnson Space Center";"Issued";"MSC-24273-1";7840387;"11/778,858";"Method For The Design And Analysis Of The Primary Load Bearing Layer That Interfaces To The Structural Pass-through Of An Inflatable Vessel";"07/31/2029" -"NASA Johnson Space Center";"Application";"MSC-24314-1";0;"12/880602";"HDSS - High Density Spot Seeding"; -"NASA Johnson Space Center";"Issued";"MSC-24346-1";8466776;"12/828558";"Extended Range RFID and Sensor Tag";"09/05/2031" -"NASA Johnson Space Center";"Issued";"MSC-24387-1";8011229;"12/323,912";"Artificial Intelligence Algorithm For Assessing Postural Stability During Normal Daily Activities Using Shoe Insert Pressure Sensors";"11/26/2028" -"NASA Johnson Space Center";"Issued";"MSC-24441-1";7905946;"12/190,364";"A Capillary-based Static Phase Separator For Highly Variable Wetting Conditions";"07/02/2029" -"NASA Johnson Space Center";"Issued";"MSC-24444-1";8577120;"12/900644";"Flash Infrared (IR) Thermography Contrast Computer Simulation And Data Analysis Software";"04/22/2031" -"NASA Johnson Space Center";"Application";"MSC-24451-1";0;"13/057399";"Rapid Detection Of The Varicella Zoster Virus (VZV) In Saliva Samples"; -"NASA Johnson Space Center";"Issued";"MSC-24464-1";7859292;"12/502,575";"Reconfigurable SEU/SET Tolerance for FPGAs";"07/14/2029" -"NASA Johnson Space Center";"Issued";"MSC-24466-1";8183870;"12/370,021";"Battery cell voltage sensing and balancing using addressable transformers with electrical isolation and minimal additional connector pins and circuitry.";"07/01/2030" -"NASA Johnson Space Center";"Application";"MSC-24490-1";0;"12/612,171";"High Altitude Hydration System"; -"NASA Johnson Space Center";"Application";"MSC-24506-1";0;"12/971919";"A Method to Measure and Estimate Normalized contrast In Infrared Flash Thermography";"01/08/2030" -"NASA Johnson Space Center";"Issued";"MSC-24508-1";8343403;"12/174,380";"METHOD FOR MAKING A MICROPOROUS MEMBRANE";"12/31/2030" -"NASA Johnson Space Center";"Issued";"MSC-24509-1";8570047;"12/855384";"Battery Fault Detection with Saturating Transformers";"02/02/2032" -"NASA Johnson Space Center";"Issued";"MSC-24525-1";8384614;"12/894749";"Deployable Fresnel Rings";"10/11/2031" -"NASA Johnson Space Center";"Application";"MSC-24541-1";0;"12/899815";"Electromagnetic Time-Variance Magnetic Fields (TVMF) to generate, and re-grow Cartilage Cells by a Noninvasive Method"; -"NASA Johnson Space Center";"Issued";"MSC-24569-1";8176809;"12/331844";"Planar Torsion Spring"; -"NASA Johnson Space Center";"Issued";"MSC-24570-1";8276958;"12/269579";"Bidirectional Tendon Terminator"; -"NASA Johnson Space Center";"Issued";"MSC-24571-1";8371177;"12/241309";"Tendon Tension Sensor"; -"NASA Johnson Space Center";"Application";"MSC-24685-1";8056423;"12/269,552";"Sensing the Tendon Tension through the Conduit Reaction Forces";"11/12/2028" -"NASA Johnson Space Center";"Application";"MSC-24686-1";8060250;"12/335,153";"Joint Space Impedance Control for Tendon-Driven Manipulators";"12/15/2028" -"NASA Johnson Space Center";"Issued";"MSC-24687-1";8170718;"12/338697";"Multiple Priority Operational Space Impedance Control"; -"NASA Johnson Space Center";"Issued";"MSC-24688-1";8280837;"12/474068";"CONTACT STATE ESTIMATION FOR MULTI-FINGER ROBOT HANDS USING PARTICLE FILTERS"; -"NASA Johnson Space Center";"Issued";"MSC-24689-1";7784363;"12/241320";"PHALANGE TACTILE LOAD CELL";"09/30/2028" -"NASA Johnson Space Center";"Issued";"MSC-24732-1";8364314;"12/624445";"METHOD AND APPARATUS FOR AUTOMATIC CONTROL OF A HUMANOID ROBOT"; -"NASA Johnson Space Center";"Application";"MSC-24733-1";0;"13/349265";"Pyrometer"; -"NASA Johnson Space Center";"Application";"MSC-24734-1";8498741;"12/564088";"Dexterous Humanoid Robotic Wrist"; -"NASA Johnson Space Center";"Application";"MSC-24735-1";8467903;"12/564086";"Tendon Driven Finger Actuation System"; -"NASA Johnson Space Center";"Issued";"MSC-24736-1";8291788;"12/564090";"Rotary Series Elastic Actuator"; -"NASA Johnson Space Center";"Issued";"MSC-24737-1";8401700;"12/564124";"ACTUATOR AND ELECTRONICS PACKAGING FOR EXTRINSIC HUMANOID HAND"; -"NASA Johnson Space Center";"Application";"MSC-24738-1";0;"12/564094";"FRAMEWORK AND METHOD FOR CONTROLLING A ROBOTIC SYSTEM USING A DISTRIBUTED COMPUTER NETWORK"; -"NASA Johnson Space Center";"Application";"MSC-24739-1";8511964;"12/564084";"Dexterous Humanoid Robot"; -"NASA Johnson Space Center";"Application";"MSC-24740-1";0;"12/564078";"Dexterous Humanoid Robotic Finger"; -"NASA Johnson Space Center";"Issued";"MSC-24741-1";8255079;"12/564095";"Human Grasp Assist";"09/23/2029" -"NASA Johnson Space Center";"Application";"MSC-24742-1";8442684;"12/564076";"Integrated High Speed FPGA Based Torque Controller"; -"NASA Johnson Space Center";"Application";"MSC-24743-1";8250901;"12/564092";"Rotary Absolute Position Sensor Calibration"; -"NASA Johnson Space Center";"Application";"MSC-24744-1";8369992;"12/564083";"Diagnostics, prognostics & health management for humanoid robotics and method thereof"; -"NASA Johnson Space Center";"GM";"MSC-24745-1";8424941;"12/564085";"ROBOTIC THUMB ASSEMBLY"; -"NASA Johnson Space Center";"Application";"MSC-24746-1";8260460;"12/564096";"Interactive Robot Control System"; -"NASA Johnson Space Center";"Issued";"MSC-24747-1";8244402;"12/564074";"VISUAL PERCEPTION SYSTEM AND METHOD FOR A HUMANOID ROBOT"; -"NASA Johnson Space Center";"Issued";"MSC-24750-1";8483882;"12/686512";"HIERARCHICAL ROBOT CONTROL SYSTEM AND METHOD FOR CONTROLLING SELECT DEGREES OF FREEDOM OF AN OBJECT USING MULTIPLE MANIPULATORS"; -"NASA Johnson Space Center";"Issued";"MSC-24751-1";8412376;"12/720725";"TENSION DISTRIBUTION IN A TENDON-DRIVEN ROBOTIC FINGER"; -"NASA Johnson Space Center";"Issued";"MSC-24752-1";8033876;"12/706744";"CONNECTOR PIN AND METHOD"; -"NASA Johnson Space Center";"Application";"MSC-24753-1";0;"12/720727";"UNDERACTUATED DESIGN AND CONTROL OF A TENDON-DRIVEN FINGER"; -"NASA Johnson Space Center";"Application";"MSC-24755-1";0;"12/698832";"Architecture For Robust Force and Impedance Control Of Series Elastic Actuators"; -"NASA Johnson Space Center";"Application";"MSC-24758-1";0;"14/184278";"RFID Cavity";"03/11/2033" -"NASA Johnson Space Center";"Application";"MSC-24798-1";0;"13/789903";"Soft Decision Analyzer (SDA)";"03/08/2033" -"NASA Johnson Space Center";"Application";"MSC-24811-1";0;"13/461,487";"Self-enclosed and pipette free DNA/RNA Isolation device"; -"NASA Johnson Space Center";"Application";"MSC-24813-1";0;"13/791290";"Pre-Polymerase Chain Reaction Preparation Kit";"08/06/2032" -"NASA Johnson Space Center";"Application";"MSC-24817-1";8265792;"12/760954";"Method and Apparatus for Calibrating Multi-Axis Load Cells in a Dexterous Robot"; -"NASA Johnson Space Center";"Application";"MSC-24837-1";0;"12/787479";"Applying Workspace Limitations in a Velocity-Controlled Robotic Mechanism"; -"NASA Johnson Space Center";"Application";"MSC-24919-1";0;"13/790591";"RFID Waveguide, Antenna, and Cavity Sensors";"07/13/2032" -"NASA Johnson Space Center";"Issued";"MSC-24926-1";8412378;"12/629637";"IN-VIVO TENSION CALIBRATION IN TENDON-DRIVEN MANIPULATORS"; -"NASA Johnson Space Center";"Issued";"MSC-24930-1";8489239;"12/916803";"ROBUST OPERATION OF TENDON-DRIVEN ROBOT FINGERS USING FORCE AND POSITION-BASED CONTROL LAWS"; -"NASA Johnson Space Center";"Application";"MSC-25026-1";0;"13/354552";"Battery Charge Equalizer with transformer array"; -"NASA Johnson Space Center";"Issued";"MSC-25053-1";"D628,609";"29/359105";"ROBOT";"04/06/2030" -"NASA Johnson Space Center";"Application";"MSC-25056-1";0;"13/014901";"SYSTEM AND METHOD FOR TENSIONING A ROBOTICALLY ACTUATED TENDON"; -"NASA Johnson Space Center";"Issued";"MSC-25084-1";8067909;"12/474430";"METHOD AND APPARATUS FOR ELECTROMAGNETICALLY BRAKING A MOTOR";"05/29/2029" -"NASA Johnson Space Center";"Application";"MSC-25084-DE";0;"12/474430";"Method and Apparatus for Electromagnetically Braking a Motor"; -"NASA Johnson Space Center";"Application";"MSC-25084-JP";0;"12/474430";"Method and Apparatus for Electromagnetically Braking a Motor"; -"NASA Johnson Space Center";"Application";"MSC-25091-1";0;"13/199484";"FRET-Aptamer Assays for C-Telopeptide, Creatinine and Vitamin D";"08/31/2031" -"NASA Johnson Space Center";"Issued";"MSC-25121-1";8483877;"12/875254";"WORKSPACE SAFE OPERATION OF A FORCE- OR IMPEDANCE-CONTROLLED ROBOT"; -"NASA Johnson Space Center";"Application";"MSC-25149-1";0;"13/196252";"Controlling Execution Sequence Using Tactile-Classification during manipulation by a humanoid robot"; -"NASA Johnson Space Center";"Application";"MSC-25216-1";0;"13/439,546";"METHOD AND COMPOSITION FOR AMELIORATING THE EFFECTS FOR A SUBJECT EXPOSED TO RADIATION OR OTHER SOURCES OF OXIDATIVE STRESS"; -"NASA Johnson Space Center";"Application";"MSC-25217-1";0;"13/272442";"METHOD FOR DYNAMIC OPTIMIZATION OF A ROBOT CONTROL INTERFACE"; -"NASA Johnson Space Center";"Application";"MSC-25219";0;"13/207911";"FAST GRASP CONTACT COMPUTATION FOR A SERIAL ROBOT"; -"NASA Johnson Space Center";"Application";"MSC-25265-1";0;"13/851778";"New method and device for digital to analog transformations and reconstructions of multichannel electrocardiograms";"10/30/2032" -"NASA Johnson Space Center";"Application";"MSC-25286-1";0;"14/252660";"A chemical formulation to stabilize urine and minimize the precipitation potential of minerals during distillation of urine";"03/11/2033" -"NASA Johnson Space Center";"Application";"MSC-25313-1";0;"13/774835";"Hydrostatic Hyperbaric Chamber";"02/22/2033" -"NASA Johnson Space Center";"Application";"MSC-25318";0;"13/408668";"HUMAN GRASP ASSIST SOFT"; -"NASA Johnson Space Center";"Application";"MSC-25319";0;"13/408656";"HUMAN GRASP ASSIST "; -"NASA Johnson Space Center";"Application";"MSC-25320";0;"13/408675";"HUMAN GRASP ASSIST CONTROLS"; -"NASA Johnson Space Center";"Application";"MSC-25327-1";0;"13/459557";"COMMUNICATION SYSTEM AND METHOD"; -"NASA Johnson Space Center";"Application";"MSC-25386-1";0;"13/951671";"Active Response Gravity Offload System - Vertical Software Release";"07/26/2033" -"NASA Johnson Space Center";"Application";"MSC-25590-1";0;"13/790927";"Systems and Methods for RFID-Enabled Information Collection"; -"NASA Johnson Space Center";"Application";"MSC-25604-1";0;"13/791584";"Systems and Methods for RFID-Enabled Dispenser"; -"NASA Johnson Space Center";"Application";"MSC-25605-1";0;"13/790721";"Switch Using Radio Frequency Identification"; -"NASA Johnson Space Center";"Application";"MSC-25626-1";0;"14/200,122";"RFID Torque-Sensing Tag System for Fasteners";"03/07/2034" -"NASA Johnson Space Center";"Application";"MSC-25632-1";0;"13/803017";"ROBOT TASK COMMANDER WITH EXTENSIBLE PROGRAMMING ENVIRONMENT -";"03/14/2033" -"NASA Johnson Space Center";"Application";"MSC-25758-1";0;"14/184303";"Methods, Systems and Apparatuses for Radio Frequency Identification";"03/11/2033" -"NASA Johnson Space Center";"Application";"MSC-25759-1";0;"14/184337";"Methods, Systems and Apparatuses for Radio Frequency Identification";"03/11/2033" -"NASA Johnson Space Center";"Application";"MSC-25760-1";0;"14/184365";"Methods, Systems and Apparatuses for Radio Frequency Identification";"03/11/2033" -"NASA Jet Propulsion Laboratory";"Application";"NPO-17734-1";0;"07/700,830";"Formation Of Self-Aligned Guard Ring For Silicide Schottky-Barrier Diodes Used For Infrared Detection"; -"NASA Jet Propulsion Laboratory";"Issued";"NPO-19289-1";6513023;"09/412,199";"On-Chip Learning In VLSI Hardware";"10/01/2019" -"NASA Jet Propulsion Laboratory";"Application";"NPO-19769-1";0;"08/868,175";"Automated Cargo Inventory Identification Transponder"; -"NASA Jet Propulsion Laboratory";"Issued";"NPO-19855-1";6374630;"09/853,931";"Champagne Heat Pump";"05/09/2021" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-20031-1";6828935;"10/176,761";"Receiver Controlled Phased Array Antenna";"07/19/2022" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-20837-1";6526556;"09/591,386";"MORPHING TECHNIQUE FOR ACCELERATED EVOLUTIONARY SYNTHESIS OF ELECTRONIC CIRCUITS";"06/07/2020" -"NASA Jet Propulsion Laboratory";"Application";"NPO-21136-1";0;"10/219,384";"A CMOS ACTIVE PIXEL SENSOR (APS) FOR READING COMPACT DISCS"; -"NASA Jet Propulsion Laboratory";"Issued";"NPO-30703-1";7240208;"10/424,287";"ENCRYPTING DIGITAL CAMERA";"04/23/2023" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-40040-1";7480984;"40/863,835";"A Concept For Suppressing Sublimation In Advanced Thermoelectric Devices";"06/07/2024" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-40407-1";7592747;"11/056,633";"Piezoelectrically Enhanced PhotoCathode (PEPC)";"02/09/2025" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-40827-1";7156189;"11/1,465";"SELF-MOUNTABLE AND EXTRACTABLE ULTRASONIC/SONIC ANCHOR (U/S-Anchor)";"12/01/2024" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-41446-1";8358723;"11/602,440";"Architecture Of An Autonomous Radio";"09/12/2031" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-41506-2";8492160;"12/720,103";"BIOMARKER SENSOR SYSTEM AND METHOD FOR MULTI-COLOR IMAGING AND PROCESSING OF SINGLE-MOLECULE LIFE SIGNATURES";"04/09/2031" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-41511-1";7385462;"11/376,638";"Wideband (31 To 36 GHz) 24-Way Radial Power Combiner/Divider Fed By A Marie Transducer";"03/14/2026" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-41982-1";8078309;"12/415,206";"Inverse Tomographic Approach To Create Arbitrary Sidewall Geometries In 3D Using LiGA Technologies";"03/03/2021" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-42131-1";7824247;"11/756,819";"PORTABLE RAPID AND QUIET DRILL (PRAQD)";"11/02/2027" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-42312-1";7184624;"11/422,147";"Slow light in chains of vertically coupled whispering gallery mode resonators";"06/05/2026" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-42466-1";7764384;"11/924,766";"Swept frequency laser metrology system";"10/26/2027" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-42563-1";7353768;"11/456,441";"Submersible Vehicle Propulsion and Power Generation";"07/10/2026" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-42672-1";7996112;"11/756,793";"Micro Robot Explorer (SpiderBot) Mesh Crawler";"06/08/2030" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-43213-1";7850861;"11/764,359";"Patterning packing materials for Fluidic Channels";"10/13/2029" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-43348-1";7809521;"12/40,459";"Precise delay measurement circuit on FPGAs";"01/31/2029" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-43361-1";7773121;"11/741,213";"High Resolution, Continuous Field of View, Non-Rotating Imaging Sensor Head";"10/15/2028" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-43524-1";7773362;"11/683,007";"Dusty Plasma Thruster";"01/03/2029" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-44079-1";8022860;"11/781,022";"Enhanced Interference Cancellation and Telemetry Reception with a Single Parabolic Dish Antenna using a Focal Plane Array";"04/30/2030" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-44765-1";7740088;"11/928,069";"Ultrasonic/Sonic Rotary-Hammer Drill (USRoHD)";"04/15/2028" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-44914-1";8407979;"11/926,279";"Magnetically-Conformed, Variable Area Discharge Chamber for Hall Thruster Plasma Accelerators";"06/08/2031" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-45053-1";8057283;"12/119,989";"The process of significant improving of optical quality factor of whispering gallery mode resonator.";"09/15/2030" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-45911-1";8163094;"12/508,006";"Method to Improve Indium Bump Bonding Via Indium Oxide Removal Using a Two Step Plasma Process";"08/16/2030" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-45948-1";7843650;"12/490,422";"Monolithic Afocal Telescope";"06/24/2029" -"NASA Jet Propulsion Laboratory";"Application";"NPO-46253-1";0;"12/237,159";"Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump"; -"NASA Jet Propulsion Laboratory";"Issued";"NPO-46843-1";8169371;"12/541,725";"A single-layer, all-metal patch antenna element with wide bandwidth";"09/25/2030" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-46938-1";8026768;"12/691,070";"A 201Hg+ co-magnetometer for 199Hg+ trapped ion space atomic clocks";"04/03/2030" -"NASA Jet Propulsion Laboratory";"Application";"NPO-47300-1";0;"13/017,174";"Textured Si Anode for High Capacity, Rapid Charge Rate Li Ion Batteries"; -"NASA Jet Propulsion Laboratory";"Application";"NPO-47300-2";0;"13/895,499";"Textured Si Anode for High Capacity, Rapid Charge Rate Li Ion Batteries";"01/31/2031" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-47310-1";8502987;"13/018,672";"Coherent Detector for Near-Angle Scattering and Polarization Characterization of Telescope Mirror Coatings";"03/24/2032" -"NASA Jet Propulsion Laboratory";"Issued";"NPO-47604-1";8649000;"13/277,954";"Surface Enhanced Raman Scattering using Silica Whispering-Gallery Mode Resonators";"07/10/2032" -"NASA Jet Propulsion Laboratory";"Application";"NPO-47717-1";;"13/281,683";"360-Degree Camera Head for Unmanned Surface Sea Vehicles"; -"NASA Jet Propulsion Laboratory";"Issued";"NPO-47869-1";8649609;"13/071,299";"FPGA Vision Data Architecture";"04/17/2032" -"NASA Jet Propulsion Laboratory";"Application";"NPO-47881-1";;"14/151,684";"Pulsed Plasma Lubricator (PPL) Technology for the In Situ Replenishment of Dry Lubricants in Extreme Environments"; -"NASA Jet Propulsion Laboratory";"Application";"NPO-48140-1";;"13/456,451";"Probabilistic Surface Characterization for Safe Landing Hazard Detection and Avoidance"; -"NASA Jet Propulsion Laboratory";"Application";"NPO-48413-1";;"13/757,929";"Simple Laser-Communications Terminal for Downlink from Earth-Orbit at Rates Exceeding 10 Gb/s";"02/04/2033" -"NASA Jet Propulsion Laboratory";"Application";"NPO-48539-1";;"13/858,267";"Neutral mounting of whispering gallery mode resonators for suppression of acceleration-induced frequency fluctuations";"04/08/2033" -"NASA Jet Propulsion Laboratory";"Application";"NPO-49086-1";;"14/101,547";"Electride Mediated Surface Enhanced Raman Spectroscopy";"12/10/2033" -"NASA Stennis Space Center";"Issued";"SSC-00040";5726632;"08/622,178";"HANDHELD HYDROGEN FIRE IMAGER";"03/14/2016" -"NASA Stennis Space Center";"Issued";"SSC-00050";6020587;"09/3,212";"A HAND HELD PLANT STRESS DETECTION SYSTEM";"01/06/2018" -"NASA Stennis Space Center";"Issued";"SSC-00247";8618933;"11/866,042";"Valve Health Monitoring System Utilizing Smart Instrumentation for Real Time and Historical Data Tracking";"05/03/2032" -"NASA Stennis Space Center";"Issued";"SSC-00264";8336849;"12/704193";"Conical Seat Shut Off Valve";"01/13/2031" -"NASA Stennis Space Center";"Issued";"SSC-00327";8401820;"12/566,111";"IN SITU HEALTH MONITORING OF PIEZOELECTRIC SENSORS";"07/31/2030" +"Center"\"Status"\"Case Number"\"Patent Number"\"Application SN"\"Title"\"Patent Expiration Date" +"NASA Kennedy Space Center"\"Application"\"KSC-12871"\0\"13/033,085"\"Polyimide Wire Insulation Repair System"\ +"NASA Ames Research Center"\"Issued"\"ARC-14048-1"\5694939\"08/543,093"\"Autogenic-Feedback Training Exercise Method & System"\"10/03/2015" +"NASA Ames Research Center"\"Issued"\"ARC-14231-1"\6109270\"09/017,519"\"Multimodality Instrument For Tissue Characterization"\"02/04/2017" +"NASA Ames Research Center"\"Issued"\"ARC-14231-2DIV"\6976013\"10/874,003"\"Metrics For Body Sensing System"\"06/16/2024" +"NASA Ames Research Center"\"Issued"\"ARC-14231-3"\6718196\"09/652,299"\"Multimodality Instrument For Tissue Characterization"\"02/04/2017" +"NASA Ames Research Center"\"Issued"\"ARC-14275-1"\6445390\"09/226,673"\"Automated Triangle Geometry Processing For Surface Modeling And Cartesian Grid Generation (CART3D)"\"12/24/2018" +"NASA Ames Research Center"\"Issued"\"ARC-14281-1"\6606612\"09/374,491"\"Aerodynamic Design Using Neural Networks"\"08/13/2019" +"NASA Ames Research Center"\"Issued"\"ARC-14281-3"\7191161\"10/637,087"\"Method For Constructing Composite Response Surfaces By Combining Neural Networks With Polynomial Interpolation Or Estimation Techniques"\"11/18/2020" +"NASA Ames Research Center"\"Issued"\"ARC-14359-1"\6314362\"09/498,123"\"A Direct-To Controller Tool (A Component Of The CTAS Software Suite)"\"02/02/2020" +"NASA Ames Research Center"\"Issued"\"ARC-14494-1"\6720984\"09/606,107"\"Bio-Electric Keyboard/Mouse/Joystick Interface Software/Algorithm"\"06/13/2020" +"NASA Ames Research Center"\"Issued"\"ARC-14512-1"\6823333\"09/800,309"\"Keyword-in-context Search Method And Software For Information Retrieval From Collections Of Text Documents (Quorum/Perilog)"\"03/02/2021" +"NASA Ames Research Center"\"Issued"\"ARC-14513-1"\6741981\"09/800,311"\"Model-based Phrase Search Method And Software For Information Retrieval From Collections Of Text Documents (Quorum/Perilog)"\"09/14/2021" +"NASA Ames Research Center"\"Issued"\"ARC-14514-1"\6697793\"09/800,313"\"Method And Software For Using Implicit Phrase Models To Generate Prominent Phrases Contained In Collections Of Text Documents (Quorum/Perilog)"\"03/02/2021" +"NASA Ames Research Center"\"Issued"\"ARC-14515-1"\6721728\"09/800,310"\"Method And Software For Extracting And Distilling Topically And Situationally Relevant Phrases From Collections Of Text Documents (Quorum/Perilog)"\"07/26/2021" +"NASA Ames Research Center"\"Issued"\"ARC-14556-1"\7346172\"09/822470"\"Spatially-modulated Auditory Alert Having Enhanced Detection"\"08/24/2022" +"NASA Ames Research Center"\"Issued"\"ARC-14569-1"\7783130\"11/045,041"\"Spatial Standard Observer"\"03/26/2028" +"NASA Ames Research Center"\"Issued"\"ARC-14569-2"\8139892\"12/807,375"\"Spatial Standard Observer"\"01/24/2025" +"NASA Ames Research Center"\"Issued"\"ARC-14586-1DIV"\7293001\"11/274,744"\"A Hybrid Neural Network And Support Vector Machine Method For Optimization"\"01/07/2022" +"NASA Ames Research Center"\"Issued"\"ARC-14613-1"\6858197\"10/099,247"\"A Novel Technique That Allows For The Deposition And Patterning Of A Catalyst Onto A Surface For The Growth Of Single-Walled Carbon Nanotubes"\"11/30/2019" +"NASA Ames Research Center"\"Issued"\"ARC-14652-1"\7375826\"10/956,517"\"3D Laser Scanner"\"03/25/2026" +"NASA Ames Research Center"\"Issued"\"ARC-14653-1"\7702427\"10/914,783"\"Future ATM (Air Traffic Management) Concepts Evaluation Tool (FACET)"\"07/30/2024" +"NASA Ames Research Center"\"Issued"\"ARC-14653-2"\8290696\"12/694,966"\"Future ATM (Air Traffic Management) Concepts Evaluation Tool (FACET)"\"07/30/2024" +"NASA Ames Research Center"\"Issued"\"ARC-14661-1"\7276266\"10/320,698"\"A Plasma Apparatus And Process For Functionalization Of Carbon Nanotubes"\"12/13/2022" +"NASA Ames Research Center"\"Issued"\"ARC-14661-2"\7473436\"10/828,524"\"Improved Functionalization Of Carbon Nanotubes"\"12/13/2022" +"NASA Ames Research Center"\"Issued"\"ARC-14661-3"\7767270\"11/387,503"\"Selective Functionalization Of Carbon Nanotubes Based Upon Distance Traveled"\"11/05/2025" +"NASA Ames Research Center"\"Issued"\"ARC-14662-1"\6968338\"10/232,975"\"Advanced XML Database Integration Technique For Managing Unstructured Documents (NETMARK) (Part of NTTS Suite)"\"07/18/2023" +"NASA Ames Research Center"\"Issued"\"ARC-14682-2"\7333735\"10/885,533"\"Communication Using VCSEL Laser Array"\"11/03/2023" +"NASA Ames Research Center"\"Issued"\"ARC-14710-1"\7231329\"10/706,478"\"Elimination Of Parameter Input Requirement For Elliptic Grid Generation Methods In Engineering"\"03/11/2025" +"NASA Ames Research Center"\"Issued"\"ARC-14733-1"\6972056\"10/135,013"\"An Environmentally Compatible Method To Purify Carbon Nanotubes"\"01/03/2023" +"NASA Ames Research Center"\"Issued"\"ARC-14743-1"\7767305\"10/758611"\"High-Efficiency Tantalum-Based Ceramics (HETC)"\"01/14/2024" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-008-014"\8047472\"12/45,970"\"IMPROVED RAM BOOSTER"\"03/11/2028" +"NASA Ames Research Center"\"Issued"\"ARC-14744-1US"\7816491\"10/494,853"\"Ordered Biological Nanostructures Formed From Chaperonin Polypeptides"\"05/06/2024" +"NASA Ames Research Center"\"Issued"\"ARC-14744-2"\7795388\"11/194,991"\"A Versatile Platform For Nanotechnology Based On Circular Permutations Of Chaperonin Protein"\"05/06/2024" +"NASA Ames Research Center"\"Issued"\"ARC-14940-1"\7135172\"10/238,515"\"Bucky Paper As An Artificial Support Membrane In Retinal Cell Transplantation"\"06/12/2024" +"NASA Ames Research Center"\"Issued"\"ARC-14941-1"\6755530\"10/198,672"\"Carbon Nanotubes As A Prototype Interface For Retinal Cell Recording And Stimulation (Vision Chip)"\"10/18/2022" +"NASA Ames Research Center"\"Issued"\"ARC-14950-1"\7596416\"10/928,874"\"Program Management Tool (PMT) Also Known As Business Intelligence (BI)"\"07/22/2027" +"NASA Ames Research Center"\"Issued"\"ARC-14950-2"\8224472\"12/211,439"\"Enhanced Project Management Tool"\"10/20/2026" +"NASA Ames Research Center"\"Issued"\"ARC-14970-1"\7129857\"10/789,049"\"Intelligent Weather Agent"\"07/20/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15040-1"\8200486\"10/457,696"\"Sub Auditory Speech Recognition Based On Electromyographic Signals"\"09/14/2025" +"NASA Ames Research Center"\"Issued"\"ARC-15041-2"\7206674\"10/923,156"\"Information Display System For Atypical Flight Phase"\"05/21/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15042-2"\7217650\"10/816,576"\"Metallic Nanowire Interconnections For Integrated Circuit Fabrication"\"03/11/2023" +"NASA Ames Research Center"\"Issued"\"ARC-15058-1"\7383238\"10/789,029"\"Inductive Monitoring System - System Health Monitoring Software That Learns System Behavior From Data (IMS)"\"03/12/2025" +"NASA Ames Research Center"\"Issued"\"ARC-15073-1"\7590606\"10/703,039"\"InvestigationOrganizer: Information Storage, Modeling And Visualization Support For Accident/Mishap Investigations (Part Of A Suite Of Software That Includes ARC-15069, ARC-15070 And ARC-15073) "\"04/30/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15088-1"\7070923\"10/608,884"\"Carbon Nanotube Bucky Paper Cages For Immune Shielding Of Cells And Tissue For Transplantation"\"09/20/2023" +"NASA Ames Research Center"\"Issued"\"ARC-15101-1"\7113265\"10/808,704"\"Sample Handling Device For X-ray Diffraction Instruments"\"03/17/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15157-1"\7286573\"10/923,160"\"A Method Of Converting Quantum Wells From Type-II To Type-I And Of Enhancing Interband Optical Gain "\"03/11/2025" +"NASA Ames Research Center"\"Issued"\"ARC-15171-1"\7650232\"11/239,456"\"Trajectory Specification For High-Capacity Air Traffic Control"\"05/25/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15173-1"\7273095\"10/825,795"\"Embedded Carbon Nanotube Array As High Performance Thermal Conductors"\"03/11/2023" +"NASA Ames Research Center"\"Issued"\"ARC-15173-2"\7784531\"11/900,131"\"Nanoengineered Thermal Materials Based On Carbon Nanotube Array Composites"\"02/16/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15201-1"\7381459\"10/779,504"\"Toughened Uni-piece Fibrous Reduced Oxidation Ceramic (TUFROC) Light-Weight Thermal Protection System For Use On Space Vehicles During Atmospheric Entry At Hypersonic Speed"\"02/12/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15201-2"\7314648\"10/911,747"\"Toughened Uni-piece Fibrous Reinforced Oxidation-Resistant Composite (TUFROC)"\"02/12/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15204-1"\7949472\"10/885,537"\"Nanopore Pipetts For Structural Characterization Of Single Polymeric Biomelecules"\"01/14/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15204-1DIV"\8494782\"13/092,048"\"Nanopore Pipetts For Structural Characterization Of Single Polymeric Biomelecules"\"06/24/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15205-1"\7939734\"10/873,996"\"The Electrochemical Biosensors Using Carbon Nanotube Nanoelectrode Arrays"\"06/14/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15312-1"\7672969\"11/513,429"\"Context Based Configuration Management Concept"\"08/25/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15314-1"\7718223\"11/007,913"\"Provision Of Carbon Nanotube Arrays Of Variable Density For IC Hot Spot Control"\"02/12/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15314-2"\7704547\"11/472,516"\"Carbon Nanotube Growth Density Control"\"12/07/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15315-1"\7378963\"11/239,449"\"Reconfigurable Auditory-visual Display For Multi-channel Control Center And Rescue Communications"\"01/06/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15356-2"\7161501\"11/66,650"\"Display Of Aircraft Energy State For Flight Operations Quality Assurance (FOQA) Programs"\"09/22/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15356-3"\7212135\"11/066649"\"Real-Time Analysis And Display Of Aircraft Approach Maneuvers "\"09/22/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15370-1"\7698274\"10/956,524"\"Selective Access And Editing In A Database (Part of NTTS Suite)"\"03/18/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15392-1"\7313475\"11/053,713"\"Delay Banking: Collaborative Decision Making For Airspace-user Priority In Tactical Flow Restrictions"\"04/04/2025" +"NASA Ames Research Center"\"Issued"\"ARC-15404-1"\7288490\"11/009,854"\"Use Of A Single Electrode To Orient Carbon Nanotube Growth"\"12/07/2024" +"NASA Ames Research Center"\"Issued"\"ARC-15437-1"\7438422\"11/340,816"\"Low Cost Portable Planetarium Imaging System"\"05/14/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15443-1"\7531775\"11/251,006"\"A Tracking Sunphotometer Without Moving Parts "\"01/31/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15460-1"\7426848\"11/203,576"\"Discharge Based Gas Sensor Array Using Self-Oriented Regular Vertical Array Of Carbon Nanotubes"\"08/05/2025" +"NASA Ames Research Center"\"Issued"\"ARC-15462-1"\7574338\"11/340002"\"Finite-Difference Simulation And Visualization Of Elastodynamics In Time-Evolving Generalized Curvilinear Coordinates "\"07/29/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15487-1"\7796026\"11/111,620"\"Electronic Firefighter Escape Trail"\"06/04/2028" +"NASA Ames Research Center"\"Issued"\"ARC-15506-1"\7529633\"11/203,589"\"Applications Of Carbon Nanotube Hold-Off Voltages"\"10/22/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15519-1"\7574357\"11/169,265"\"Security Applications For Subvocal Speech"\"11/09/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15566-1"\7801687\"11/178,079"\"Gas Sensors Based on Coated and Doped Carbon Nanotubes"\"05/26/2029" +"NASA Ames Research Center"\"Issued"\"ARC-15566-2"\8000903\"11/416,505"\"Coated Or Doped Carbon Nanotube Network Sensors As Affected By Environmental Parameters And Elapsed Time"\"09/15/2029" +"NASA Ames Research Center"\"Issued"\"ARC-15566-3"\7875455\"11/489,803"\"Nanotechnology Sensors For Determination Of Chemical Substances In An Oil Reservoir"\"12/17/2028" +"NASA Ames Research Center"\"Issued"\"ARC-15566-5"\7623972\"11/591,630"\"Detection Of Presence Of Chemical Precursors"\"07/08/2025" +"NASA Ames Research Center"\"Issued"\"ARC-15575-1"\7473930\"11/173,053"\"Use Of Carbon Nanotube Arrays For Display Purposes"\"10/24/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15578-2"\7873181\"11/525,600"\"Visual Signal Sensor Organ Replacement: Implementation"\"05/19/2028" +"NASA Ames Research Center"\"Issued"\"ARC-15606-1"\7431242\"11/265,324"\"Aero Assist Capsule Vehicle Geometry For Atmospheric Entry"\"04/01/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15684-1"\7516890\"11/444,807"\"InterIssued Inventory Monitoring"\"05/25/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15714-1"\7869029\"11/398,733"\"Light Collimator And Monitor"\"11/11/2029" +"NASA Ames Research Center"\"Issued"\"ARC-15782-1"\7549338\"11/973998"\"Nanotechnology Sensor Of Presence And Concentration Of A Target Molecule"\"09/28/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15796-1"\8675922\"13/444,777"\"Motion Blur Evaluation Techniques"\"08/31/1932" +"NASA Ames Research Center"\"Issued"\"ARC-15870-1"\7655497\"11/513,431"\"Growth Method For Phase Change Nanostructures"\"08/16/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15890-1"\7655145\"11/543,275"\"Water Treatment Systems For Long Space Flight Use"\"11/05/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15900-1"\7490367\"11/526,175"\"Wet Waste Drying Bag"\"09/20/2026" +"NASA Ames Research Center"\"Issued"\"ARC-15903-1DIV"\8409491\"13/215,206"\"In-situ Formation Of Reinforcement Phases In Ceramic Composites And Ultra High Temperature Ceramic Composites For Advanced TPS Applications"\"09/28/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15967-1"\7635420\"11/645,267"\"Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays"\"06/06/2028" +"NASA Ames Research Center"\"Application"\"ARC-15977-1"\0\"12/100,378"\"Artificial Immune System Based Approach For Air Combat Maneuvering"\ +"NASA Ames Research Center"\"Application"\"ARC-15981-4"\\"13/463,780"\"Chaperonin-based Templates for Pseudo-cellulosomes with Multiple Enzymes Present"\"07/19/2027" +"NASA Ames Research Center"\"Issued"\"ARC-15983-1"\7923709\"12/273,502"\"Radiation Shielding System Using A Composite Of Hydrogen-Rich Polymers Loaded With Carbon Nanotubes"\"09/30/2029" +"NASA Ames Research Center"\"Application"\"ARC-16478-1"\\"14/191,246"\"Real Time PIREPs Using Audio Twitter"\"02/26/1934" +"NASA Ames Research Center"\"Issued"\"ARC-15995-1"\8290246\"11/958,296"\"A Method To Measure The Recession Of Ablative Materials In Arc-jet Testing Using Digital Stereo-photogrammetry And Image Cross-correlation"\"07/01/1931" +"NASA Ames Research Center"\"Issued"\"ARC-16013-1"\7968054\"11/715,785"\"Wireless Chemical Sensor Data Transmission System Based On Nanotechnology"\"10/03/2029" +"NASA Ames Research Center"\"Issued"\"ARC-16018-1"\7662459\"12/175,379"\"Atmospheric Entry Heat Shield Employing Cured Thermal Protection Material Blocks Bonded In A Large-Cell Honeycomb Matrix"\"07/17/2028" +"NASA Ames Research Center"\"Application"\"ARC-16132-1"\0\"14/091,250"\"Surface Densification Of Phenolic Impregnated Carbon Ablator (PICA)"\"11/26/1933" +"NASA Ames Research Center"\"Issued"\"ARC-16133-1"\8069001\"12/319,918"\"Hollow AErothermal Ablation And Temperature (HEAT) Isotherm Sensor For Tracking Isotherm Through The TPS Material"\"10/09/2029" +"NASA Ames Research Center"\"Application"\"ARC-16211-1"\0\"13/896,284"\"Low Cost Optical Fiber Solar Cell Configurations"\"05/16/1933" +"NASA Ames Research Center"\"Issued"\"ARC-16235-1"\8285659\"12/543,411"\"Modeling-Error-Driven Performance-Seeking Direct Adaptive Control"\"11/18/1930" +"NASA Ames Research Center"\"Application"\"ARC-16273-1"\0\"12/454,024"\"Decomposition Technique for Remaining Useful Life Prediction"\"11/18/1930" +"NASA Ames Research Center"\"Issued"\"ARC-16280-1"\8409845\"12/316,557"\"Offshore membrane enclosures for dewatering Algae (OMEDA)"\"10/15/1931" +"NASA Ames Research Center"\"Issued"\"ARC-16298-1"\8333810\"12/398,854"\"Nanotechnology-Based Supercapacitor"\"06/29/1930" +"NASA Ames Research Center"\"Issued"\"ARC-16320-1"\8332342\"12/622,407"\"Battery Prognostics using Particle Filtering Techniques"\"02/05/1931" +"NASA Ames Research Center"\"Issued"\"ARC-16331-1"\8408707\"12/428,441"\"System to estimate visual acuity from wavefront aberrations"\"05/29/2029" +"NASA Ames Research Center"\"Issued"\"ARC-16334-1"\8244477\"12/478,667"\"Estimation of Growth Stage and Growth Rate for Algae"\"06/04/2029" +"NASA Ames Research Center"\"Application"\"ARC-16337-1"\0\"13/793,998"\"Method and Device for Biometric Subject Verification and Identification Based Upon electrocardiographic signals"\"03/11/1933" +"NASA Ames Research Center"\"Application"\"ARC-16340-1"\0\"13/645,284"\"Method for formation and manufacture of carbon nanotube mesh bucky paper capsules for transplantation of cells and tissue and implantation of medical devices"\"10/04/1932" +"NASA Ames Research Center"\"Issued"\"ARC-16342-1"\8412469\"12/698,996"\"Advanced Sensor Technology for Algal Biotechnology (ASTAB) "\"12/16/1930" +"NASA Ames Research Center"\"Application"\"ARC-16348-1"\\"13/109,954"\"Co-Optimized Blunt-Body ReEntry Vehicle Aerothermodynamic Parametric Shape and Multi-Discipline Optimization Design Process"\ +"NASA Ames Research Center"\"Issued"\"ARC-16351-1"\8498756\"13/213,022"\"Hovercraft Landing System"\"12/07/1931" +"NASA Ames Research Center"\"Issued"\"ARC-16370-1"\8375675\"12/574,493"\"Self Aligning Lug for adapting carbon fiber rods to a bolted metallic connection"\"05/07/1931" +"NASA Ames Research Center"\"Application"\"ARC-16372-1"\0\"13/794,061"\"Inexpensive Cooling Systems for Devices"\"03/11/1933" +"NASA Ames Research Center"\"Issued"\"ARC-16373-1"\8489181\"12/319,220"\"Heart Electrical Actions as Biometric Indicia"\"04/29/1932" +"NASA Ames Research Center"\"Application"\"ARC-16405-1"\0\"14/091,236"\"Nanowire based piezoelectric power generation"\"11/26/1933" +"NASA Ames Research Center"\"Issued"\"ARC-16407-1"\8337208\"12/622,374"\"Content Analysis to Detect High Stress in Oral Interviews and Text Documents"\"05/26/1931" +"NASA Ames Research Center"\"Application"\"ARC-16419-1"\0\"13/317,034"\"Strobing to Mitigate Vibration for Display Legibility"\"10/05/1932" +"NASA Ames Research Center"\"Application"\"ARC-16450-1CIP"\0\"13/720,898"\"Distributed Prognostics and Health Management with a Wireless Network Architecture "\"05/05/2029" +"NASA Ames Research Center"\"Application"\"ARC-16456-1"\\"13/480,917"\"FABRICATION OF NANOPIPETTE ARRAY FOR BIOSENSING"\ +"NASA Ames Research Center"\"Application"\"ARC-16461-1"\\"13/956,218"\"Solar Powered CO2 Conversions with Thin Film Devices"\"07/31/1933" +"NASA Ames Research Center"\"Application"\"ARC-16466-1"\\"14/010,322"\"Combined HETC/ROCCI TPS Material for Temperatures Up To T=3200 F "\"08/26/1933" +"NASA Ames Research Center"\"Application"\"ARC-16467-1"\\"13/615,202"\"ODVEC: Outlier Detection Via Estimating Clusters"\ +"NASA Ames Research Center"\"Application"\"ARC-16607-1"\\"13/658,749"\"An Approach to Make Flexible Ablators that are Flexible Char Formers"\"10/23/1932" +"NASA Ames Research Center"\"Application"\"ARC-16621-1"\\"13/472,283"\"Transformable Hypersonic Aerodynamic Decelerator"\"12/04/1932" +"NASA Ames Research Center"\"Application"\"ARC-16644-1"\\"13/648,197"\"Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control "\"10/09/1932" +"NASA Ames Research Center"\"Application"\"ARC-16646-1"\\"13/485,721"\"A method to produce copper nanowires for interconnect applications"\ +"NASA Ames Research Center"\"Application"\"ARC-16661-1"\\"13/444,789"\"Video acuity measurement system"\ +"NASA Ames Research Center"\"Application"\"ARC-16697-1"\\"13/956,929"\"NTTS Search and Reporting (Part of NTTS Suite)"\"08/01/1933" +"NASA Ames Research Center"\"Application"\"ARC-16707-1"\\"13/438,793"\"Ectomycorrhizal mediated remediaiton of phenolic-based contamination through use of specifically adapted ectomycorrhizal fungi and enzyme enhancement through partial defoliation of the host."\ +"NASA Ames Research Center"\"Application"\"ARC-16707-1CIP"\\"13/854,620"\"Ectomycorrhizal mediated remediaiton of phenolic-based contamination through use of specifically adapted ectomycorrhizal fungi and enzyme enhancement through partial defoliation of the host."\"04/03/1932" +"NASA Ames Research Center"\"Application"\"ARC-16732-1"\\"13/573,924"\"NanoSat Launch Adapter System (NLAS)"\"03/14/1933" +"NASA Ames Research Center"\"Application"\"ARC-16733-1"\\"13/535,884"\"Habitat Water Wall for Water, Solids, and Atmosphere Recycle and Reuse "\ +"NASA Ames Research Center"\"Application"\"ARC-16752-1"\\"14/179,401"\"Fuel-Efficient, Airport-Friendly, Multi-Speed Transport Aircraft Configuration with Novel Structural Approach"\"02/12/1934" +"NASA Ames Research Center"\"Application"\"ARC-16811-1"\\"13/544,752"\"Compliant electrode and composite materials for piezoelectric wind and mechanical energy conversions"\ +"NASA Ames Research Center"\"Application"\"ARC-16812-1"\\"13/783,112"\"Graphene composite materials for supercapacitor electrodes "\"03/01/1933" +"NASA Ames Research Center"\"Application"\"ARC-16833-1"\\"13/747,875"\"Flight Deck Predictive Weather Display and Decision Support Interface "\"01/23/1933" +"NASA Ames Research Center"\"Application"\"ARC-16844-1"\\"13/662,346"\"Adaptive control and disturbance rejection of non-minimum phase plants using residual mode filters"\"10/26/1932" +"NASA Ames Research Center"\"Application"\"ARC-16846-1"\\"13/707,546"\"Dynamic Weather Routes Tool"\"12/06/1932" +"NASA Ames Research Center"\"Application"\"ARC-16892-1A"\\"13/929,646"\"The Surface-Adhering Bioreactor (SABR): A novel microbial cell cultivation platform"\"06/27/1933" +"NASA Ames Research Center"\"Application"\"ARC-16902-1"\\"13/725,475"\"Nanosensors for medical diagnosis"\"12/21/1932" +"NASA Ames Research Center"\"Application"\"ARC-16916-1"\\"13/956,736"\"A Method for Improving Control Systems with Normalized Adaptation by Optimal Control Modification"\"08/01/1933" +"NASA Ames Research Center"\"Application"\"ARC-16924-1"\\"14/010,355"\"Aluminoborosilicate Supplement for Thermal Protection of a Re-entrant Vehicle"\"08/26/1933" +"NASA Ames Research Center"\"Application"\"ARC-16942-2"\\"13/659,739"\"A new family of low density flexible ablators"\"10/24/1932" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-001-049"\7180943\"10/113,637"\"Adaptive Lossless Data Compression"\"03/26/2022" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-005-031"\7407131\"11/288,052"\"Sound Shield"\"10/31/2025" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-006-001"\7431243\"11/227,325"\"Algorithms For Autonomous Soaring"\"02/27/2026" +"NASA Armstrong Flight Research Center"\"Application"\"DRC-006-002"\0\"11/422,554"\"Air Breathing,Reusable, Vertical Launch, Vertical Landing, First Stage Launch System with Off-the-Shelf Second Stage - Ram Booster"\ +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-006-005"\7711455\"11/463,485"\"Propulsion Controlled Aircraft Computer (PCAC)"\"08/09/2026" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-006-024"\7520176\"11/567,118"\"Method for Real-Time Structure Shape Sensing"\"12/05/2026" +"NASA Armstrong Flight Research Center"\"Application"\"DRC-006-045"\0\"11/682,969"\"METHOD FOR REDUCING THE REFRESH RATE OF FIBER BRAGG GRATING SENSORS"\ +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-008-001"\8145366\"12/138,747"\"Real-time Interactive Sonic Boom Display"\"04/28/2030" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-008-023"\7715994\"12/191,734"\"IMPROVED PROCESS FOR USING SURFACE STRAIN MEASUREMENTS TO OBTAIN OPERATIONAL LOADS FOR COMPLEX STRUCTURES"\"08/14/2028" +"NASA Armstrong Flight Research Center"\"Application"\"DRC-009-008"\0\"12/718034"\"Continental Digital Elevation Map Compression and Decompression Software"\ +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-009-026"\8447443\"13/367990"\"A New Peak-Seeking Control Method"\"02/07/2032" +"NASA Armstrong Flight Research Center"\"Application"\"DRC-010-042"\\"13/463246"\"An apparatus and a method to eliminate polarization-induced fading from multiple fiber-optics strain sensors via signal-processing under polarization diversity detection scheme"\ +"NASA Armstrong Flight Research Center"\"Application"\"DRC-011-002"\\"13/759,847"\"OPTICAL WAVEGUIDE BRAGG GRATING WAVELENGTH SHIFT BY LIGHT INTERACTION WITH ACTIVE MATERIAL"\"02/05/2033" +"NASA Armstrong Flight Research Center"\"Application"\"DRC-011-015"\\"14/106947"\"In-situ three-dimensional shape rendering from strain values obtained through optical fiber sensors"\"05/31/2032" +"NASA Armstrong Flight Research Center"\"Application"\"DRC-012-005"\\"13/759210"\"Method and apparatus of multiplexing and acquiring data from multiple optical fibers using a single data channel of an optical frequency-domain reflectrometry (OFDR) system (Revised)"\"02/05/2033" +"NASA Armstrong Flight Research Center"\"Application"\"DRC-012-006"\\"13/733364"\"A Novel Approach to Liquid Level Sensing Using Fiber Bragg Grating Technology"\"01/03/2033" +"NASA Armstrong Flight Research Center"\"Application"\"DRC-012-011"\\"13/573920"\"Air Launch From A Towed Aircraft"\"07/05/2032" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-096-055"\6126111\"09/112,067"\"Emergency Flight Control System Using One Engine And Fuel Transfer"\"07/08/2018" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-097-021"\6102330\"08/905,777"\"Emergency Aircraft Lateral Controller Using Existing (non-modified) Digital Engine Computers During A System Failure For The Purpose Of Safe Landing"\"07/29/2017" +"NASA Armstrong Flight Research Center"\"Issued"\"DRC-098-001"\6216063\"09/74,024"\"A Flutterometer Flight Test Tool"\"05/06/2018" +"NASA Goddard Space Flight Center"\"Application"\"GSC-13378-1"\0\"07/710,633"\"SPLINE-LOCKING PAYLOAD FASTENER"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13802-1"\6584874\"08/673,859"\"USING A 3-D SPRAG IN RACHETING TOOLS BASED ON PAT. NO. 5,482-144"\"07/02/2016" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13817-1"\5983162\"08/872,586"\"Empirical Mode Decomposition Method And Hilbert Spectral Analysis Algorithms"\"06/10/2017" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13817-2"\6631325\"09/82,523"\"COMPUTER IMPLEMENTED EMPIRICAL MODE DECOMPOSITION METHOD APPARATUS AND ARTICLE OF MANUFACTURE UTILIZING CURVATURE EXTREMA"\"06/10/2017" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13817-3"\6381559\"09/282,424"\"Empirical Mode Decomposition Apparatus, Method, And Article Of Manufacture For Analyzing Biological Signals And Performing Curve Fitting"\"03/31/2019" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13817-4"\6862558\"10/73,957"\"Empirical Mode Decomposition For Analyzing Acoustical Signals"\"02/13/2022" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13817-5"\6738734\"10/11,206"\"Empirical Mode Decomposition Apparatus, Method And Article Of Manufacture For Analyzing Biological Signals And Performing Curve Fitting"\"06/10/2017" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13905-1"\6640949\"10/95,343"\"1-Way Bearing"\"03/01/2022" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13909-1"\6311130\"09/150,671"\"Computer Implemented Empirical Mode Decomposition Method, Apparatus, And Article Of Manufacture For Two-Dimensional Signals"\"09/10/2018" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-13985-1"\6566854\"09/646,161"\"Active Antenna Combined With Non-Ferrous Current Probe."\"09/12/2020" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14064-1"\6648522\"09/804,646"\"Universal Fiber Optic Connector Polishing Fixture With Precision Alignment Capability"\"03/13/2021" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14207-1"\6626792\"09/799,872"\"Gear Bearings"\"03/03/2021" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14209-1"\6293803\"09/501,412"\"Stress Relieved Zee Electrical Interconnect"\"02/09/2020" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14213-1"\6760487\"09/550,254"\"Estimated Spectrum Adaptive Postfilter (ESAP) And The Iterative Prepost Filtering (IPF) Algorithms"\"04/14/2020" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14236-1"\6538796\"09/541,680"\"MEMS Devices For Spacecraft Thermal Control Applications"\"03/31/2020" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14302-1"\6782124\"09/729,138"\"Extension Of The Empirical Mode Decomposition Method To A Time Series Of 2-Dimensional Grid Maps"\"11/29/2020" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14305-1"\6895115\"09/839,147"\"Method For Recursive Implementation Of Hierarchical Segmentation"\"04/23/2021" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14389-1"\7543274\"10/789,028"\"Deriving Formal Specifications And Code From Scenarios"\"02/25/2024" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14393-1"\7145739\"10/385,166"\"Light Weight Optical Mirrors Formed In Single Crystal Silicon"\"03/06/2023" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14413-1"\7255483\"10/93,621"\"Thrust Rollers"\"03/01/2022" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14435-1"\6740224\"10/173,533"\"Innovative Manufacturing Procedure For Low Cost And High Quality Carbon Nanotubes"\"06/11/2022" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14480-2"\7762155\"11/444,808"\"Gear Bearings"\"05/25/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14561-1"\7207245\"11/174,454"\"Screw-Locking Wrench"\"06/30/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14562-1"\7504921\"11/543,278"\"Stepping Flextures"\"09/29/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14601-1"\7008605\"10/292,952"\"Method For Manufacturing High Quality Carbon Nanotubes"\"11/08/2022" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14603-1"\7544146\"11/122,201"\"Anti-Backlash Gear-Bearings"\"05/02/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14608-1"\6990436\"10/729,579"\"Time Frequency Analysis Based On Extrema Sifting"\"11/28/2023" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14616-1"\7248342\"10/730,195"\"Conceptual Design Of A 3D Imaging Lidar For High-Resolution Mapping Of The Surface Topography Of Moons Or Planets From Space"\"12/05/2023" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14657-1"\7512568\"11/109,400"\"Evolvable Neural Software System"\"04/08/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14666-1"\6775600\"10/267,092"\"Systems And Methods For Determining Spacecraft Orientation"\"10/07/2022" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14673-1"\6901353\"10/615,365"\"Normalized Amplitude Hilbert Transform (NAHT): A New Algorithm For Computing Instantaneous Frequency"\"07/08/2023" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14683-1"\8480826\"11/736,874"\"Specular Coatings For Composite Structures"\"04/18/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14762-1"\7769488\"11/108,627"\"SMART Solar Sail"\"04/08/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14777-1"\7341932\"11/251,531"\"Large Area Vacuum Ultra-Violet Sensors"\"09/30/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14793-1"\7548199\"11/239,458"\"Pivot 2.0: Radiation Hardened, Fast Acquisition/Weak Signal Tracking GPS Receiver"\"09/20/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14807-1"\7464006\"10/963,470"\"Application Of HHT To Financial Data Analysis For Define Volatility And Trend"\"10/07/2024" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14833-1"\7346461\"11/251,004"\"Stability Spectrum Through Hilbert-Huang Transform"\"09/30/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14845-1"\7290737\"11/251,537"\"Demiseable Reaction Wheel Assembly"\"09/29/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14871-1"\7935297\"11/370,396"\"Template For Deposition Of Micron And Sub-micron Pointed Structures"\"03/06/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14873-1"\8357211\"12/872,445 "\"ADR Salt Pill Design And Crystal Growth Process For Hydrated Magnetic Salts"\"08/31/2030" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14879-1"\7635832\"11/469,105"\"Iterative-Transform Phase-Retrieval Utilizing Adaptive Diversity"\"08/31/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14941-1"\7739671\"11/203,590"\"A Method And System For Direct Implementation Of Formal Specifications Derived Mechanically From Informal Requirements"\"08/12/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14942-1"\7752608\"11/203,586"\"A Method And System For Formal Analysis, Simulation, And Verification Of Knowledge-Based Systems, Rule-Based Systems, And Expert Systems"\"08/12/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14952-1"\7513546\"11/689,161"\"Conformal Gripper"\"03/21/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14960-1"\7992760\"11/357,458"\"Hardware And Technique For Dead End Welding Of All Types Of Tubing"\"02/08/2026" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16700-1"\\"14/041407"\"SpaceCube v2.0 Flight Processor Card"\"09/30/2033" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14968-1"\7627538\"11/251,538"\"Apoptosis And Self-destruct: Mechanisms For Management Of Autonomic Systems"\"09/29/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14968-2"\7925600\"12/603,140"\"SWARM AUTONOMIC AGENTS WITH SELF-DESTRUCT CAPABILITY"\"10/21/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14979-1"\7601091\"11/426,134"\"Modular Gear Bearing"\"06/23/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-14994-1"\7697759\"11/251,530"\"A Split-Remerge Method For Eliminating Processing Window Artifacts In Recursive Hierarchical Segmentation"\"09/30/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15001-1"\7924415\"12/389,097"\"Light Direction Sensor"\"02/19/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15002-1"\7240879\"11/124,592"\"Space Robotic System For In Space Servicing Of Unmanned Spacecraft Applications"\"05/06/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15002-2"\7513459\"11/670,653"\"Method And Associated Apparatus For Capturing, Servicing, And De-Orbiting Earth Satellites Using Robotics"\"05/06/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15002-3"\7293743\"11/670,270"\"Method And Associated Apparatus For Capturing, Servicing, And De-Orbiting Earth Satellites Using Robotics"\"11/13/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15002-4"\7438264\"11/670,781"\"Method And Associated Apparatus For Capturing, Servicing And De-Orbiting Earth Satellites Using Robotics"\"05/06/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15002-5"\7513460\"11/671,062"\"Method And Associated Apparatus For Capturing, Servicing, And De-Orbiting Earth Satellites Using Robotics"\"05/06/2025" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15027-1"\7412175\"11/425,352"\"Millimeter Wave Polarization Transformer"\"06/20/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15027-2"\7609978\"12/056,964"\"INTERFEROMETRIC POLARIZATION CONTROL"\"03/27/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15027-3"\7616903\"12/057,060"\"INTERFEROMETRIC POLARIZATION CONTROL"\"03/27/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15030-1"\7907333\"11/460,482"\"A Pulsed, 1 Micron, Single Frequency, Diode-Seeded Ytterbium-doped Fiber Amplifier With Variable Output Parameters, P"\"07/27/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15038-1"\7765171\"11/426,853"\"SPAACE: Self Properties For An Autonomous & Autonomic Computing Environment"\"06/27/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15039-1"\7762523\"11/861,038"\"Miniaturized Double Latching Solenoid Valve"\"09/25/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15042-1"\7622907\"11/535,872"\"Driven Ground"\"09/27/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15055-1"\7746190\"11/748,969"\"Broadband High Spurious-suppression Microwave Waveguide Filter For Polarization-preserving And Transformer"\"05/15/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15077-1"\8068556\"12/147,100"\"Low Cost TDRSS Tranceiver (LCT2)"\"06/26/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15079-1"\7886273\"11/532,800"\"Generation And Verification Of Policies For Autonomic Systems"\"09/18/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15080-1"\7979848\"11/533,837"\"A Method Of Deriving Process Based Specifications From Scenarios Via Pattern Matching"\"09/21/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15115-1"\7465926\"11/537,280"\"Miniaturized Radiation Spectrometer Development"\"09/29/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15136-1"\8093094\"12/137,844"\"Blocking Contacts For N-Type Cadmium Zinc Cadmium Zinc Telluride (CdZnTe)"\"06/12/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15148-1"\7668796\"11/536,132"\"Enhancing R2D2C Requirements Based Programming With Automata Learning"\"09/28/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15162-1"\7796726\"11/706,693"\"Instrument And Method For X-Ray Diffraction, Fluorescence, And Crystal Texture Analysis Without Sample Preparation"\"02/14/2027" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15163-2"\0\"13/092198"\"AIGaN Ultraviolet Detectors For Dual Band UV Detection"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15176-1"\7899760\"11/533,855"\"Autonomic Quiescence"\"09/21/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15177-1"\8082538\"11/536378"\"A Method For Developing And Maintaining Evolving Systems With Software Product Lines"\"09/28/2026" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15177-2"\0\"13/305932"\"A Method For Developing And Maintaining Evolving Systems With Software Product Lines"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15178-1"\7992134\"11/536,969"\"Modeling, Specifying And Deploying Policies In Autonomous And Autonomic Systems Using An AOSE Methodology"\"09/29/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15179-1"\7904396\"11/533,895"\"An Autonomic Smoke Detector"\"09/21/2026" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15184-1"\7978312\"11/933,492"\"An Active, Solid-state, 3-Dimensional Range Imaging System"\"11/01/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15206-1"\8041655\"11/836,352"\"Otoacoustic Protection In Biologically-Inspired Systems"\"08/09/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15206-2"\8140452\"13/230915"\"Otoacoustic Protection In Biologically-Inspired Systems"\"09/13/2031" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15206-3"\8140453\"13/230922"\"Otoacoustic Protection In Biologically-Inspired Systems"\"09/13/2031" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15206-4"\8275725\"13/230920"\"Otoacoustic Protection In Biologically-Inspired Systems"\"09/13/2031" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15206-5"\8165976\"13/230922"\"Otoacoustic Protection In Biologically-Inspired Systems"\"09/13/2031" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15206-6"\8165977\"13/230923"\"Otoacoustic Protection In Biologically-Inspired Systems"\"09/13/2031" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15217-1"\8139674\"12/173,243"\"Spaceflight Ka-Band High Rate Rad Hard Modulator"\"07/15/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15301-1"\7673089\"11/935,572"\"An Extendibe USB Drive That Accepts External Media"\"11/06/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15302-1"\7673089\"11/935,572"\"An Double-Headed USB Drive"\"11/06/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15328-1"\8499779\"12/014,889"\"Non-Pyrotechnic Zero-Leak Normally-Closed Valve"\"01/16/2028" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15333-1"\0\"11/860,830"\"Improved, Flexure-Base Linear Bearing"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15341-1"\7922920\"11/862,550"\"Low Conductance Silicon Micro-leak for Mass Spectrometer Inlet"\"09/27/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15341-3"\8455926\"12/889,014 "\"Low Conductance Silicon Micro-leak for Mass Spectrometer Inlet"\"09/23/2030" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15349-1"\7830527\"12/102,240"\"Method And Apparatus For Second Harmonic Generation And Other Frequency Convertion With Multiple Frequency Channels"\"04/14/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15353-1"\7830224\"11/877,102"\"Compact Low-loss Planar Magic-T With Broadband Phase And Amplitude Responses"\"10/23/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15357-1"\8041661\"11/861,687"\"Stability Algorithm For Neural Entities (SANE)"\"09/26/2027" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15364-1"\8155939\"12/170,683"\"Hughes Particle – Surface Interaction Model"\"07/10/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15377-1"\7811406\"12/249,265"\"Advanced Adhesive Bond Shape Tailoring for Large Composite Primary Structures Subjected to Cryogenic and Ambient Loading Environments"\"10/10/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15416-1"\7999427\"12/188,039"\"Directed Flux Motor Utilizing Concentric Magnets and Interwoven Flux Channels"\"08/07/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15417-1"\7735385\"12/187,562"\"Actuated Ball and Socket Joint"\"08/07/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15419-1"\8030873\"12/187,926"\"Improvements to the Walk and Roll Robot"\"08/07/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15421-1"\7968812\"12/353,009"\"Spring Joint Package with Overstrain Sensor ( OS Sensor Joint )"\"01/13/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15431-1"\7921731\"12/327,514"\"A two-axis direct fluid shear stress sensor suited for aerodynamic applications"\"12/03/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15445-1"\7982861\"12/183,820"\"Pseudo-Noise Code Modulation using Return to Zero pulses for Ranging, Altimetry and Communications"\"07/31/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15458-1"\8094731\"12/357,081"\"Space Link Extension Return Channel Frames (SLE-RCF) Service (User side) Software Library"\"01/21/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15483-1"\7817087\"12/116,518"\"Relative Spacecraft Navigation using Reflected GPS Signals"\"05/07/2028" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15520-1"\8547531\"12/873373"\"Non-scanning laser 3D imager"\"09/01/2030" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15527-1"\8160728\"12/558,672"\"Sensor Complete Requirements Algorithm For Autonomous Mobility"\"09/14/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15538-1"\8198956\"12/535,954"\"Compact planar microwave blocking filter"\"08/05/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15550-1"\8275724\"12/569,422"\"A biologically-inspired method of improving system performance and survivability through self-sacrifice"\"09/29/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15552-1"\7924126\"12/555,634"\"Small, High Field Superconducting Magnets"\"09/08/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15557-1"\8095485\"12/353,637"\"Formulation for Emotion Embedding in Logic Systems (FEELS)"\"01/14/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15583-1"\7970025\"12/496,954"\"Tunable Frequency-stabilized Laser via Offset Sideband Locking"\"07/02/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15584-1"\8144331\"12/487,454"\"Hilbert-Transform-Based Phase Referencing Algorithm for Wide-Field Imaging Interferometry."\"06/18/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15655-1"\8138961\"12/561,644"\"Low Frequency Wideband Step Frequency Inverse Synthetic Aperture Radar For 3-D Imaging of Interior of Near Earth Objects/Planetary Bodies"\"09/17/2029" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15660-1"\0\"13/247416"\"Extreme Environment Low Temperature Transistor Models"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15662-1"\8092031\"12/569,090"\"Flight Mirror Mount and Flight Mounting Procedure for an Ultra-Lightweight High-Precision Glass Mirror"\"09/29/2029" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15672-1"\0\"13/211413"\"Multicolor detectors for ultrasensitive long-wave imaging cameras"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15678-1"\8484274\"12/549,159"\"Optimal Padding for the Two-Dimensional Fast Fourier Transform"\"08/27/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15684-1"\8285401\"12/549,898"\"Discrete Fourier Transform (DFT) Analysis in a Complex Vector Space"\"08/28/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15685-1"\8331733\"12/550,141"\"Sampling Theorem in Terms of the Bandwidth and Sampling Interval"\"08/28/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15692-1"\8330644\"12/835,958 "\"Expandable Reconfigurable Instrument Node - Web Sensor Strand Demonstration"\"07/19/2030" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15693-1"\0\"12/570,224"\"Variable Sampling Mapping: A novel supplement to iterative-transform phase retrieval algorithms for undersampled images, broadband illumination, and noisy detection environments"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15699-1"\8480296\"12/560,535"\"A Low Cost, Low Temperature Radiometer for Thermal Measurements."\"09/16/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15724-1"\8275015\"12/551,212"\"Passively Q-switched side pumped Monolithic Ring Laser"\"08/31/2029" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15727-1"\0\"13/222575"\"An All-metal, Solderless Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15729-1"\8674302\"12/789,937"\"Novel Superconducting Transition Edge Sensor Design"\"05/28/2030" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15729-2"\8393786\"12/789,954 "\"Novel Superconducting Transition Edge Sensor Design"\"05/28/2030" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15730-1"\8355579\"12/783054"\"Automatic Extraction of Planetary Image Features"\"05/19/2030" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15732-1"\8093565\"12/695478"\"Crossed Small Deflection Energy Analyzer (SDEA) for Wind/Temperature Spectrometer (WTS)"\"01/28/2030" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15758-1"\8044332\"12/553,613"\"Hybrid Architecture Active Wavefront Sensing and Control"\"09/03/2029" +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15771-1"\8035081\"12/570,166"\"High Precision Electric Gate (HPEG) for Time of Flight Mass Spectrometers"\"09/30/2029" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15774-1"\0\"13/154599"\"Ensemble Detector"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-15782-1"\0\"13/216479"\"Ultra-low Power (< 100mW), 64-Channel Pulse Data Collection System"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15792-1"\8406469\"12/838600"\"Progressive Band Selection for Hyperspectral Images"\"07/19/2030" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15815-1"\0\"12/887988"\"LIDAR Luminance Quantizer"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15826-1"\8134130\"12/839207"\"The Corner Cathode: Making Collimated Electron Beams with a Small Number of Electrodes"\"07/19/2030" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15829-1"\0\"13/601293"\"Resolution enhanced pseudo random code technique"\"08/31/2032" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15839-1"\0\"12/840787"\"Low threshold, narrow linewidth optical parametric generator"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15856-1"\8196853\"12/779494"\"Aerodynamically Stabilized Instrument Platform for Kites and Tethered Blimps ( AeroPod )"\"05/13/2030" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15886-1"\0\"12/838963"\"Automated Beam Balance Scale Logger"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-15911-1"\0\"13/217965"\"Graphite Composite Panel Polishing Fixture"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-15934-1"\0\"12/839125"\"Determining Phase Retrieval Sampling from the Modulation Transfer Function"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-15935-1"\0\"13/043257"\"New Variables for Iterative Transform Phase Retrieval"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-15936-1"\0\"12/854490"\"SpaceCube Version 1.5"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15947-1"\8274726\"12/839171"\"Sampling and Reconstruction of the Sinc(x) Function"\"07/19/2030" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15948-1"\0\"13/204767"\"Lateral Kevlar Suspension Device (LKSD)"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-15949-1"\0\"13/600992"\"Vectorized Rebinning Algorithm for Fast Data Down-Sampling"\"08/31/2032" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15951-1"\0\"13/222839"\"An Improved Method of Fabricating Single Crystal Silicon Light Weight Mirrors"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15953-1"\8484509\"12/854546"\"SpaceCube Demonstration Platform"\"08/11/2030" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15953-2"\0\"13/903357"\"SpaceCube Demonstration Platform"\"09/30/2029" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15957-1"\0\"13/211526"\"Imaging System Aperture Masks for Image Plane Exit Pupil Characterization"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15964-1"\8525110\"13/247,168 "\"An Instrument Suite for the Vertical Characterization of the Ionosphere-Thermosphere System from 100 km to 700km Altitude"\"09/28/2031" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15970-1"\0\"13/034125"\"Electrospray Ionization for Chemical Analysis of Organic Molecules for Mass Spectrometry"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-15976-1"\0\"12/872366"\"Phase Retrieval System for Assessing Diamond-Turning and other Optical Surface Artifacts"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-15977-1"\8354952\"12/839060"\"Phase Retrieval for Radio Telescope and Antenna Control"\"07/19/2030" +"NASA Goddard Space Flight Center"\"Application"\"GSC-15979-1"\0\"12/839187"\"Multi-Scale Image Reconstruction using Wavelets"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-15994-1"\\"13/104538"\"Photonic Choke-Joints for Dual-Polarization Waveguides"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16006-1"\\"13/216671"\"Programmable High-Rate Multi-Mission Receiver for Space Communication"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16008-1"\\"13/600826"\"Phase controlled magnetic mirror for wavefront correction"\"08/31/2032" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16016-1"\\"13/193272"\"Carbon Nanotubes on titanium substrates for stray light suppression"\ +"NASA Goddard Space Flight Center"\"Issued"\"GSC-16024-1"\8526733\"13/150,316"\"Refinement of the HSEG Algorithm for Improved Computational Processing Efficiency"\"06/01/2031" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16789-1"\\"14/ 033725"\"LEARNS (Logic Expansion for Autonomously Reconfigurable Neural Systems)"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16029-1"\\"13/193249"\"Nanostructure secondary mirror apodization mask for transmitter signal suppression in a duplex telescope."\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16096-1"\\"13/211432"\"Prototype Genomics Based keyed-Hash Message Authentication Code Protocol"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16100-1"\\"12/881587"\"Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16105-1"\\"13/197214"\"Molecular Adsorber Coating"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16109-1"\\"13/240180"\"HEXPANDO expanding head for fastener retention hexagonal wrench"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16122-1"\\"13/474053"\"Apparatuses and Methods to Enable Sub-MHz Precision in Fast Laser Frequency Tuning"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16135-1"\\"13/534427"\"A cryptographic approach to microRNA target binding analysis"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16146-1"\\"13/601194"\"Wafer Level Microchannel Fabrication Process for Lap-on-a-Chip Devices"\"08/31/2032" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16182-1"\\"13/595604"\"A High Event Rate, Zero Dead Time, Multi-Stop Time-to-digital Converter Application Specific Integrated Circuit"\"08/27/2032" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16193-1"\\"13/720175"\"Fine Control and Maintenance Algorithm for Visible Nulling Coronagraphy"\"12/19/2032" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16223-1"\\"13/551649"\"SpaceCube Mini"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16247-1"\\"13/570100"\"Enhanced adhesion multiwalled carbon nanotubes on titanium substrates for stray light control"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16250-1"\\"13/150316"\"Further Refinement of the Computationally Efficient HSEG Algorithm"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16259-1"\\"13/050617"\"Spaceflight Refuiling Tools"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16299-1"\\"13/622465"\"V-Assembly Dual Head Efficiency Resonator (VADER) Laser Transmitter"\"09/19/2032" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16301-1"\\"13/771815"\"Impedance matched to vacuum, invisible-edge diffraction suppressed mirror"\"02/20/2033" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16327-1"\\"13/545173"\"Miniaturized laser heterodyne radiometer for carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) measurements in the atmospheric column."\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16328-1"\\"13/474367"\"Development of the Hilbert-Huang Transform Real-Time Data Processing System with 2-D Capabilities"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16438-1"\\"13/606174"\"Power provision based on self-sacrificing spacecraft"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16460-1"\\"13/592409"\"Autonomic Autopoiesis"\"08/23/2032" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16461-1"\\"13/592412"\"Autonomic and Apoptotic Cloud, Autonomic and Apoptotic Grid, Autonomic and Apoptotic Highly Distributed System"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16485-1"\\"14/038381"\"Broadband planar impedance transformer"\"09/26/2033" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16516-1"\\"14/021812"\"Muti-function microposters inside of microfluidic channel for Lab-On-A-Chip device"\"09/09/2033" +"NASA Kennedy Space Center"\"Application"\"KSC-12866"\0\"12/843,353"\"In-Situ Wire Damage Detection System"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16545-1"\\"13/534442"\"INTEGRATED GENOMIC AND PROTEOMIC INFORMATION SECURITY PROTOCOL"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16555-1"\\"14/023847"\"Green Precision Cleaning System"\"09/11/2033" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16569-1"\\"14/041,720"\"Mirrorlet array for Integral Field Spectrometers (IFS)"\ +"NASA Goddard Space Flight Center"\"Application"\"GSC-16674-1"\\"14/041224"\"MISSE-7 Control Center"\"09/30/2033" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16795-1"\\"13/781,121 "\"Wallops Flight Facility 6U Advanced CubeSat Ejector (ACE)"\"01/04/2033" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16805-1"\\"14/040924"\"SpaceCube v2.0 Micro"\"09/30/2033" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16808-1"\\"14/040848"\"SpaceCube v. 2.0 Flight Power Card"\"09/30/2033" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16859-1"\\"14/037484"\"Chemical sensors based on 2-dimensional materials"\"09/26/2033" +"NASA Goddard Space Flight Center"\"Application"\"GSC-16887-1"\\"14/037458"\"Propellant Transfer Assembly Design and Development"\"09/26/2033" +"NASA Headquarters"\"Issued"\"HQN-11248-1"\6223143\"09/143,969"\"Quantitative Risk Assessment Software (QRAS) System"\"08/31/2018" +"NASA Kennedy Space Center"\"Issued"\"KSC-11641"\5730806\"08/437,859"\"Gas-Liquid Supersonic Cleaning And Cleaning Verification Spray System"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-11751"\5710377\"08/540,616"\"Improved Portable Ultrasonic Leak Detector (Combined With KSC-11751-2)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-11804"\5693871\"08/695,071"\"Low-Differential Pressure Generator For Evaluating Low Differential Pressure Transducers"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-11866-1"\5977773\"08/912,035"\"Non-Intrusive Impedance-Based Cable Tester - Standing Wave Reflectometer"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-11884"\6039783\"08/772,057"\"A New Process And Equipment For Conversion Of NOx Scrubber Liquor To Fertilizer (related To KSC-11994)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-11884-2"\6641638\"09/511,634"\"Process And Equipment For Nitrogen Oxide Waste Conversion To Fertilizer - Continuation-In-Part Filed 2/17/00"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-11937-2"\7209567\"10/390,259"\"Communication System With Adaptive Noise Suppression"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12035-1"\6552521\"09/906,014"\"Improved Single-Station Accurate Location Of Lightning Strikes (Combined With KSC-12276 & KSC-12173)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12049"\6627065\"09/977,531"\"Liquid Galvanic Coatings For Protection Of Imbedded Metals"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12056"\6676912\"09/698,607"\"New Air Pollution Control Technology For Removal Of Nitrogen Oxides From Stationary Combustion Sources"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12092-2"\6967051\"09/939,286"\"Thermal Insulation System And Method (Continuing Patent Application) (Combined With KSC-12092)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12107"\6742926\"09/906,018"\"Thermal Insulation Test Apparatus With Sleeve (Related To KSC-12108)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12108"\6487866\"09/906,011"\"Multipurpose Thermal Insulation Test Apparatus (Related To 12107)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12168"\6452510\"09/802,535"\"Personal Cabin Pressure Monitor And Altitude Warning System"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12190"\6764617\"09/994,996"\"A Novel Ferromagnetic Conducting Lignosulfonic Acid-Doped Polyaniline (Related To KSC-11940, KSC-11940-1, KSC-11940-2, KSC-12154, KSC-12191)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12191-2"\7179404\"11/215,205"\"Corrosion Prevention Of Cold Rolled Steel Using Water Dispersible Lignosulfonic Acid Doped Polyaniline"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12205"\6715914\"10/185,378"\"Apparatus And Method For Thermal Performance Testing Of Pipelines And Piping Systems"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12220"\6917203\"10/235,020"\"Current Signature Sensor (Combined With KSC-12152)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12221"\6757641\"10/185,830"\"Multisensor Transducer And Weight Factor (Combined With KSC-12359 and KSC-13139)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12235"\6793903\"10/014,140"\"High-Temperature Decomposition Of Hydrogen Peroxide"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12235-2"\6955799\"10/923,152"\"Temperature Decomposition Of Hydrogen Peroxide"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12235-3"\8029736\"10/923,163"\"High Temperature Decomposition Of Hydrogen Peroxide"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12236"\8511396\"10/476,175"\"Non-Toxic Environmentally Safe Halon Replacement (HABx)"\ +"NASA Kennedy Space Center"\"Application"\"KSC-12236-2-PCT"\0\"/0"\"Flame Suppression Agent, System And Users"\ +"NASA Kennedy Space Center"\"Application"\"KSC-12236-CIP"\\"13/428,736"\"Non-Toxic Environmentally Safe Halon Replacement (HABx)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12246"\6664298\"09/972,296"\"Zero-Valent Metal Emulsion For Reductive Dehalogenation Of DNAPLs"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12246-2"\7037946\"10/701,412"\"Zero-Valent Metal Emulsion For Reductive Dehalogenation Of DNAPLs"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12278"\7400766\"10/783,295"\"Image Edge Extraction Via Fuzzy Reasoning (FRED) (combined With KSC-12272)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12386"\7274907\"10/748,915"\"Modular Wireless Data Acquisition System (combined With KSC-12479, KSC-12486)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12390"\6824306\"10/318,665"\"Thermal Insulation Test Apparatus For Flat Specimens"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12394"\7239751\"10/750,629"\"Hypothesis Support Mechanism For Mid-Level Visual Pattern Recognition (PIPR)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12458"\7156957\"10/440,543"\"UV Induced Oxidation Of Nitric Oxide"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12490"\7298897\"10/779,551"\"Noniterative Optimal Binarization Of Gray-Scaled Digital Images Via Fuzzy Reasoning (FRAT) (combined With KSC-12272)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12518"\7790128\"10/641,581"\"Hydrogen Peroxide Catalytic Decomposition"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12539"\7285306\"10/684,064"\"Self-Healing Wire Insulation"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12539-2"\8119238\"11/856,218"\"Self-Healing Wire Insulation"\ +"NASA Kennedy Space Center"\"Application"\"KSC-12539-3"\0\"13/348,861"\"Self-Healing Wire Insulation"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12540"\6958085\"10/666,821"\"High Performance Immobilized Liquid Membranes For Carbon Dioxide Separations"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12630"\7496237\"11/010,698"\"Image Processing For Binarization Enhancement Via Fuzzy Reasoning"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12631"\7582147\"11/208,122"\"Metallic Pigment Powder Particle For Use In A Liquid Coating System To Protect Reinforcing Steel In Concrete Structures"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12637"\7271199\"10/977,622"\"Micro-scale Particle Emulsion And Their Application For Removal Of PCBs And Metals Found In Ex Situ Structures"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12664"\7404938\"10/845,418"\"Emission Control System"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12664-3-CIP"\7582271\"11/40,294"\"Emission Control System"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12666"\7122166\"10/845,607"\"Hydrogen Peroxide Concentrator"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12669"\7302364\"11/83,420"\"Integrated Spaceport Automated Data Management Architecture (Combine With KSC-12581, KSC-12583, KSC-12671and KSC-12582)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12697"\7309738\"10/962,827"\"A New Approach For Achieving Fire Retardancy While Retaining Physical Properties In A Compatible Polymer Matrix"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12697-3"\7968648\"11/935,093"\"A New Approach For Achieving Flame Retardancy While Retaining Physical Properties In A Compatible Polymer Matrix"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12703"\8031449\"12/485,979"\"Integral Battery Power Limiting Circuit For Intrinsically Safe Applications"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12723"\7790225\"11/239,445"\"Coating For Corrosion Detection And Prevention"\ +"NASA Kennedy Space Center"\"Application"\"KSC-12723-DIV"\\"12/792,238"\"Coating For Corrosion Detection And Prevention"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12848"\7781492\"11/759,672"\"New Organic/inorganic Polymeric Thermal Insulators"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12848-DIV"\7977411\"12/835,233"\"New Organic/inorganic Polymeric Thermal Insulators"\ +"NASA Kennedy Space Center"\"Application"\"KSC-12871-CIP"\0\"13/915,407"\"Polyimide Wire Insulation Repair System"\ +"NASA Kennedy Space Center"\"Application"\"KSC-12871-DIV1"\0\"14/093,701"\"Polyimide Wire Insulation Repair System"\ +"NASA Kennedy Space Center"\"Application"\"KSC-12871-DIV2"\0\"14/093,680"\"Polyimide Wire Insulation Repair System"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12875"\7841771\"11/777,711"\"Self Validating Thermocouple (Combined With KSC-12865)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12878-2-CIP"\8163972\"12/465,457"\"Bimetallic Treatment System and it's application for Removal of PCBs Found in Ex Situ Structures without the Use of a Catalized Agent"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12890"\7790787\"11/740,357"\"New Organic/Inorganic Polymeric Materials"\ +"NASA Kennedy Space Center"\"Application"\"KSC-12890-2-DIV"\0\"12/834,416"\"New Organic/Inorganic Polymeric Materials"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12899"\8425866\"11/466,624"\"Gas Phase Oxidation Of NO To NO2"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12978"\7842639\"11/749,767"\"Preparation of a Bimetal Using Mechanical Alloying for the Dehalogenation of Compounds"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12978-DIV"\8288307\"12/909,219"\"Preparation of a Bimetal Using Mechanical Alloying for the Dehalogenation of Compounds"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-12983"\8409534\"11/692,557"\"Mercury Emission Control System"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13047"\0\"12/813,864"\"Insulation Test Cryostat with Lift Mechanism (Combined with KSC-13048)"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13047-DIV"\0\"14/090,193"\"Insulation Test Cryostat with Lift Mechanism (Combined with KSC-13048)"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-13088"\8293178\"11/935,545"\"Improved Thermal Reactivity Of Hydrogen Sensing Pigments In Manufactured Polymer Composites"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13088-CON"\0\"13/611,856"\"Improved Thermal Reactivity Of Hydrogen Sensing Pigments In Manufactured Polymer Composites"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13088-DIV"\0\"13/615,850"\"Improved Thermal Reactivity Of Hydrogen Sensing Pigments In Manufactured Polymer Composites"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13161"\0\"12/855,791"\"PH Sensitive Microcapsule With Corrosion Indicator"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13167"\0\"12/856,849"\"Watercore PH Sensitive Microcapsule"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13265-CIP2"\0\"14/150,502"\"An Inductive Non-Contact Position Sensor"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13278"\0\"13/354,576"\"A Method for Making Elongated Microcapsules Under Simple Shear Conditions"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-13285"\8593153\"12/843,382"\"An improved Online Diagnostic Device (ODD) for Wiring Evaluation"\ +"NASA Kennedy Space Center"\"Issued"\"KSC-13331"\8577639\"13/031,182"\"A Method for Accurately Calibrating a Spectrometer Using Broadband Light"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13336"\0\"12/843,487"\"Sputter Coated wire for in-situ wire damage detection"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13343"\0\"13/278,710"\"Conductive Carbon Nanotube for use with Desktop Inkjet Printing"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13366"\0\"13/523,806"\"High Performance Self Healing Film"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13579"\\"13/895,717"\"Green PCB Removal From Sediment Systems (GPRSS)"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13588"\\"13/495,862"\"Multi-Dimensional Damage Detection For Flat Surfaces"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13592"\\"13/542,155"\"pH sensitive microparticles"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13595"\\"14/192,784"\"Aerogel insulation and composites integrated into unique lay-ups (Incorporates Embodiments from KSC-13702)"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13636"\\"13/546,880"\"Incorporation of Chemochromic Indicator for the Presence of Hypergolic Fuels into a Variety of Manufactured Parts"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13638"\\"14/176,824"\"A Two Dimensional Inductive Position Sensor"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13664"\\"13/896,896"\"Regolith Advanced Surface Systems Operations Robot (RASSOR) Excavator"\ +"NASA Kennedy Space Center"\"Application"\"KSC-13689"\\"13/961,521"\"Coherence Multiplexing of Wireless Surface Acoustic Wave Sensors"\ +"NASA Langley Research Center"\"Issued"\"LAR-14673-1"\5736642\"08/778,066"\"Nonlinear Ultrasonic Scanning To Detect Material Defects"\"01/08/2017" +"NASA Langley Research Center"\"Issued"\"LAR-14840-1"\5841032\"08/792,909"\"Variable And Fixed Frequency Pulsed Phase-Locked Loop"\"01/24/2017" +"NASA Langley Research Center"\"Issued"\"LAR-15205-1"\5741883\"08/359,752"\"Tough, Soluble, Aromatic, Thermoplastic Copolyimides"\"04/21/2015" +"NASA Langley Research Center"\"Issued"\"LAR-15282-1"\5755571\"08/712,984"\"Ultrasonic Periodontal Structures Mapping Device"\"09/09/2016" +"NASA Langley Research Center"\"Issued"\"LAR-15318-1"\5798521\"08/806,732"\"Distributed Fiber-optic Strain Sensor"\"02/27/2017" +"NASA Langley Research Center"\"Issued"\"LAR-15348-1"\5632841\"08/416,598"\"Thin Layer Composite Unimorph Ferroelectric Driver And Sensor, THUNDER"\"04/04/2015" +"NASA Langley Research Center"\"Issued"\"LAR-15348-2"\6734603\"08/797,553"\"Thin Layer Composite Unimorph Ferroelectric Driver And Sensor"\"04/04/2015" +"NASA Langley Research Center"\"Issued"\"LAR-15351-1-CU"\5585083\"08/414,661"\"Catalyst For Formaldehyde Oxidation"\"03/30/2015" +"NASA Langley Research Center"\"Issued"\"LAR-15370-1-SB"\5640408\"08/593,438"\"Quasi Four-Level TM:LuAG Laser (Tm:LuAG Laser)"\"01/27/2016" +"NASA Langley Research Center"\"Issued"\"LAR-15376-1"\5771204\"08/754,642"\"Relative Phase Measurement Instrument For Multiple-Echo Systems"\"11/21/2016" +"NASA Langley Research Center"\"Issued"\"LAR-15406-1"\5617873\"08/449,473"\"Noninvasive Meth/Apparatus For Monitoring Intracranial Pressure & Pressure Vols Index In Humans"\"05/23/2015" +"NASA Langley Research Center"\"Issued"\"LAR-15412-1"\5606014\"08/511,422"\"Imide Oligomers And Co-Oligomers Containing Pendent Phenylethynyl Groups And Polymers Therefrom"\"08/04/2015" +"NASA Langley Research Center"\"Issued"\"LAR-15412-2"\5689004\"08/747,472"\"Imide Oligomers And Co-Oligomers Containing Pendent Phenylethynyl Groups And Polymers Therefrom"\"08/04/2015" +"NASA Langley Research Center"\"Issued"\"LAR-15449-1"\6133401\"09/342,462"\"A Method To Prepare Processable Polyimides With Reactive Endgroups Using 1,3 Bis (3-Aminophenoxyl) Benzene"\"06/29/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15449-2"\6288209\"09/667,426"\"Method To Prepare Processable Polyimides With Reactive Endgroups Using 1,3-Bix(3-Aminophenoxyl)Benzene"\"06/29/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15507-1"\6475147\"09/493,044"\"Ultrasonic Technique To Measure Intracranial Pressure"\"01/27/2020" +"NASA Langley Research Center"\"Issued"\"LAR-15508-1"\6545760\"09/535,659"\"Distributed Rayleigh Scatter Fiber Optic Strain Sensor"\"03/24/2020" +"NASA Langley Research Center"\"Issued"\"LAR-15514-1-SB"\5991456\"08/654,840"\"Method Of Improving A Digital Image"\"05/29/2016" +"NASA Langley Research Center"\"Issued"\"LAR-15524-1"\6000844\"08/810,058"\"A Method And Apparatus For The Portable Identification Of Material Thickness Of Layers Using A Scanning Linear Heat Source And Infrared Detectorcramer"\"03/04/2017" +"NASA Langley Research Center"\"Issued"\"LAR-15525-1-CU"\5948965\"08/845,899"\"Solid State Carbon Monoxide Sensor"\"04/28/2017" +"NASA Langley Research Center"\"Issued"\"LAR-15637-1"\6015272\"08/673,627"\"Magnetically Suspended Miniature Fluid Pump And Method Of Making Same"\"06/26/2016" +"NASA Langley Research Center"\"Issued"\"LAR-15637-2"\6447265\"09/398,878"\"Magnetically Suspended Miniature Fluid Pump And Method Of Designing The Same"\"06/26/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15652-1-CU"\6132694\"08/991,075"\"Catalyst For Oxidation Of Hydro-Carbons And Volatile Organic Compounds"\"12/16/2017" +"NASA Langley Research Center"\"Application"\"LAR-15665-1-CU"\0\"08/838,596"\"Catalyst For Carbon Monoxide Oxidation"\ +"NASA Langley Research Center"\"Issued"\"LAR-15745-1"\6222007\"09/093,826"\"Prepreg And Composites Made From Polyimide Salt-Like Solution"\"05/29/2018" +"NASA Langley Research Center"\"Issued"\"LAR-15747-1-CU"\6200539\"09/357,403"\"One-Atmosphere Uniform Glow Discharge Plasma Gas Flow Acceleration"\"07/20/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15767-1"\6180746\"09/316,428"\"Polyimide Foam From Ether-Containing Monomeric Solutions"\"05/21/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15816-1"\6629341\"09/430,677"\"Macro-Fiber Composite Actuator With Interdigitated Electrodes"\"10/29/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15816-2"\7197798\"10/653,824"\"A Method For Fabricating A Piezoelectric Composite Apparatus"\"06/30/2020" +"NASA Langley Research Center"\"Issued"\"LAR-15817-1"\6450820\"09/612,412"\"A Method Of Encouraging Physiological Self-Regulation Through Modulation Of An Operator's Control Input To A Video Game Or Training Simulator"\"07/12/2020" +"NASA Langley Research Center"\"Issued"\"LAR-15818-3"\6922242\"10/465,386"\"Optical Path Switching Based Differential Absorption Radiometry For Substance Detection"\"06/21/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15831-1"\5994418\"09/316,865"\"Hollow Polyimide Microspheres"\"05/21/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15831-2"\6235803\"09/408,652"\"Hollow Polyimide Microspheres"\"05/21/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15831-3"\6084000\"09/394,534"\"Hollow Polyimide Microsphere"\"05/21/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15834-1"\6359107\"09/575,826"\"High Performance / High Temperature Resins For Infusion And Transfer Molding Processes"\"05/18/2020" +"NASA Langley Research Center"\"Issued"\"LAR-15851-1-CU"\6753293\"09/607,211"\"Process For Coating Substrates With Catalyst Materials"\"05/11/2021" +"NASA Langley Research Center"\"Issued"\"LAR-15854-1"\6761695\"10/94,023"\"Technique For Non-Invasive Absolute Measurement Of Intra-Cranial Pressure In Humans"\"07/28/2022" +"NASA Langley Research Center"\"Issued"\"LAR-15927-1"\6584848\"10/263,292"\"Dielectric Electrostatic Ultrasonic Transducer (DEUT)"\"09/30/2022" +"NASA Langley Research Center"\"Issued"\"LAR-15934-1"\6566648\"09/535,661"\"Edge Triggered Apparatus And Method For Measuring Strain In Bragg Gratings"\"03/24/2020" +"NASA Langley Research Center"\"Issued"\"LAR-15943-1"\6746410\"10/121,932"\"Transducer Assembly To Measure Changes In Circumferential Expansion Of The Human Skull Due To Changes In Intracranial Pressure"\"11/16/2022" +"NASA Langley Research Center"\"Issued"\"LAR-15954-1"\6376830\"09/606,120"\"Single Laser Sweep Full S-Parameter Characterization Of Fiber Bragg Gratings"\"06/15/2020" +"NASA Langley Research Center"\"Issued"\"LAR-15959-1"\7019621\"09/753,370"\"Structural Tailored High Displacement Ferro-Electric Sensors And Actuators"\"01/02/2021" +"NASA Langley Research Center"\"Issued"\"LAR-15977-1"\6133330\"09/337,475"\"Polyimide Foam From Monomeric Solutions"\"05/21/2019" +"NASA Langley Research Center"\"Issued"\"LAR-15990-1"\6551251\"09/784,413"\"Dual Transmission Interface For Passive Fetal Heart Monitoring"\"02/13/2021" +"NASA Langley Research Center"\"Issued"\"LAR-16001-1"\7371358\"10/975,117"\"Catalyst For Treatment And Control Of Post-Combustion Emissions"\"10/25/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16005-1"\6426496\"09/648,529"\"High Precision Solid State Wavelength Monitor"\"11/26/2020" +"NASA Langley Research Center"\"Issued"\"LAR-16012-1-CU"\6834125\"09/888,701"\"Improvement To The Multiscale Retinex With Color Restoration"\"06/25/2021" +"NASA Langley Research Center"\"Issued"\"LAR-16020-1"\6629446\"09/758,115"\"Single Vector Force Balance Calibration System"\"01/26/2022" +"NASA Langley Research Center"\"Issued"\"LAR-16079-1"\6939940\"09/757,398"\"Liquid Crystalline Thermosets From Oligo-Esters, Ester-Imides And Ester-Amides"\"01/05/2021" +"NASA Langley Research Center"\"Issued"\"LAR-16083-1"\8062129\"11/536,811"\"A Method And System For Multi-Player Game Playing Where Physiological Characteristics Of The Players Modulate Their Relative Advantage Over Opponents Or Competitors"\"05/22/2030" +"NASA Langley Research Center"\"Issued"\"LAR-16116-1"\6888346\"10/21,683"\"Giant Magnetoresistive Based Self-Nulling Probe For Deep Flaw Detection"\"11/28/2021" +"NASA Langley Research Center"\"Issued"\"LAR-16176-2"\7109287\"10/988,407"\"Space Environmentally Durable Polyimides And Copolyimides"\"03/03/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16220-1"\6867533\"09/696,527"\"Shaping, Tuning, And Positioning Membrane Structures Using Electroactive Polymer Actuators"\"10/23/2020" +"NASA Langley Research Center"\"Issued"\"LAR-16231-1-CU"\7092539\"09/997,113"\"MEMS Based Acoustic Array"\"11/28/2021" +"NASA Langley Research Center"\"Issued"\"LAR-16256-1"\8628333\"11/129,756"\"Method And System For Training Psychophysiological Skills Conducive To Optimal Performance Through Perturbation Of Training Tasks, Environments And Devices"\"08/27/2029" +"NASA Langley Research Center"\"Application"\"LAR-16256-1-CON"\0\"14/153,434"\"Method And System For Training Psychophysiological Skills Conducive To Optimal Performance Through Perturbation Of Training Tasks, Environments And Devices"\"05/13/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16299-1"\7871682\"10/956,520"\"Composite Roll Press And Processes"\"12/07/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16307-1-SB"\7390768\"10/056,845"\"Methodology For The Effective Stabilization Of Tin-Oxide-Based Oxidation/Reduction Catalysts"\"01/22/2022" +"NASA Langley Research Center"\"Issued"\"LAR-16307-2"\7985709\"10/956,515"\"Methodology For The Effective Stabilization Of Tin-Oxide-Based Oxidation/Reduction Catalysts"\"04/16/2027" +"NASA Langley Research Center"\"Application"\"LAR-16308-2"\0\"12/726,403"\"Catalyst For Decomposition Of Nitrogen Oxides (Divisional of LAR 16308-1-CU)"\ +"NASA Langley Research Center"\"Issued"\"LAR-16311-1"\6777525\"10/115,812"\"Heat, Moisture, Chemical Resistant Polyimide Compositions And Methods For Making And Using The Same"\"04/01/2022" +"NASA Langley Research Center"\"Issued"\"LAR-16323-1"\7253903\"11/27,930"\"Method To Linearize Non-Linear Physical Measurements"\"06/24/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16324-1"\6714132\"10/011,229"\"Proximity Sensor"\"11/27/2021" +"NASA Langley Research Center"\"Issued"\"LAR-16324-2"\7106203\"10/783,486"\"Self-Activating System And Method For Alerting When An Object Or Person Is Left Unattended"\"11/27/2021" +"NASA Langley Research Center"\"Issued"\"LAR-16326-1"\7060991\"10/410,605"\"Method For Measuring Thickness Of Small Radius Of Curvature Structures Using A Thermal Line Scanner"\"04/10/2023" +"NASA Langley Research Center"\"Issued"\"LAR-16332-1-CU"\6842543\"09/888,816"\"Method Of Improving A Digital Image Having White Zones"\"06/25/2021" +"NASA Langley Research Center"\"Issued"\"LAR-16363-1"\6856073\"10/390,675"\"Radial Electric Field Piezo-Diaphragm Fluidic Control Systems"\"03/13/2023" +"NASA Langley Research Center"\"Issued"\"LAR-16383-1-NP"\7588699\"10/288,797"\"Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites And Process For Preparation Thereof"\"07/02/2023" +"NASA Langley Research Center"\"Issued"\"LAR-16383-2"\7972536\"12/546,724"\"Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites And Process For Preparation Thereof"\"10/12/2029" +"NASA Langley Research Center"\"Issued"\"LAR-16390-1-SB"\7318915\"10/342,660"\"Ruthenium Stabilization Mechanism For Next Generation Oxidation And Reduction Catalyst Systems"\"01/13/2023" +"NASA Langley Research Center"\"Issued"\"LAR-16393-1"\6919669\"10/392,491"\"Sonic Transducers And Sensors Using Radial Field Diaphragms"\"05/31/2023" +"NASA Langley Research Center"\"Issued"\"LAR-16406-1-CU"\7491169\"10/805,816"\"Ultrasonic Method And Means To Assess Compartment Syndrome (Hyper Pressure States In Arm, Leg Muscle/Tendon Compartments)"\"09/20/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16409-1"\8015819\"11/536,790"\"Wet Active Chevron Nozzle For Controllable Jet Noise Reduction"\"09/17/2028" +"NASA Langley Research Center"\"Issued"\"LAR-16432-1"\7692116\"10/188,525"\"Synthesis Of Carbon Nanotubes Using High Average Power Ultrafast Laser Ablation"\"07/03/2022" +"NASA Langley Research Center"\"Issued"\"LAR-16437-1-NP"\7169374\"11/129,751"\"Templated Growth Of Carbon Nanotubes"\"05/11/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16440-1"\6740048\"10/263,285"\"Method Of Determining Intracranial Pressure From Skull Expansion Measurements"\"09/25/2022" +"NASA Langley Research Center"\"Issued"\"LAR-16475-1"\7194912\"10/890,843"\"Carbon Nanotube-Based Structural Health Monitoring Sensor"\"08/07/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16496-1"\7104498\"10/867,114"\"Blown Channel-Wing System For Thrust Deflection And Force/Moment Generation"\"10/03/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16499-1"\7491428\"10/730,188"\"Method for the controlled deposition and alignment of single walled carbon nanotubes"\"11/15/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16510-1"\6773407\"10/263,286"\"Non-Invasive Method Of Determining Absolute Intracranial Pressure"\"12/25/2022" +"NASA Langley Research Center"\"Issued"\"LAR-16516-1"\6879893\"10/675,502"\"Autonomous Health Monitoring Architecture Hardware"\"09/30/2023" +"NASA Langley Research Center"\"Issued"\"LAR-16517-1"\7048228\"10/678,474"\"Partial-Span Slotted Wing For Transonic Aircraft"\"10/03/2023" +"NASA Langley Research Center"\"Issued"\"LAR-16532-1"\7334998\"11/5,624"\"Low-Noise Fan Exit Guide Vanes"\"12/06/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16538-1"\7675619\"12/129,967"\"Micro-LiDAR For In-Flight Flow Velocimetry And Boundary Layer Control"\"11/11/2028" +"NASA Langley Research Center"\"Issued"\"LAR-16549-1"\7262543\"10/943,655"\"Inductor (L)-Capacitor ( C ) (aka, LC) Sensor Circuit For Piezo Material Monitoring"\"04/17/2025" +"NASA Langley Research Center"\"Application"\"LAR-16565-1"\0\"13/020,025"\"e-Sensor: Quantitative Imaging of Electric Fields and Electric Potentials"\ +"NASA Langley Research Center"\"Issued"\"LAR-16566-1"\7285932\"10/975,119"\"Method And Apparatus For Loss Of Control Inhibitor Systems"\"10/27/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16571-1"\7075295\"10/839,448"\"LC Sensing Element For Closed Cavities Having Low Radio Frequency Transmissivity"\"04/30/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16571-2"\7589525\"11/421,886"\"Magnetic Field Response Sensor For Conductive Media"\"09/26/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16571-3"\7759932\"12/533,520"\"Magnetic Field Response Sensor For Conductive Media"\"07/31/2029" +"NASA Langley Research Center"\"Issued"\"LAR-16573-1"\7129467\"10/943,831"\"Carbon Nanotube Based Light Sensor"\"09/29/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16575-1"\7181942\"10/943,649"\"Instrumented Crimping Tool For Critical Wiring Applications"\"11/24/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16605-1"\7623993\"10/731,742"\"Energy-extraction-based active noise control system"\"11/27/2026" +"NASA Langley Research Center"\"Issued"\"LAR-16615-1"\6956066\"10/779,552"\"Polyimide Foams"\"02/11/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16615-2"\7541388\"11/124,640"\"Polyimide Foams"\"05/05/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16616-1"\7758927\"10/956,704"\"Laser-Induced Fabrication Of Metallic Interlayers And Patterns In Polyimide Films"\"09/30/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16640-1"\8089677\"12/135,180"\"Programmable Smart Grating Device With Quantum Aperture Array"\"08/05/2029" +"NASA Langley Research Center"\"Issued"\"LAR-16696-1"\7048235\"10/678,397"\"Slotted Aircraft Wing (a.k.a. Full Span Slotted Wing)"\"10/03/2023" +"NASA Langley Research Center"\"Issued"\"LAR-16698-1"\7394181\"11/76,824"\"High Performance High Efficiency Hybrid Actuator Systems (HYBAS)"\"03/04/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16736-1"\7962252\"11/422,984"\"Semi Autonomous Flight System With Avionics Sensor Board, Processing Board, And Flight Control Board"\"04/07/2027" +"NASA Langley Research Center"\"Issued"\"LAR-16845-1"\8083986\"12/315,520"\"Advanced Thermo-Electric Materials with Nano-Voids"\"12/04/2028" +"NASA Langley Research Center"\"Issued"\"LAR-16854-1"\7381186\"10/911,755"\"Ultrasonic Method And Means To Assess Compartment Syndrome Part B"\"08/02/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16858-1"\7667847\"11/533,921"\"Thin, High-Contrast Targets for Ultralightweight Structures"\"12/15/2026" +"NASA Langley Research Center"\"Issued"\"LAR-16867-1"\7402264\"11/076,460"\"Electroactive polymer-carbon nanotube-ceramic nanocomposites"\"02/27/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17548-1"\8236413\"12/166,852"\"Fail Safe High-Temperature Composite Structure"\"07/07/2030" +"NASA Langley Research Center"\"Issued"\"LAR-16867-2"\7527751\"12/109,490"\"Sensing/Actuating Materials Made From Carbon Nanotube Polymer Composites And Methods For Making Same"\"04/25/2028" +"NASA Langley Research Center"\"Issued"\"LAR-16868-1"\7341883\"11/242,415"\"Lattice Matched SiGe Layer On Single Crystalline Sapphire Substrate"\"09/27/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16871-1"\6413227\"09/459,384"\"Optimization Of Ultrasonic Method For Assessment Of Changes In Intracranial Pressure Through Measurement Of Skull Expansion"\"12/02/2019" +"NASA Langley Research Center"\"Issued"\"LAR-16872-1"\7514726\"11/387,086"\"Graded Indexed SiGe Layers on Lattice Matched SiGe Layers on Sapphire"\"06/10/2027" +"NASA Langley Research Center"\"Issued"\"LAR-16874-1"\7723464\"11/674,321"\"Novel Aromatic/Aliphatic Diamine Derivatives For Advanced Compositions And Polymers"\"02/13/2027" +"NASA Langley Research Center"\"Issued"\"LAR-16877-1"\7186367\"11/110,996"\"Double-Vacuum Bag (DVB) Process For Volatile Management In Resin Matrix Composite Manufacturing"\"07/08/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16885-1"\7890311\"11/177,664"\"Method Of Simulating Flow-Through Area Of A Pressure Regulator"\"12/15/2029" +"NASA Langley Research Center"\"Issued"\"LAR-16886-1"\7375808\"11/536,120"\"Dual Sensing Capable Germ Or Toxic Chemical (GTC) Sensor Using Quantum Aperture Array With Surface Plasmon Polariton (SPP)"\"09/28/2026" +"NASA Langley Research Center"\"Issued"\"LAR-16900-1"\7278324\"11/155,923"\"CNT based crack growth detector and strain field monitor"\"08/07/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16906-1"\8529825\"12/928,128"\"Fabrication of Nanovoid-imbedded Bismuth Telluride with Low Dimensional System"\"02/01/2028" +"NASA Langley Research Center"\"Issued"\"LAR-16907-1"\7783060\"11/126,518"\"A Deconvolution Approach For The Mapping Of Acoustic Sources (DAMAS) Determined From Phased Microphone Arrays"\"03/27/2029" +"NASA Langley Research Center"\"Issued"\"LAR-16908-1"\7086593\"10/839,445"\"Magnetic Field Response Measurement Acquisition System (Includes LAR-16138-1, LAR-16554-1, LAR-16591-1, LAR-16614-1, LAR-16617-1, & LAR-16908-1)"\"05/04/2024" +"NASA Langley Research Center"\"Issued"\"LAR-16946-1"\7484930\"11/169,256"\"Blowing Flap Side Edge"\"07/01/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16950-1"\7379231\"11/470,771"\"Ferroelectric Light Control Device"\"09/07/2026" +"NASA Langley Research Center"\"Issued"\"LAR-16958-1"\7510802\"11/371,575"\"Fabrication of Multilayer Ferritin Array for Bionanobattery"\"08/24/2027" +"NASA Langley Research Center"\"Issued"\"LAR-16970-1"\7231832\"11/229,439"\"Method For Determining Cracks On And Within Composite Panels"\"12/02/2025" +"NASA Langley Research Center"\"Issued"\"LAR-16974-1"\7047807\"11/203,583"\"Methods Of Mounting Erectable, Flexible And Fixed Magnetic Field Response Sensors"\"08/08/2025" +"NASA Langley Research Center"\"Issued"\"LAR-17003-1"\7467921\"11/239,436"\"Rotor Blade Vortex Management Via Boundary Layer Separation Control"\"09/22/2025" +"NASA Langley Research Center"\"Issued"\"LAR-17013-1"\7647771\"11/374,480"\"Thermally Driven Miniature Piston Actuator"\"11/12/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17017-1"\7537182\"11/250,700"\"Enhanced Separation Control Via Simultaneous Multiple-Location Forcing"\"06/18/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17032-1"\7321185\"11/370,377"\"A New Concept For Active Bistable Twisting Structures"\"03/06/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17044-1"\7558371\"12/254,150"\"Applications Of Twin-Detection XRD Methods On SiGe (111) Layers On Sapphire (0001) Substrate"\"10/20/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17073-1"\7580323\"11/419,818"\"Interdigitated Electrode Actuators For Straining Optical Fibers (IDEAS)"\"05/27/2026" +"NASA Langley Research Center"\"Application"\"LAR-17088-1"\0\"13/032,045"\"Nanotubular Toughening Inclusions For Improved Mechanical Reinforcement"\ +"NASA Langley Research Center"\"Issued"\"LAR-17112-1"\7507472\"11/81,888"\"Multi-Layer Electroactive Devices"\"09/08/2025" +"NASA Langley Research Center"\"Issued"\"LAR-17116-1"\7506541\"11/328,468"\"Wireless Fuel Volume Measurement Techniques"\"10/18/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17126-1"\7666939\"11/432,201"\"A Method For Producing Stable Dispersions Of Single Walled Carbon Nanotubes In Polymer Matrices Using Noncovalent Interactions"\"05/11/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17128-1"\7285933\"11/188,227"\"Method And Apparatus For Loss Of Control Inhibitor Systems"\"07/20/2025" +"NASA Langley Research Center"\"Issued"\"LAR-17135-1"\8217143\"11/827,567"\"Fabrication of Metal Nanoshells Derived by a Biotemplate"\"11/17/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17149-2"\8608993\"13/053,633"\"A Method For Producing Multifunctional Structural Thermally Stable Nanocomposites With Aligned Carbon Nanotubes"\"05/20/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17154-1"\7655595\"11/421,924"\"Sprayable Low Temperature Oxidation Catalyst Coating Based on Sol-Gel Technology"\"08/11/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17154-2"\7781366\"12/369,932"\"Sol-Gel Based Oxidation Catalyst And Coating System Using Same (Divisional of -1)"\"02/12/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17155-1"\7255004\"11/229,438"\"Wireless Fluid-Lead Measuring Dipstick Assembly (Broken Out Of LAR-16974-1)"\"03/22/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17157-1"\7507784\"11/124,508"\"Liquid Crystalline Thermosets From Ester, Ester-Imide, And Ester-Amide Oligomers"\"01/05/2021" +"NASA Langley Research Center"\"Issued"\"LAR-17163-1"\7467536\"11/428,017"\"Multi-axis Accelerometer Calibration System Using a Cuboidal Attitude Positioning Device"\"08/18/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17165-1"\7595112\"11/461,150"\"Method To Prepare Hybrid Metal/Composite Laminates By Resin Infusion"\"02/01/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17168-1"\7732998\"11/462,114"\"Cylindrical Shaped Micro Fiber Composite (CMFC) Actuators"\"09/24/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17169-1"\7446459\"11/486,200"\"Hybrid Force/Stress Amplified Piezoelectric Energy Harvesting Transducer System"\"07/13/2026" +"NASA Langley Research Center"\"Application"\"LAR-17211-1"\0\"13/557,250"\"Floating Ultrasonic Transducer Inspection System For Nondestructive Evaluation"\ +"NASA Langley Research Center"\"Issued"\"LAR-17213-1"\8020805\"11/831,233"\"New Configuration and Power Technology for Application-Specific Scenarios of High Altitude Airships"\"03/25/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17224-1"\7998368\"12/272,826"\"Effective Dispersion of Carbon Nanotubes in an Aqueous Solution and Their Application on Bionanotechnology"\"06/04/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17229-1"\7760778\"11/670,044"\"Thin-film evaporative cooling concept for a solid-state laser diode crystal"\"02/01/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17235-1"\7414708\"11/461,569"\"Multi-Point, Multi-Component Interferometric Rayleigh/Mie Doppler Velocimeter"\"08/01/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17237-1"\8294989\"12/512,344"\"Photonic DART (Densely Accumulated Ray-point by micro-zone-plaTe)"\"04/25/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17240-1"\8111943\"12/423,907"\"Computational Visual Servo:Automatic Measurement and Control for Smart Image Enhancement"\"09/14/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17241-1"\8018815\"12/490,747"\"Optical Data Storage System with Micro Zone Plate"\"12/05/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17242-1"\8174695\"12/508,018"\"MICRO-RING THIN-FILM SPECTROMETER ARRAY"\"09/03/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17243-1"\8411214\"12/144,937"\"Variable Visibility Glasses for Flight Training"\"02/01/2032" +"NASA Langley Research Center"\"Issued"\"LAR-17245-1"\8344281\"12/751,075"\"Use of Beam Deflection to Control Electron Beam Wire Deposition Processes"\"04/26/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17257-1"\7590904\"11/531,703"\"Detecting the loss of configuration access of reprogrammable Field Programmable Gate Array (FPGA) without external circuitry"\"10/07/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17267-1"\7704553\"11/710,386"\"Method of Depositing Metals onto Carbon Allotropes and Compositions Therefrom"\"06/26/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17268-1"\7647543\"11/535,574"\"Integrated mitigation for single event upset (SEU) of reprogrammable field programmable gate arrays (FPGA) operating in radiation environments"\"09/27/2026" +"NASA Langley Research Center"\"Issued"\"LAR-17280-1"\7159774\"11/305,854"\"Magnetic Field Response Measurement Acquisition System"\"04/30/2024" +"NASA Langley Research Center"\"Issued"\"LAR-17286-1"\8081734\"12/628,446"\"Miniature, Low-Power X-Ray Tube Using A Microchannel Electron Generator Electron Source"\"02/26/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17290-1"\7737867\"11/696,333"\"Advance Display Media for Improved Airport Surface Operations"\"06/11/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17293-1"\7991491\"11/559,420"\"Control Device And Method For Generating Control Signals For Technical Devices"\"03/04/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17294-1"\8430327\"11/671,089"\"Low Profile Sensors Using Self-Resonating Inductors"\"08/22/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17295-1"\7683797\"11/671,131"\"System For Providing Damage Detection And Thermal Protection"\"02/15/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17300-1"\7538860\"11/840,363"\"A Method and Apparatus for Determination of the Reflection Wavelength of Multiple Low-Reflectivity Bragg Gratings in a Single Fiber"\"12/31/2027" +"NASA Langley Research Center"\"Application"\"LAR-17307-1"\0\"11/466,569"\"Low Mass Free Piston Space Radiator"\ +"NASA Langley Research Center"\"Issued"\"LAR-17317-1"\8401217\"11/780,500"\"Extreme Low Frequency Acoustic Measurement Portable System"\"11/29/2030" +"NASA Langley Research Center"\"Application"\"LAR-17317-2"\\"13/771,735"\"Extreme Low Frequency Acoustic Measurement System"\"07/20/2027" +"NASA Langley Research Center"\"Application"\"LAR-17318-1"\0\"13/082,734"\"Preparation of Metal Nanowire Decorated Carbon Allotropes"\"08/29/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17321-1"\8545986\"12/043,276"\"Ultra High-Temperature, Lightweight Insulation Material Compositions And Methods For Making And Using Them"\"06/27/2030" +"NASA Langley Research Center"\"Application"\"LAR-17323-1"\0\"11/757,780"\"Concept And Design Of Oxygen Band Radar For Surface Air Pressure Remote Sensing"\ +"NASA Langley Research Center"\"Issued"\"LAR-17325-1"\8060350\"12/56,686"\"Unsteady aerodynamic reduced-order models (ROMs) for efficient aeroelastic analysis"\"03/04/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17327-1"\8117013\"12/002,857"\"Standardized Radiation Shield Design Method: 2005 HZETRN"\"07/05/2030" +"NASA Langley Research Center"\"Application"\"LAR-17330-1"\0\"11/946,207"\"Multi Functional Composite And Honeycomb Panels"\ +"NASA Langley Research Center"\"Issued"\"LAR-17332-1"\7958733\"11/762,827"\"Active Flow Effectors by Embedded Shape Memory Alloy Actuation"\"11/04/2029" +"NASA Langley Research Center"\"Application"\"LAR-17332-2"\\"13/096,305"\"Jet Engine Exhaust Nozzle Flow Effector"\"07/05/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17335-1"\8170234\"12/108,562"\"Extension Of DAMAS Phased Array Processing For Spatial Coherence Determination (DAMAS-C)"\"03/02/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17346-1"\7649439\"11/465,503"\"Thermoelectric Devices From Thin Metal System To Include Flexible Substrate And Method Of Making Same"\"04/28/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17355-1"\8164485\"11/863,964"\"A Method of Providing a Synthetic Vision System Flight Management Visualization Display for Aiding Pilot Preview, Rehearsal and/or Review and Real-Time Visual Acquisition of Flight Mission Progress"\"06/24/2029" +"NASA Langley Research Center"\"Application"\"LAR-17361-1"\0\"12/138,709"\"Airfoil/ Wing Flow Control Using Flexible Extended Trailing Edge"\ +"NASA Langley Research Center"\"Issued"\"LAR-17365-1"\7784732\"11/958,673"\"Boundary-Layer-Ingesting S-Duct Diffusing Inlet Flow Control Using Hybrid Vane/Jet Approach at Transonic Flow Conditions"\"04/26/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17381-1"\8044294\"12/254,016"\"Thermoelectric material made with highly oriented twinned alloy of Si, Ge, C, and Sn on the basal plane of trigonal substrate and thermoelectric device made with the same material"\"10/11/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17382-1"\8052069\"12/393,238"\"Advanced High Performance Vertical Hybrid Electroactive Synthetic Jet Actuator (ASJA-V)"\"10/18/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17384-1"\8662412\"12/354,808"\"Advanced Modified High Performance Synthetic Jet Actuator With Optimized Curvature Shape Chamber (ASJA-M)"\"10/27/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17385-1"\7671306\"11/589,011"\"Apparatus For Free Electron Laser Ablative Synthesis Of Carbon Nanotubes"\"03/10/2028" +"NASA Langley Research Center"\"Application"\"LAR-17386-1"\0\"12/851,584"\"Fine-Grained Targets For Free Electron Laser Synthesis Of Carbon Nanotubes"\ +"NASA Langley Research Center"\"Issued"\"LAR-17387-1"\7663077\"11/589,010"\"Process For Optimizing The Yield And Production Rate Of Single-Walled Carbon Nanotubes Using Free Electron Laser Synthesis"\"01/23/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17390-1"\8235309\"12/355,782"\"Advanced High Performance Horizontal Piezoelectric Hybrid Synthetic Jet Actuator (ASJA-H)"\"04/02/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17391-1"\7792015\"12/187,458"\"A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems"\"08/14/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17402-1"\7964698\"11/935,036"\"Wholly Aromatic Liquid Crystalline Polyetherimide (LC-PEI) Resin for manufacturing high modulus fibers, films, injection molded articles and foams"\"09/27/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17405-1"\8226767\"12/254,134"\"Hybrid Bandgap Engineering for Rhombohedral Super-Hetero-Epitaxy"\"05/11/2031" +"NASA Langley Research Center"\"Application"\"LAR-17413-2"\0\"12/641,603"\"Nanoparticle-Containing Thermoplastic Composites and Methods of Preparing Same"\ +"NASA Langley Research Center"\"Issued"\"LAR-17425-1"\8059273\"12/496,788"\"Micro Spectrometer for Parallel Light"\"08/19/2029" +"NASA Langley Research Center"\"Application"\"LAR-17427-1"\0\"12/174,360"\"Tailorable Dielectric Materials with Complex Permittivity Characteristics providing High Dielectric Constants and Low Loss Factors"\ +"NASA Langley Research Center"\"Issued"\"LAR-17432-1"\8112243\"12/118,172"\"Forward Voltage Short Pulse (FVSP) Technique for Measuring High Power Laser Diode Array (LDA) Junction Temperature"\"11/27/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17433-1"\7902815\"11/856,807"\"A Multi-Measurement Wheel Sensor"\"06/19/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17440-1"\7845215\"11/844,571"\"Resonant Difference-Frequency Atomic Force Ultrasonic Microscope"\"02/03/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17444-1"\8042739\"11/864,012"\"Wireless Tamper Detection Sensor Requiring No Electrical Connection"\"11/08/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17447-1"\8002219\"11/941,119"\"Multifunctional Boost Protective Cover (MBPC) For A Launch Abort System (LAS)"\"01/16/2030" +"NASA Langley Research Center"\"Application"\"LAR-17455-3"\\"13/938,622"\"A Nanotube Film Electrode and an Electroactive Device Fabricated with the Nanotube Film Electrode and Methods for Making Same"\"10/28/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17469-1"\8094306\"12/487,735"\"Micro Ring Grating Spectrometer with Moveable Aperture Slit"\"08/27/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17477-1"\7993567\"12/131,420"\"Auxiliary Electrode For Electrospinning Process"\"10/02/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17478-1"\7883052\"11/954,452"\"Integration Of A Turbo-Fan Engine Above An Aircraft's Wing Which Reduces Drag And Community Noise"\"09/24/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17480-1"\7711509\"11/930,222"\"A Method To Calibrate Magnetic Response Fluid-Level Sensors Using Complete Sensor Immersion In Fluid"\"03/18/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17485-1"\7851062\"12/124,273"\"Composition of and Method to Prepare Hybrid Laminates from Metal Plasma Coated Fibers and Polymer Matrix Resins"\"09/09/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17485-2"\8017190\"12/906,633"\"Metal/Fiber Laminate and Fabrication Using A Porous Metal/Fiber Preform"\"05/21/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17487-1"\8157207\"11/836,517"\"Jet Engine Nozzle Exit Configurations And Associated Systems And Methods"\"04/15/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17488-1"\7814786\"12/015,626"\"Thin-Film Sensor For Measuring Liquid-Level And Temperature Having No Electrical Connections"\"08/26/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17493-1"\8424200\"12/098,000"\"Conducting Nanotubes Or Nanostructures Based Composites, Method Of Making Them And Applications"\"05/16/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17502-1"\8529249\"11/860,703"\"Quick Change Ceramic Flame Holder for High Output Torch"\"03/14/2030" +"NASA Langley Research Center"\"Application"\"LAR-17502-1-CON"\\"14/021,325"\"Flame Holder System"\"09/25/2027" +"NASA Langley Research Center"\"Issued"\"LAR-17514-1"\8196858\"12/721,833"\"Mars Airplane"\"02/15/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17526-1"\7991595\"12/138,768"\"Adaptive Refinement Tools (ARTs) for Tetrahedral Unstructured Grids"\"06/07/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17528-1"\7878348\"12/248,339"\"Lightweight Lunar Surface Remote Manipulator System (LSRMS)"\"10/09/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17535-1"\8206674\"12/152,414"\"High Pressure Boron Vaporization Synthesis Of Few-Walled Boron Nitride Nanotube Fibers"\"04/13/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17539-1"\8164328\"12/493,573"\"Development Of Eddy Current Techniques For The Detection Of Stress Corrosion Cracking In Space Shuttle Primary Reaction Control Thrusters"\"01/08/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17547-1"\7848381\"12/366,722"\"Line Tunable Visible and Ultraviolet Laser"\"07/05/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17553-1"\8257491\"12/288,379"\"NEW RHOMBOHEDRAL ALIGNMENT OF CUBIC SEMICONDUCTOR ON TRIGONAL SUBSTRATE AT A HIGH TEMPERATURE"\"07/06/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17554-1"\7769135\"12/288,380"\"X-ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy"\"10/20/2028" +"NASA Langley Research Center"\"Application"\"LAR-17555-1"\0\"13/020,194"\"Front-Flight-Path Turbulence & Vortex Detection System"\ +"NASA Langley Research Center"\"Issued"\"LAR-17573-1"\7855368\"12/178,173"\"Air Coupled Acoustic Thermography Nondestructive Evaluation System And Method"\"10/09/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17576-1"\7742663\"12/261,376"\"Innovative Structural Design And Materials For Transmission To And Protection Of Ultraviolet And Infrared Radiation Sensors"\"10/30/2028" +"NASA Langley Research Center"\"Issued"\"LAR-17579-1"\8673649\"12/463,475"\"Wireless Chemical Sensing Using Changes To An Electrically Conductive Reactant Within Sensor's Magnetic Field"\"01/04/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17593-1"\8167204\"12/253,422"\"Open Circuit Damage Location Sensor Having No Electrical Connections"\"10/30/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17608-1"\7901611\"12/274,652"\"Methodology for calculating fiber distribution during electrospinning"\"01/12/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17609-1"\8255732\"12/429,603"\"A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization Protocol"\"12/30/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17629-1"\7813599\"12/390,606"\"A Method for Shape Determination of Multi-Core Optical Fiber"\"02/23/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17634-1"\7893602\"12/328,162"\"Distributed transducer capable of generating or sensing a transverse point load"\"03/14/2029" +"NASA Langley Research Center"\"Application"\"LAR-17636-1"\0\"13/752,495"\"PICA on Edge: Edgewise strips of PICA ablator to eliminate gaps in capsule heat shield"\"01/29/2033" +"NASA Langley Research Center"\"Issued"\"LAR-17638-1"\8508413\"13/082,839"\"Fractal Dielectric Microstrip Antenna using Patterned Substrate Material Geometries"\"03/02/2032" +"NASA Langley Research Center"\"Issued"\"LAR-17651-1"\8259104\"12/493,666"\"Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation"\"03/09/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17655-1"\8111832\"12/424,793"\"Local Intelligence Based Impedance Optimization Scheme for Adaptive Noise Reduction"\"06/25/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17656-1"\8108178\"12/467,475"\"DIRECTED DESIGN OF EXPERIMENTS FOR VALIDATING PROBABILITY OF DETECTION CAPABILITY OF NDE SYSTEMS (DOEPOD)"\"05/05/2030" +"NASA Langley Research Center"\"Application"\"LAR-17668-1"\0\"12/322,591"\"Device for the Large-Scale synthesis of High-Quality Boron Nitride Nanotubes"\"02/04/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17681-1"\8347479\"12/849,906"\"Thermally-Activated Crack Healing Mechanism for Metallic Materials"\"04/30/2031" +"NASA Langley Research Center"\"Application"\"LAR-17681-2"\\"13/719,740"\"System for Repairing Cracks in Structures"\"08/04/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17681-3"\8679642\"14/037,850"\"System for Repairing Cracks in Structures"\"08/04/2030" +"NASA Langley Research Center"\"Application"\"LAR-17689-1"\0\"12/393,289"\"Negative Dielectric Constant Material Based on Ion Conducting Materials"\"08/20/2031" +"NASA Langley Research Center"\"Application"\"LAR-17694-1"\0\"12/974,359"\"A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Spectrometers"\"03/09/2032" +"NASA Langley Research Center"\"Issued"\"LAR-17695-1"\8658004\"12/470,689"\"Vapor-Barrier Vacuum Isolation System"\"08/01/2032" +"NASA Langley Research Center"\"Application"\"LAR-17696-1"\0\"12/543,686"\"Asymmetric Dielectric Elastomer Composite Material"\"03/16/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17705-1"\8672107\"13/042,655"\"Tunable damper capable of tailoring the structural damping for individual modes of vibration using minimal space and minimal impact on the system frequencies and mode shapes."\"11/28/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17709-1"\7912101\"12/628,423"\"Increased Efficiency Nonlinear Optical Interactions"\"12/01/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17711-1"\8179203\"12/569,984"\"Wireless Electrical Applications/Devices Using floating Electrodes Electromagnetically Coupled to Open-Circuit Devices"\"07/09/2030" +"NASA Langley Research Center"\"Application"\"LAR-17723-1"\0\"12/699,334"\"Novel material for wound healing applications."\ +"NASA Langley Research Center"\"Issued"\"LAR-17724-1"\8378659\"12/703,221"\"Electroactive polymer fibers for structural health monitoring."\"01/22/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17735-1"\8490463\"12/881,431"\"Assessment and Calibration of Crimp Tool Equipped with Ultrasonic Analysis, including Phantom Construction"\"10/22/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17736-1"\8147920\"12/370,755"\"Controlled Deposition And Alignment Of Carbon Nanotubes (Continuation of LAR 16499-1)"\"02/13/2029" +"NASA Langley Research Center"\"Application"\"LAR-17738-1"\0\"12/685,280"\"Sensory Metallic Materials"\ +"NASA Langley Research Center"\"Issued"\"LAR-17743-1"\8473663\"13/011,198"\"Reconfigurable Peripheral Component Interconnect local bus controller and target design."\"10/07/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17745-1"\7906043\"12/550,431"\"Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites And Process For Preparation Thereof"\"11/01/2022" +"NASA Langley Research Center"\"Application"\"LAR-17877-1"\\"13/277,859"\"Autonomous Leading-Edge Slat Device for Reduction of Aeroacoustic Noise Associated with Aircraft Wings"\ +"NASA Langley Research Center"\"Application"\"LAR-17747-1"\0\"13/029,471"\"Temperature Sensing Using Temperature Sensitive Dielectric Material in Proximity to Open-Circuit Sensors Having No Electrical Connections"\ +"NASA Langley Research Center"\"Application"\"LAR-18090-1"\\"13/786,608"\"No Moving Part - Variable Frequency Fluidic Oscillator"\"03/06/2033" +"NASA Langley Research Center"\"Application"\"LAR-17747-1-CON"\\"14/193,861"\"Wireless Temperature Sensor Having No Electrical Connections and Sensing Method for Use Therewith"\"02/17/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17748-1"\8303922\"12/546,185"\"Exfoliation of Hexagonal Boron Nitride"\"11/19/2030" +"NASA Langley Research Center"\"Issued"\"LAR-17759-1"\7935414\"12/406,315"\"Multilayer Electroactive Polymer Composite Material (Continuation of LAR 17112-1)"\"03/18/2029" +"NASA Langley Research Center"\"Issued"\"LAR-17766-1"\8452073\"12/750,991"\"Method for Closed Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes"\"10/02/2031" +"NASA Langley Research Center"\"Application"\"LAR-17769-1"\0\"12/894,279"\"Modifying Surface Energy via Laser Ablative Surface Patterning"\ +"NASA Langley Research Center"\"Application"\"LAR-17777-1"\\"13/443,940"\"Process to Fabricate Specific Sized Monodisperse Polystryene Microparticles"\ +"NASA Langley Research Center"\"Application"\"LAR-17780-1"\0\"12/387,703"\"Boron Nitride Nanotube Fibrils and Yarns (Filed by JLabs, their ref: ID 1248/Docket 2025(JSA)"\ +"NASA Langley Research Center"\"Application"\"LAR-17786-1"\0\"12/964,381"\"Smart Optics Material Characterization System"\ +"NASA Langley Research Center"\"Application"\"LAR-17789-1"\0\"12/969,076"\"Electroactive scaffold"\ +"NASA Langley Research Center"\"Application"\"LAR-17791-1"\0\"13/070,552"\"Apparatus and Method for Selective Enhancement of Surface Plasmon Polaritons to Initiate and Sustain Low Energy Nuclear Reactions in Metal Hydride Systems"\ +"NASA Langley Research Center"\"Issued"\"LAR-17799-1"\8655513\"13/046,030"\"Realtime 3-D Image Processing and Enhancement"\"05/25/2031" +"NASA Langley Research Center"\"Application"\"LAR-17800-1"\0\"13/527,638"\"Method for generating laser linear frequency modulation waveform"\ +"NASA Langley Research Center"\"Application"\"LAR-17801-1"\0\"13/566,077"\"Coherent Doppler lidar for measuring altitude, ground velocity, and air velocity of aircraft and spaceborne vehicles"\"08/03/2032" +"NASA Langley Research Center"\"Application"\"LAR-17813-1"\0\"13/198,817"\"Durable Joining Technology for Uniformly-Curved Composite Sandwich Structures"\"08/17/2032" +"NASA Langley Research Center"\"Application"\"LAR-17813-1-CON"\\"14/200,708"\"Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures"\"08/05/2031" +"NASA Langley Research Center"\"Application"\"LAR-17830-1"\0\"12/925,047"\"Actuators and Sensors Fabricated with Boron Nitride Nanotubes (BNNTs) and BNNT Polymer Composites"\ +"NASA Langley Research Center"\"Issued"\"LAR-17831-1"\8651429\"13/214,453"\"Blended Cutout Flap Design for the Reduction of Jet-Flap Interaction Noise"\"08/22/2031" +"NASA Langley Research Center"\"Application"\"LAR-17832-1"\0\"13/214,469"\"Aircraft Engine Nozzle Systems for Jet Noise Reduction by Acoustic Shielding"\ +"NASA Langley Research Center"\"Application"\"LAR-17833-1"\0\"13/214,481"\"Active Aircraft Pylon Noise Control System"\ +"NASA Langley Research Center"\"Issued"\"LAR-17836-1"\8671763\"12/850,708"\"Sub-Surface Windscreen for Outdoor Measurement of Infrasound"\"02/18/2031" +"NASA Langley Research Center"\"Application"\"LAR-17841-1"\0\" 14/202,699"\"High Mobility Transport Layer Structures for Rhombohedral Si/Ge/SiGe Devices"\"03/10/2034" +"NASA Langley Research Center"\"Application"\"LAR-17848-1"\0\"13/796,626"\"Spectroscopy using Electric Permittivity, Magnetic Permeability and Electrical Conductivity Spatial Profiles"\"03/12/2033" +"NASA Langley Research Center"\"Issued"\"LAR-17856-1"\8198976\"12/688,309"\"Flexible Thin Metal Film Thermal Sensing System (CIP of LAR 17346-1)"\"09/20/2030" +"NASA Langley Research Center"\"Application"\"LAR-17857-1"\0\"12/967,690"\"A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization"\ +"NASA Langley Research Center"\"Application"\"LAR-17869-1"\\"13/166,226"\"Team Electronic Gameplay Combining Different Means of Control"\ +"NASA Langley Research Center"\"Application"\"LAR-17886-1"\\"13/324,527"\"Method and Apparatus to Detect Wire Pathologies Near Crimped Connector"\ +"NASA Langley Research Center"\"Application"\"LAR-17887-1"\\"13/743,750"\"Interrogations Leading to Recertification of Wire Crimps and Other Joining Technologies."\"01/17/2033" +"NASA Langley Research Center"\"Issued"\"LAR-17888-1"\8605262\"13/167,093"\"Time Shifted PN Codes for CW LIDAR, RADAR, and SONAR"\"12/28/2031" +"NASA Langley Research Center"\"Issued"\"LAR-17894-1"\8494687\"13/166,121"\"3-D Super Resolution Algorithm for Flash LIDAR Image Enhancement"\"12/11/2031" +"NASA Langley Research Center"\"Application"\"LAR-17895-1"\\"13/166,166"\"Method and System for Physiologically Modulating Videogames or Simulations Which Use Motion-Sensing Input Devices"\ +"NASA Langley Research Center"\"Application"\"LAR-17902-1"\\"13/068,329"\"Neutron and Ultraviolet Radiation Shielding Films Fabricated Using Boron Nitride Nanotubes and Boron Nitride Nanotube Composites"\ +"NASA Langley Research Center"\"Application"\"LAR-17906-1"\\"13/272,027"\"Abnormal Grain Growth Suppression in Aluminum Alloys"\ +"NASA Langley Research Center"\"Issued"\"LAR-17908-1"\8655094\"13/105,004"\"New Photogrammetry System to Measure Relative 6-Degree-of-Freedom Motion Between Two Bodies Using Heterogeneous Cameras Having Arbitrary Wide-Angle Lenses with Non-Overlapping Fields of View"\"04/23/2032" +"NASA Langley Research Center"\"Application"\"LAR-17918-1"\\"13/136,216"\"High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTs) and BNNT Polymer Composites"\ +"NASA Langley Research Center"\"Issued"\"LAR-17919-1"\8661653\"13/191,882"\"Z-Shields from Fiber Metal Laminate"\"07/27/2031" +"NASA Langley Research Center"\"Application"\"LAR-17919-2"\\"13/963,484"\"Z-Shields from Fiber Metal Laminate"\"07/27/2031" +"NASA Langley Research Center"\"Application"\"LAR-18097-1"\\"13/591,320"\"Arbitrary Shape Initialization of Fiber Optic Shape Sensing Systems"\"08/22/2032" +"NASA Langley Research Center"\"Application"\"LAR-17923-1"\\"13/411,793"\"A Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanospheres as Nano-bridges for Thermoelectric Application"\"11/14/2032" +"NASA Langley Research Center"\"Application"\"LAR-17947-1"\\"13/775,809"\"Linear Fresnel Spectrometer Chip with Gradient Line Grating"\"02/25/2033" +"NASA Langley Research Center"\"Application"\"LAR-17952-1"\\"13/411,891"\"Multi-Point Interferometric Phase Change Detection Algorithm"\ +"NASA Langley Research Center"\"Application"\"LAR-17958-1"\\"13/195,251"\"Wireless Open-Circuit In-Plane Strain and Displacement Sensors Having No Electrical Connections"\"07/16/2032" +"NASA Langley Research Center"\"Issued"\"LAR-17959-1"\8087494\"12/894,326"\"Method of Making a Composite Panel Having Subsonic Transverse Wave Speed Characteristics (Continuation of LAR 16535-1)"\"09/30/2030" +"NASA Langley Research Center"\"Application"\"LAR-17966-1"\\"13/457,687"\"Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe"\ +"NASA Langley Research Center"\"Application"\"LAR-17967-1"\\"13/293,846"\"Relaxor Piezoelectric Single Crystal Multilayer Stacks for Energy Harvesting Transducers (RPSEHT)"\ +"NASA Langley Research Center"\"Application"\"LAR-17972-1"\\"13/200,314"\"BxCyNz Nanotube Formation via the Pressurized Vapor/Condenser"\ +"NASA Langley Research Center"\"Application"\"LAR-17973-1"\\"13/200,316"\"Efficient Boron Nitride Nanotube (BNNT) and BxCyNz Nanotube Formation via Combined Laser-Gas Flow Levitation (JLab's ref: 2010-09-13-RRW)"\ +"NASA Langley Research Center"\"Application"\"LAR-17977-1"\\"13/447,513"\"Variable Stiffness Shape Adaptive Multi-Layered Polymer Composite"\ +"NASA Langley Research Center"\"Application"\"LAR-17980-1"\\"13/457,540"\"Space Utilization Optimization Tools"\ +"NASA Langley Research Center"\"Application"\"LAR-17984-1"\\"13/326,779"\"FLEXible Side Edge Link (FLEXSEL) for Trailing-Edge Flap Aeroacoustic Noise Reduction"\"12/15/2031" +"NASA Langley Research Center"\"Application"\"LAR-17985-1"\\"13/231,386"\"An Acoustic Beamforming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response (Michigan State University's ref: TEC2011-0045)"\ +"NASA Langley Research Center"\"Application"\"LAR-17987-1"\\"13/364,814"\"A Self-Stabilizing Distributed Clock Synchronization Protocol For Arbitrary Digraphs"\ +"NASA Langley Research Center"\"Application"\"LAR-17991-1"\\"13/200,315"\"Production Rig for the Synthesis of BNNTs via the PVC Method"\ +"NASA Langley Research Center"\"Issued"\"LAR-17993-1"\8662213\"13/342,264"\"Locomotion of Amorphous Surface Robots"\"05/06/2032" +"NASA Langley Research Center"\"Application"\"LAR-17993-2"\\"14/189,019"\"Locomotion of Amorphous Surface Robots"\"01/03/2033" +"NASA Langley Research Center"\"Application"\"LAR-17994-1"\\"13/273,516"\"Manufacturing of Low Mass, Large-Scale Hierarchical Thin Film Structural Systems"\ +"NASA Langley Research Center"\"Application"\"LAR-17996-1"\\"14/202,289"\"Nanostructure Neutron Converter Layer Development"\"03/10/2034" +"NASA Langley Research Center"\"Issued"\"LAR-18006-1"\8671551\"13/363,413"\"Crimp Quality Assessment from Jaw Position-Ultrasonic Transmission Analysis"\"02/01/2032" +"NASA Langley Research Center"\"Application"\"LAR-18006-2"\\"14/193,086"\"Crimp Quality Assessment from Jaw Position-Ultrasonic Transmission Analysis"\"02/01/2032" +"NASA Langley Research Center"\"Issued"\"LAR-18016-1"\8636407\"13/029,426"\"Wireless Temperature Sensor Having No Electrical Connections and Sensing Method For Use Therewith"\"11/23/2031" +"NASA Langley Research Center"\"Application"\"LAR-18021-1"\\"13/417,347"\"Flap Side Edge Liners for Airframe Noise Reduction"\"07/31/2032" +"NASA Langley Research Center"\"Application"\"LAR-18023-1"\\"13/417,349"\"Landing Gear Door Liners for Airframe Noise Reduction"\"03/12/2032" +"NASA Langley Research Center"\"Application"\"LAR-18024-1"\\"13/417,351"\"External Acoustic Liners for Multi-Functional Aircraft Noise Reduction"\ +"NASA Langley Research Center"\"Application"\"LAR-18026-1"\\"13/286,715"\"Synthesis of Novel Copoly(imide oxetane)s with Unique Surface Properties"\ +"NASA Langley Research Center"\"Application"\"LAR-18257-1"\\"14/105,757"\"A Structural Joint With Multi-Axis Load Carrying Capacity"\"12/13/2033" +"NASA Langley Research Center"\"Issued"\"LAR-18032-1"\8229716\"12/981,432"\"Fast Tracking Methods and Systems for Air Traffic Modeling Using a Monotonic Lagrangian Grid (US Naval Research Laboratory ref: 100148-US2)"\"12/29/2030" +"NASA Langley Research Center"\"Application"\"LAR-18034-1"\\"13/291,372"\"Compact Active Vibration Control System"\ +"NASA Langley Research Center"\"Application"\"LAR-18037-1"\\"13/453,717"\"A Multifunctional Lightning Protection and Detection System for Aerospace Vehicles"\ +"NASA Langley Research Center"\"Application"\"LAR-18040-1"\\"13/986,089"\"Multi-Functional BN-BN Composite"\"03/29/2033" +"NASA Langley Research Center"\"Application"\"LAR-18065-1"\\"13/860,697"\"Variable Acceleration Force Calibration System"\"04/11/2033" +"NASA Langley Research Center"\"Application"\"LAR-18070-1"\\"13/923,307"\"Transparent and Ubiquitous Sensing Technology"\"06/20/2033" +"NASA Langley Research Center"\"Application"\"LAR-18071-1"\\"13/923,312"\"Using Ubiquitous Conductor to Power and Interrogate Wireless Passive Sensors and Construct Sensor Network"\ +"NASA Langley Research Center"\"Application"\"LAR-18073-1"\\"13/941,441"\"Doped Chiral Polymer Negative Index Materials (DCPNIM)"\"07/12/2033" +"NASA Langley Research Center"\"Application"\"LAR-18077-1"\\"13/630,459"\"Flight Deck Technology and Procedure for Pilots to Generate Flight-Optimizing Trajectory Requests that Avoid Nearby Traffic"\"09/28/2032" +"NASA Langley Research Center"\"Application"\"LAR-18089-1"\\"13/786,713"\"Synchronized Sweeping Jet Actuators"\"03/06/2033" +"NASA Langley Research Center"\"Application"\"LAR-18127-1"\\"13/913,782"\"Synergistic Chemical and Topographical Surface Modifications and Articles of Manufacture for Dynamic Insect Adhesion Mitigation"\"06/10/2033" +"NASA Langley Research Center"\"Application"\"LAR-18131-1"\\"13/774,422"\"Puncture- healing Thermoplastic Resin Carbon Fiber Reinforced Composites towards More Damage/Impact Tolerant Systems"\ +"NASA Langley Research Center"\"Application"\"LAR-18132-1"\\"13/673,360"\"Modeling of Laser Ablation and Plume Chemistry in a Boron Nitride Nanotube Production Rig"\"11/09/2032" +"NASA Langley Research Center"\"Application"\"LAR-18143-1"\\"13/694,286"\"In-situ Mechanical Property Measurements of Amorphous Carbon-boron Nitride Nanotube"\"11/15/2032" +"NASA Langley Research Center"\"Application"\"LAR-18144-1"\\"13/836,609"\"Method and System for Physiologically Modulating Videogames and Simulations Which Use Gesture and Body Image Sensing Control Input Devices"\"03/15/2033" +"NASA Langley Research Center"\"Application"\"LAR-18160-1"\\"13/864,396"\"Tension Stiffened and Tendon Actuated Space Manipulators"\"04/17/2033" +"NASA Langley Research Center"\"Application"\"LAR-18166-1"\\"13/764,062"\"Reactive Orthotropic Lattice Diffuser (ROLD) for Reducing Aerodynamic Noise from Aircraft Flap Tips"\"03/12/2032" +"NASA Langley Research Center"\"Application"\"LAR-18179-1"\\"13/792,489"\"Extreme Reduced Instruction Set Computing (xRISC) for High Speed Execution of Computing Algorithms"\"03/11/2033" +"NASA Langley Research Center"\"Application"\"LAR-18183-1"\\"13/834,294"\"Height Control and Deposition Measurement for the Electron Beam Free Form Fabrication (EBF3) Process"\"03/15/2033" +"NASA Langley Research Center"\"Application"\"LAR-18184-1"\\"13/987,706"\"Conductive Polymer/Carbon Nanotube Structural Materials and Methods for Making Same"\"08/23/2033" +"NASA Langley Research Center"\"Application"\"LAR-18186-1"\\"12/482,503"\"Flexible Volumetric Structure"\ +"NASA Langley Research Center"\"Application"\"LAR-18202-1"\\"13/713,033"\"Ground-to-Space Laser Calibration System"\"12/13/2032" +"NASA Langley Research Center"\"Application"\"LAR-18204-1"\\"13/800,379"\"Quasi-Static Electric Field Generator"\"03/13/2033" +"NASA Langley Research Center"\"Application"\"LAR-18211-1"\\"13/781,918"\"A Statistically Based Approach to Broadband Liner Design and Assessment"\"03/01/2033" +"NASA Langley Research Center"\"Application"\"LAR-18217-1"\\"13/771,116"\"A Graphical Acoustic Liner Design and Analysis Tool"\"02/20/2033" +"NASA Langley Research Center"\"Application"\"LAR-18246-1"\\"13/765,714"\"Tethered Vehicle Control and Tracking System"\"02/13/2033" +"NASA Langley Research Center"\"Application"\"LAR-18266-1"\\"14/079,914"\"Airborne Wind Profiling Algorithm for Doppler Wind Lidar (APOLO)"\"11/14/2033" +"NASA Langley Research Center"\"Application"\"LAR-18267-1"\\"13/838,260"\"Method and System for Physiologically Modulating Action Role-playing Open World Video Games and Simulations Which Use Gesture and Body Image Sensing Control Input Devices"\ +"NASA Langley Research Center"\"Application"\"LAR-18270-1"\\"14/079,965"\"Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV"\"11/14/2033" +"NASA Langley Research Center"\"Application"\"LAR-18301-1"\\"13/838,163"\"Flap Edge Noise Reduction Fins (FENoRFins)"\"03/15/2033" +"NASA Langley Research Center"\"Application"\"LAR-18318-1"\\"14/191,898"\"In-Situ Load System (ILS) for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-based Aerospace Testing Applications"\"02/27/2034" +"NASA Langley Research Center"\"Application"\"LAR-18374-1"\\"14/072,019"\"Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System"\"06/23/2031" +"NASA Glenn Research Center"\"Issued"\"LEW-16183-1"\5866518\"08/786,360"\"PS300 - Self Lubricating Readily Polished High Temperature Composite"\"01/16/2017" +"NASA Glenn Research Center"\"Issued"\"LEW-16519-2"\6291838\"09/448,406"\"Gas Sensing Diode"\"11/15/2019" +"NASA Glenn Research Center"\"Issued"\"LEW-16901-1"\7190741\"10/274,756"\"A Real-Time Signal-To-Noise Ratio Estimation Technique For BPSK And QPSK Modulation Using The Active Communications Channel"\"10/21/2022" +"NASA Glenn Research Center"\"Issued"\"LEW-17153-1"\6550696\"09/794,794"\"Lean Direct Injection Combustor/Multi Point Integrate Module Fuel-Air Mixer"\"02/27/2021" +"NASA Glenn Research Center"\"Issued"\"LEW-17157-1"\6869480\"10/198,668"\"Method For Production Of Atomic Scale Step Height Reference Specimens With Atomically Flat Surfaces"\"07/17/2022" +"NASA Glenn Research Center"\"Issued"\"LEW-17166-1"\7497443\"11/121,850"\"Resilient, Flexible, Pressure-Activated Seal"\"05/03/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-17167-1"\6667725\"10/196,391"\"Radio Frequency (RF) Telemetry System For Sensors And Actuators"\"07/11/2022" +"NASA Glenn Research Center"\"Issued"\"LEW-17170-1"\6706549\"10/124,689"\"Common-Layered Architecture For Semiconductor Silicon Carbide (CLASSiC) Bulk Fabrication"\"04/12/2022" +"NASA Glenn Research Center"\"Issued"\"LEW-17182-1"\7086648\"10/652,088"\"Acoustic Seal"\"08/22/2023" +"NASA Glenn Research Center"\"Issued"\"LEW-17240-1"\7427428\"10/601,657"\"Mechanically Improved Interphase Coating For Silicon-Carbide Fiber-Reinforced Silicon-Carbide Matrix Composites"\"06/24/2023" +"NASA Glenn Research Center"\"Issued"\"LEW-17256-1"\6845664\"10/263,980"\"MEMS Direct Chip Attach (MEMS-DCA) Packaging Methodologies For Harsh Environments"\"10/03/2022" +"NASA Glenn Research Center"\"Issued"\"LEW-17256-2"\7518234\"10/926,206"\"MEMS Direct Chip Attach Packaging Methodologies And Apparatus For Harsh Environments"\"08/25/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17269-2"\8212138\"11/696,441"\"Reverse-Bias Protected Solar Array With Integrated ByPass Battery"\"04/04/2027" +"NASA Glenn Research Center"\"Application"\"LEW-17269-3"\0\"13/482,493"\"Reverse-Bias Protected Solar Array With Integrated ByPass Battery"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17291-1"\6784276\"10/202,643"\"Improved Processing For Polyimdes Via Concentrated Solid Monomer Reactants Approach"\"07/25/2022" +"NASA Glenn Research Center"\"Issued"\"LEW-17293-1"\7023118\"10/390,256"\"A Comprehensive C++ Controller For A Magnetically Supported Vertical Rotor: Version 1.0"\"03/12/2023" +"NASA Glenn Research Center"\"Issued"\"LEW-17293-2"\6809450\"10/729,580"\"Software For System For Controlling A Magnetically Levitated Rotor"\"12/04/2023" +"NASA Glenn Research Center"\"Issued"\"LEW-17299-1"\6881820\"10/147,477"\"Polyimide Rod-Coil Block Copolymers As Membrane Materials For Ion Conduction"\"05/13/2022" +"NASA Glenn Research Center"\"Issued"\"LEW-17317-1"\7687016\"10/777,630"\"Process For Improving Properties Of Silicon Carbide (SiC) Fibers And SiC Fiber-Reinforced Ceramic Matrix Composites"\"02/13/2024" +"NASA Glenn Research Center"\"Application"\"LEW-17317-2"\0\"12/709,086"\"Process For Improving Properties Of Silicon Carbide (SiC) Fibers And SiC Fiber-Reinforced Ceramic Matrix Composites"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17345-2"\7813406\"11/402,997"\"Temporal Laser Pulse Manipulation Using Multiple Optical Ring Cavities"\"04/13/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17383-1"\6967462\"10/455,139"\"Wireless Consumer Power"\"06/05/2023" +"NASA Glenn Research Center"\"Application"\"LEW-17458-2"\0\"13/113,458"\"Compact Solid-state Entangled Photon Source"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17483-1"\7191013\"10/983,230"\"Hand Held Device For Wireless Powering And Interrogation Of BioMEMS Sensors And Actuators"\"11/08/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17484-5"\7268939\"11/363,300"\"Tracking Of Cells With A Compact Microscope Imaging System Using Intelligent Controls"\"02/24/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17494-1"\7458221\"10/693,850"\"Self-Sealing, Smart, Variable Area Nozzle (S3VAN) For Dynamic Flow Control In Gas Turbine Engines"\"10/23/2023" +"NASA Glenn Research Center"\"Issued"\"LEW-17498-1"\7187835\"11/44,063"\"Selective Wavelength Filtering"\"01/28/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-17510-1"\7416062\"10/693,853"\"Torsional Magnetorheological Fluid Resistant Device (TMRFRD)"\"10/23/2023" +"NASA Glenn Research Center"\"Issued"\"LEW-17517-1"\7326027\"10/856,361"\"Flow-Field Control-Rods To Stabilize Flow In A Centrifugal Compressor"\"05/25/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17520-1"\7259692\"10/931,205"\"Hybrid Power Management (HPM) Upgrade"\"09/01/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17551-1"\7410714\"10/891,599"\"Unitized Regenerative Fuel Cell System"\"07/15/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17561-1"\7400096\"10/894,225"\"Large Area Permanent Magnet ECR Plasma Source"\"07/19/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17589-1"\7305935\"10/925,499"\"Slotted Antenna Rectangular Waveguide Plasma Source For Ion Beam And Electron Beam Production"\"08/25/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17592-1"\7704622\"10/926,457"\"New Ion Conducting Organic/Inorganic Hybrid Polymers"\"08/26/2024" +"NASA Glenn Research Center"\"Application"\"LEW-17595-1"\0\"13/018,611"\"A Method Of Improving The Thermo-Mechanical Properties Of Fiber-Reinforced Silicon Carbide Matrix Composites"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17605-1"\8394492\"10/974,991"\"Skin Modified Aerogel Monoliths For Improved Ruggedness And Lower Hydrophylicity"\"10/28/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17618-1"\7015304\"10/897,279"\"High Tg Polyimides For Resin Transfer Molding (RTM)"\"07/23/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17618-1-REIS"\"RE43,880"\"11/429,639"\"Solvent-Free Low Melt Viscosity Imide Oligomers and Thermosetting Polyimide Composites"\"05/08/2026" +"NASA Glenn Research Center"\"Application"\"LEW-17618-3"\\"13/952,872"\"High Tg Polyimides For Resin Transfer Molding (RTM)"\"07/29/2033" +"NASA Glenn Research Center"\"Issued"\"LEW-17630-1"\7534519\"11/228,185"\"Bi-Electrode Supported Cell For High Power Density Solid Oxide Fuel Cells"\"09/16/2025" +"NASA Glenn Research Center"\"Application"\"LEW-17634-1"\0\"11/228,184"\"Solid Oxide Fuel Cell Stack Design With Bi-Electrode Supported Cells"\ +"NASA Glenn Research Center"\"Application"\"LEW-17634-2"\0\"12/860,210"\"Solid Oxide Fuel Cell Stack Design With Bi-Electrode Supported Cells"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17642-2"\7308164\"11/398,734"\"Energetic Atomic And Ionic Oxygen Textured Optical Surfaces For Blood Glucose Monitoring"\"03/23/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17642-4"\7305154\"11/483,887"\"Energetic Atomic And Ionic Oxygen Textured Optical Surfaces For Blood Glucose Monitoring"\"07/11/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17661-1 with LEW-17765-1"\7438030\"11/213,604"\"Method of Fabricating Silicon Carbide Corrugated Diaphragms and Modular Actuator"\"08/26/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-17664-1"\7500350\"11/44,471"\"Elimination Of Lifetime Limiting Mechanism Of Hall Thrusters"\"01/28/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-17671-1"\7493869\"11/311,183"\"Very Large Area/Volume Microwave ECR Plasma And Ion Source"\"12/16/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-17672-1"\7261783\"10/946,286"\"Low Density High Creep Resistant Single Crystal Superalloy For Turbine Airfoils"\"09/22/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17678-1"\7624566\"11/40,304"\"Magnetic Circuit For Hall Effect Plasma Accelerator"\"01/18/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-17694-1"\7397978\"11/180,990"\"Carrier Structure For Packaging Microphotonic Millimeter-Wave Receiver Based On Lithium Niobate Electro-Optic Resonator Disk Technology"\"07/13/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-17704-1"\7250723\"11/16,735"\"Cathode Luminescence Light Source For Broad Band Application In The Visible"\"12/21/2024" +"NASA Glenn Research Center"\"Issued"\"LEW-17765-1 with LEW-17661-1"\7438030\"11/213,604"\"Side Sliding Microactuator"\"10/21/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-17786-1"\8197249\"11/412,935"\"Fully-Premixed Low-Emissions High-Pressure Multi-fuel Burner"\"04/28/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17814-1"\7574137\"11/418,304"\"Multi-wavelength Time-coincident Optical Communications System"\"05/05/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17820-1"\7755292\"11/625,545"\"Method For Ultraminiature Fiber Light Source"\"01/22/2027" +"NASA Glenn Research Center"\"Issued"\"LEW-17820-2"\8264134\"12/795,356"\"Method For Ultraminiature Fiber Light Source"\"09/11/2032" +"NASA Glenn Research Center"\"Issued"\"LEW-17825-1"\8163243\"11/517,555"\"Zero G Condensing Heat Exchanger With Integral Disinfection"\"09/07/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17826-1"\7385692\"11/412,924"\"Method And System For Fiber Optic Determination Of Nitrogen And Oxygen Concentrations In Ullage Of Liquid Fuel Tanks"\"04/28/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17859-1"\7389675\"11/434,578"\"Miniaturized Metal (Metal Alloy)/PdOx/SiC Schottky Diode Gas Sensors For Hydrogen And Hydrocarbons Detection At High Temperatures"\"05/12/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17859-2"\8001828\"12/143,139"\"Miniaturized Metal (Metal Alloy) PdOx/Sic Hydrogen And Hydrocarbon Gas Sensors"\"06/20/2028" +"NASA Glenn Research Center"\"Issued"\"LEW-17877-1"\7876276\"11/499,982"\"Antenna Near-Field Probe Station Scanner"\"08/02/2026" +"NASA Glenn Research Center"\"Application"\"LEW-17877-2"\\"12/857,004"\"Antenna Near-Field Probe Station Scanner"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17904-1"\7425650\"11/378,553"\"Syntheis Of Asymmetric Dianhydrides"\"03/15/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17904-2"\7381849\"11/890,104"\"Synthesis Of Asymmetrical Benzophenone Dianhydride And Asymmetrical 6F-Dianhydride And Polyimides Therefrom (ALSO See LEW 18236-1)"\"07/19/2027" +"NASA Glenn Research Center"\"Application"\"LEW-17915-1"\0\"12/536,969"\"Secure Optical Communications Using Quantum Two-Photon Transparency Modulation Spectroscopy"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17916-1"\8052854\"11/754,255"\"Miniature Amperometric Solid Electrolyte Carbon Dioxide Sensor"\"05/25/2027" +"NASA Glenn Research Center"\"Application"\"LEW-17916-2"\\"13/267,978"\"Miniature Amperometric Solid Electrolyte Carbon Dioxide Sensor"\ +"NASA Glenn Research Center"\"Application"\"LEW-17945-1"\0\"11/677,654"\"Portable Unit For Metabolic Analysis PUMA"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17951-1"\8545786\"10/621,752"\"Manufacture Of Porous Net-Shaped Materials Comprising Alpha Or Beta Tricalcium Phosphate Or Mixtures Thereof"\"07/16/2023" +"NASA Glenn Research Center"\"Issued"\"LEW-17954-1"\8016543\"11/695,435"\"Composite Case Armor"\"04/02/2027" +"NASA Glenn Research Center"\"Application"\"LEW-17963-1"\0\"11/860,661"\"Passive Gas/Liquid Separation Within a Fuel Cell or Electrolysis Cell Using A Conductive Porous Separator"\ +"NASA Glenn Research Center"\"Issued"\"LEW-17975-1"\7382944\"11/489,813"\"Aluminization And Hyperthermal Atomic Oxygen Texturing Of Polymethylmethacralate Optical Fibers For Blood Glucose Monitoring"\"07/14/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-17991-1"\7390161\"/0"\"Toughened Composite Structures"\"06/24/2025" +"NASA Glenn Research Center"\"Issued"\"LEW-18003-1"\7583169\"11/689,770"\"RF MEMS Switches Utilizing Non-Metallic Thin Film Cantilevers/Bridges With Controlled Stress And Conductivity"\"03/22/2027" +"NASA Glenn Research Center"\"Issued"\"LEW-18042-1"\8067478\"11/582,693"\"A Method of Crosslinking Aerogels Using a One-pot Reaction Scheme"\"10/16/2026" +"NASA Glenn Research Center"\"Application"\"LEW-18042-2"\0\"13/242,425"\"A Method of Crosslinking Aerogels Using a One-pot Reaction Scheme"\ +"NASA Glenn Research Center"\"Application"\"LEW-18043-1"\7341040\"11/486,460"\"Supercharged Two-Cycle Engines Employing Novel Single Element Reciprocating Shuttle Inlet Valve Mechanisms And With A Variable Compression Ratio"\"07/14/2026" +"NASA Glenn Research Center"\"Application"\"LEW-18048-1"\0\"12/285,157"\"Two And Three Dimensional Near Infrared Subcutaneous Structure Imager Using Adaptive Nonlinear Video Processing"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18049-1"\7909897\"11/946,079"\"Direct Fuel Impingement Planar-Array-Microreactor"\"11/28/2028" +"NASA Glenn Research Center"\"Issued"\"LEW-18054-1"\7501032\"11/364,283"\"High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys And Associated Processing Methods"\"02/28/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-18059-1"\8242162\"11/956,848"\"Fluorescent On-Off Chemical Sensors"\"11/30/2019" +"NASA Glenn Research Center"\"Issued"\"LEW-18076-1"\7999173\"11/689,431"\"Dust removal from solar cells"\"03/21/2027" +"NASA Glenn Research Center"\"Application"\"LEW-18076-2"\\"13/198,896"\"Dust Removal from Solar Cells"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18089-1"\8077103\"11/774,574"\"Cup Cylindrical Waveguide Antenna"\"07/06/2027" +"NASA Glenn Research Center"\"Issued"\"LEW-18138-1"\7904282\"11/689,874"\"In-Flight Fault Accommodation Through Automated Control Parameter Changes"\"03/22/2027" +"NASA Glenn Research Center"\"Application"\"LEW-18205-1"\0\"12/317,232"\"Branched Rod-Coil Polyimide-poly(ethylene Oxide) (PEO) Copolymers That Are Cured In The Solid State At Ambient Temperatures"\ +"NASA Glenn Research Center"\"Application"\"LEW-18207-1"\0\"11/759,570"\"Circuit For Communication Over DC Power Line Using High Temperature Electronics"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18221-1"\7763325\"11/864,607"\"A Method For Thermal Spraying Of Coatings Using Resonant Pulsed Combustion"\"09/28/2027" +"NASA Glenn Research Center"\"Application"\"LEW-18221-2"\\"12/835,345"\"A Method For Thermal Spraying Of Coatings Using Resonant Pulsed Combustion"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18236-1"\8093348\"11/894,290"\"Synthesis Of Asymmetrical Benzophenone Dianhydride And Asymmetrical 6F-Dianhydride And Polyimides Therefrom"\"08/22/2027" +"NASA Glenn Research Center"\"Application"\"LEW-18236-2"\0\"13/325,626"\"Synthesis Of Asymmetrical Benzophenone Dianhydride And Asymmetrical 6F-Dianhydride And Polyimides Therefrom"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18248-1"\7791552\"11/871,237"\"Cellular Reflectarray Antenna"\"10/12/2027" +"NASA Glenn Research Center"\"Issued"\"LEW-18248-2"\7990327\"12/874,370"\"Cellular Reflectarray Antenna"\"09/02/2030" +"NASA Glenn Research Center"\"Issued"\"LEW-18253-1"\8191426\"12/133,743"\"Low TCR Nanocomposite Strain Gages"\"06/05/2028" +"NASA Glenn Research Center"\"Issued"\"LEW-18254-1"\7876423\"12/163,382"\"Simultaneous Non-Contact Precision Measurement Of Microstructual And Thickness Variation In Dielectric Materials Using Terahertz Energy"\"06/27/2028" +"NASA Glenn Research Center"\"Issued"\"LEW-18255-1"\7630736\"11/541,102"\"Autonomous Wireless Sensor Transceiver"\"05/09/2028" +"NASA Glenn Research Center"\"Issued"\"LEW-18256-1"\7688117\"12/081,762"\"An N Channel JFET Based Digital Logic Gate Structure Using Resistive Level Shifters And Having Direct Application To High Temperature Silicon Carbide Electronics"\"04/21/2028" +"NASA Glenn Research Center"\"Issued"\"LEW-18261-1"\7933027\"12/326,436"\"A Software Platform For Post-Processing Waveform-Based NDE"\"12/02/2028" +"NASA Glenn Research Center"\"Application"\"LEW-18291-1"\0\"12/214,114"\"Adaptive Morphological Feature-Based Object Classifier For A Color Imaging System"\ +"NASA Glenn Research Center"\"Application"\"LEW-18296-1"\0\"13/193,160"\"Modular Battery Charge Controller"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18313-1"\7923715\"12/336,503"\"A Novel Nanoionics-based Switch For Radiofrequency (RF) Applications"\"12/06/2028" +"NASA Glenn Research Center"\"Issued"\"LEW-18313-2"\8410469\"13/050,229"\"A Novel Nanoionics-based Switch For Radiofrequency (RF) Applications"\"03/17/2031" +"NASA Glenn Research Center"\"Application"\"LEW-18324-1"\0\"12/195,358"\"Semiconductor Metal Oxide Modified Solid Electrolyte Carbon Dioxide Microsensors With Reduced Operation Temperature"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18325-1"\8415839\"12/319,617"\"External Magnetic Field Reduction Techniquie For Advanced Stirling Radioisotope Generator"\"01/09/2029" +"NASA Glenn Research Center"\"Application"\"LEW-18325-2"\\"13/859,179"\"External Magnetic Field Reduction Techniquie For Advanced Stirling Radioisotope Generator"\"01/09/2029" +"NASA Glenn Research Center"\"Issued"\"LEW-18338-1"\8506787\"12/533/258"\"Advancd Lightweight, High-Strength Electrochemical Cell Design and Structures"\"07/31/2029" +"NASA Glenn Research Center"\"Issued"\"LEW-18340-1"\8091445\"12/431,456"\"Offset Compound Gear Inline Two-Speed Drive"\"04/28/2029" +"NASA Glenn Research Center"\"Issued"\"LEW-18340-2"\8668613\"13/346,959"\"Offset Compound Gear Inline Two-Speed Drive"\"01/10/2032" +"NASA Glenn Research Center"\"Issued"\"LEW-18356-1"\8220989\"12/571,215"\"Device for Measuring the Thermal Conductivity of Small, Highly Insulating Materials"\"09/30/2029" +"NASA Glenn Research Center"\"Issued"\"LEW-18356-2"\8573835\"13/492,181"\"Device for Measuring the Thermal Conductivity of Small, Highly Insulating Materials"\"06/08/2032" +"NASA Glenn Research Center"\"Issued"\"LEW-18362-1"\7872750\"12/285,173"\"Space Radiation Detector with Spherical Geometry"\"09/30/2028" +"NASA Glenn Research Center"\"Issued"\"LEW-18362-2"\8159669\"12/972,624"\"Space Radiation Detector with Spherical Geometry"\"12/20/2030" +"NASA Glenn Research Center"\"Issued"\"LEW-18373-1"\8353209\"12/570,841"\"A Radio Frequency Tank Eigenmode Sensor For Propellant Quantity Gauging"\"02/04/2031" +"NASA Glenn Research Center"\"Issued"\"LEW-18426-1"\8484980\"12/894,346"\"A Free-Jet Dual-Mode Combustor Concept for Wide Operating Range Ramjet Propulsion"\"09/30/2030" +"NASA Glenn Research Center"\"Application"\"LEW-18426-2"\0\"13/941,987"\"A Free-Jet Dual-Mode Combustor Concept for Wide Operating Range Ramjet Propulsion"\"07/15/2033" +"NASA Glenn Research Center"\"Issued"\"LEW-18432-1"\7935601\"12/584,497"\"Addendum of Self-Aligned Ion Implant to Design and Processing of SiC High Temperature Transistors for Durable Operation Above 400 C"\"09/04/2029" +"NASA Glenn Research Center"\"Application"\"LEW-18432-2"\0\"13/078,510"\"Addendum of Self-Aligned Ion Implant to Design and Processing of SiC High Temperature Transistors for Durable Operation Above 400 C"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18458-1"\8386121\"12/791,907"\"Optimal Tuner Selection For Kalman Filter-Based Aircraft Engine Performance Estimation"\"06/02/2030" +"NASA Glenn Research Center"\"Issued"\"LEW-18461-1"\8159238\"12/570,742"\"Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space"\"09/30/2029" +"NASA Glenn Research Center"\"Application"\"LEW-18461-2"\\"13/448,801"\"Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space"\ +"NASA Glenn Research Center"\"Application"\"LEW-18466-1"\0\"12/616,952"\"Spring Tire"\ +"NASA Glenn Research Center"\"Application"\"LEW-18473-1"\0\"12/879,713"\"Ka-Band Waveguide 2-Way Hybrid Combiner for MMIC Amplifiers With Unequal and Arbitrary Power Output Ratio"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18474-1"\8609750\"12/792,380"\"Selective Clay Placement Within A Silicate Clay-Epoxy Blend Nanocomposite"\"06/02/2030" +"NASA Glenn Research Center"\"Issued"\"LEW-18476-1"\8182741\"12/544,742"\"Ball Bearings Comprising Nickel-Titanium And Methods Of Manufacture Thereof"\"08/20/2029" +"NASA Glenn Research Center"\"Application"\"LEW-18476-2"\0\"12/544,674"\"Ball Bearings Comprising Nickel-Titanium And Methods Of Manufacture Thereof"\ +"NASA Glenn Research Center"\"Application"\"LEW-18477-1"\0\"13/242,300"\"Graphene Based Reversible Nano-Switch/Sensor Schottky Diode (nanoSSSD) Device"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18483-1"\8310671\"12/893,627"\"Frame-Transfer Gating (FTG) Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics"\"09/29/2030" +"NASA Glenn Research Center"\"Application"\"LEW-18486-2"\0\"14/168,830"\"Polyimide Aerogels With Three Dimensional Cross-Linked Structure"\"01/30/2034" +"NASA Glenn Research Center"\"Issued"\"LEW-18491-1"\8209976\"12/323,091"\"Shape Memory Based Actuators and Release Mechanisms"\"11/25/2028" +"NASA Glenn Research Center"\"Application"\"LEW-18492-1"\0\"13/036,887"\"Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18496-1"\8283172\"12/711,465"\"Process to Produce Iron Nanoparticles - Lunar Dust Simulant Composite"\"02/24/2030" +"NASA Glenn Research Center"\"Application"\"LEW-18500-1"\0\"12/848,903"\"Precision Time Protocol Base Trilateration for Planetary Navigation"\ +"NASA Glenn Research Center"\"Application"\"LEW-18516-1"\0\"13/542,163"\"Hybrid Gear"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18538-1"\8373175\"12/791,276"\"Ohmic Contact to N- and P-type Silicon Carbide"\"06/01/2030" +"NASA Glenn Research Center"\"Application"\"LEW-18542-1"\0\"12/870,475"\"Functionalization of Single Wall Carbon Nanotubes (SWCNTs) by Photooxidation"\ +"NASA Glenn Research Center"\"Application"\"LEW-18554-1"\0\"12/845,998"\"Internal Limit Sensor (ILS)"\ +"NASA Glenn Research Center"\"Application"\"LEW-18561-1"\0\"12/726,926"\"NASA PS400: A New High Temperature Solid Lubricant Coating for High Temperature Wear Applications"\ +"NASA Glenn Research Center"\"Application"\"LEW-18565-1"\0\"13/646,100"\"Catalytic Microtube Rocket Igniter"\"10/05/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18566-1"\0\"12/829,663"\"Low Density, High Creep Resistant Single Crystal Superalloy with Lower Manufacturing Cost"\ +"NASA Glenn Research Center"\"Application"\"LEW-18586-1"\\"13/030,342"\"Shock Sensing Apparatus"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18593-1"\8653693\"13/014,849"\"Integrated Exciter/Igniter"\"01/27/2031" +"NASA Glenn Research Center"\"Issued"\"LEW-18594-1"\8409372\"12/874,523"\"Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response"\"09/02/2030" +"NASA Glenn Research Center"\"Application"\"LEW-18594-2"\\"13/845,526"\"Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18601-1"\8577504\"12/954,009"\"Inductive Power Device (IDP)"\"11/24/2030" +"NASA Glenn Research Center"\"Application"\"LEW-18604-1"\\"12/894,444"\"Shock Resistant, Debris Tolerant, Lightweight, Corrosion Proof Bearings, Mechanical Components and Mechanisms Made From Hard, Highly Elastic Materials"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18605-1"\8468794\"12/894,565"\"Dual-Mode Hybrid-Engine (DMH-Engine): A Next-Generation Electric Propulsion Thruster"\"09/30/2030" +"NASA Glenn Research Center"\"Application"\"LEW-18605-2"\\"13/713,907"\"Dual-Mode Hybrid-Engine (DMH-Engine): A Next-Generation Electric Propulsion Thruster"\ +"NASA Glenn Research Center"\"Application"\"LEW-18605-3"\\"14/152,125"\"Dual-Mode Hybrid-Engine (DMH-Engine): A Next-Generation Electric Propulsion Thruster"\ +"NASA Glenn Research Center"\"Application"\"LEW-18608-1"\\"12/892,339"\"Liquid Tin Electrodes for Directo Conversion of JP-8 Fuel using the NASA BSC Solid Oxide Fuel Cell"\ +"NASA Glenn Research Center"\"Application"\"LEW-18614-1"\\"13/303,292"\"High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence"\ +"NASA Glenn Research Center"\"Application"\"LEW-18615-1"\\"12/892,278"\"Purify Nanomaterials By Dissolving Excess Reactants And Catalysts In Ferric Chloride"\ +"NASA Glenn Research Center"\"Application"\"LEW-18629-1"\\"13/731,314"\"Electrospray Collection of Lunar Dust"\ +"NASA Glenn Research Center"\"Application"\"LEW-18631-1"\\"13/218,847"\"Circuit for Communication Over Power Lines"\ +"NASA Glenn Research Center"\"Application"\"LEW-18632-1"\\"13/311,987"\"Method For Fabricating Diamond-Dispersed Fiber-Reinforced Composite Coating On Low Temperature Sliding Thrust Bearing Interfaces"\ +"NASA Glenn Research Center"\"Application"\"LEW-18634-1"\\"13/134,959"\"Multi-Parameter Aerosol Scattering Sensor"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18636-1"\8416007\"13/098,918"\"A Source Coupled N Channel JFET Based Digital Logic Gate Structure Using Resistive Level Shifters and Having Direct Application to High Temperature Silicon Carbide Electronics"\"05/02/2031" +"NASA Glenn Research Center"\"Application"\"LEW-18639-1"\\"13/112,293"\"Atomic Oxygen Fluence Monitor"\ +"NASA Glenn Research Center"\"Application"\"LEW-18649-1"\\"12/870,443"\"Ultracapacitor Based Uninterruptible Power Supply (UPS) System"\ +"NASA Glenn Research Center"\"Application"\"LEW-18652-1"\\"13/476,470"\"Polarization Dependent Whispering Gallery Modes in Microspheres"\ +"NASA Glenn Research Center"\"Application"\"LEW-18658-1"\\"13/250,300"\"Levitated Ducted Fan (LDF) Aircraft Auxiliary Generator"\ +"NASA Glenn Research Center"\"Application"\"LEW-18674-1"\\"13/552,760"\"Polymer Electrolyte Based Ambient Temperature Oxygen Microsensors with Extremely Low Power Consumption for Enviromental Monitoring Applications"\ +"NASA Johnson Space Center"\"Application"\"MSC-25349-1"\0\"13/922036"\"Robonaut Teleoperation System"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18691-1"\7588746\"11/431,815"\"Process and Apparatus for Hydrogen and Carbon Production via Carbon Aerosol-Catalyzed Dissociation of Hydrocarbons"\"05/10/2026" +"NASA Glenn Research Center"\"Issued"\"LEW-18692-1"\7332146\"11/148,778"\"Method For Zero Emission Liquid Hydrogen Production From Methane & Landfill Gas"\"06/08/2025" +"NASA Glenn Research Center"\"Application"\"LEW-18693-1"\\"/"\"Process For Hydrogen Production via Integrated Processing of Landfill Gas and Biomass"\ +"NASA Glenn Research Center"\"Application"\"LEW-18694-1"\\"13/075,879"\"Discrete Data Qualification System and Method Comprising Noise Series Fault Detection"\ +"NASA Glenn Research Center"\"Application"\"LEW-18704-1"\\"13/531,763"\"A Hybrid Power Management (HPM) Based Vehicle Architecture"\ +"NASA Glenn Research Center"\"Application"\"LEW-18714-1"\\"13/361,220"\"High Strength Nanocomposite Glass Fibers"\ +"NASA Glenn Research Center"\"Issued"\"LEW-18717-1"\8476979\"13/178,101"\"A Novel Wideband GaN MMIC Distributed Amplifier Based Microwave Power Module for Space Communications, Navigation, and Radar"\"07/07/2031" +"NASA Glenn Research Center"\"Application"\"LEW-18717-2"\\"13/847,779"\"A Novel Wideband GaN MMIC Distributed Amplifier Based Microwave Power Module for Space Communications, Navigation, and Radar"\ +"NASA Glenn Research Center"\"Application"\"LEW-18724-1"\\"13/339,521"\"VESGEN Software for Mapping and Quantification of Vascular Remodeling in Botanical Plant Leaves"\ +"NASA Glenn Research Center"\"Application"\"LEW-18732-1"\\"13/514,582"\"Water Purification by High Voltage, Nanosecond, Non-Equilibrium Plasma: Applications to Human Spaceflight and Terrestrial Point-of-Use"\"08/16/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18736-1"\\"13/534,745"\"Iridium Interfacial Stack (IrIS) Final"\ +"NASA Glenn Research Center"\"Application"\"LEW-18738-1"\\"13/474,948"\"Atmospheric Turbulence Modeling for Aero Vehicles"\ +"NASA Glenn Research Center"\"Application"\"LEW-18752-1"\\"13/686,000"\"Large Strain Transparent Magneto-active Polymer Nanocomposites"\"11/28/2031" +"NASA Glenn Research Center"\"Application"\"LEW-18754-1"\\"13/534,870"\"Method For Making Measurements Of The Post-Combustion Residence Time In A Gas Turbine Engine"\ +"NASA Glenn Research Center"\"Application"\"LEW-18761-1"\\"13/247,601"\"Temperature Sensitive Coating Sensor Based On Hematite"\ +"NASA Glenn Research Center"\"Application"\"LEW-18762-1"\\"13/364691"\"Selenium Interlayer for High-efficiency Multijunction Solar Cell"\ +"NASA Glenn Research Center"\"Application"\"LEW-18768-1"\\"13/788,041"\"Processing of Nanosensors Using a Sacrificial Template Approach"\"03/23/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18769-1"\\"13/537,816"\"Compact, Lightweight, CMC (Ceramic Matrix Composite)-Based Acoustic Liner for Subsonic Jet Aircraft Engines--Offering High Temperature Capability, Weight Reduction, and Broadband Acoustic Treatment"\ +"NASA Glenn Research Center"\"Application"\"LEW-18771-1"\\"13/301,249"\"Integrated Temperature and Capacitive Ablation Recession Rate Sensors"\ +"NASA Glenn Research Center"\"Application"\"LEW-18785-1"\\"13/246,440"\"Method to Pre-Stress Shock Resistant Mechanical Components and Mechanisms made from Hard, Highly Elastic Materials"\ +"NASA Glenn Research Center"\"Application"\"LEW-18789-1"\\"13/771,833"\"Method to Increase Performance of Foil Bearings Through Passive Thermal Management"\"02/27/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18797-1"\\"13/714,906"\"High Speed, Compliant, Planetary Flywheel Touchdown Bearing"\"12/16/2031" +"NASA Glenn Research Center"\"Application"\"LEW-18802-1"\\"13/534,804"\"Alpha-STREAM Convertor - A Stirling Engine with no moving parts, eliminated streaming losses, high efficiency, low cost fabrication, and electronic wave modulation."\ +"NASA Glenn Research Center"\"Application"\"LEW-18809-1"\\"13/410,663"\"Sampling and Control Circuit Board for an Inertial Measurement Unit"\"08/03/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18816-1"\\"13/749,773"\"High Speed Edge Detecting Circuit For Use With Linear Image Sensor"\"06/01/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18821-1"\\"13/561,359"\"Dopant Selective Reactive Ion Etching of Silicon Carbide"\"07/30/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18822-1"\\"13/524,327"\"Planar Modular Package"\ +"NASA Glenn Research Center"\"Application"\"LEW-18825-1"\0\"13/804,546"\"Porous Cross-Linked Polyimide-UREA Networks"\"03/14/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18837-1"\\"13/527,181"\"In-Situ Solid Particle Generator"\ +"NASA Glenn Research Center"\"Application"\"LEW-18844-1"\\"13/918,333"\"Electrospun Nanofiber Coating Of Fiber Materials: A Composite Toughening Approach"\"06/14/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18849-1"\\"13/906,521"\"Paired Threaded Film Cooling Holes for Improved Turbine Film Cooling"\"05/31/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18858-1"\\"13/904,513"\"V-Cess: A Novel Flow Control Method Using A Shaped Recess"\"05/29/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18862-1"\\"13/474,972"\"Cascading TESLA oscillating flow diode for Stirling Engine Gas Bearings"\ +"NASA Glenn Research Center"\"Application"\"LEW-18864-1"\\"13/756,855"\"Polyimide Aerogel Thin Films"\"02/03/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18873-1"\\"13/968,000"\"High Temperature Single Crystal Preloader"\"08/15/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18887-1"\\"13/756,604"\"Fuzzy Neuron: Method and Hardware Realization"\"02/01/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18889-1"\\"13/713,846"\"High Speed Idle Engine Control Mode"\"12/13/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18890-1"\\"13/871,114"\"Suppression Of Unwanted Noise And Howl In A Test Configuration Where A Jet Exhaust Is Discharged Into A Duct"\ +"NASA Glenn Research Center"\"Application"\"LEW-18891-1 with LEW-18611-1 and LEW-18895-1"\\"13/723,598"\"G6 Flywheel Design"\"12/23/2031" +"NASA Glenn Research Center"\"Application"\"LEW-18893-1"\\"13/653,027"\"Novel Aerogel-Based Antennas (ABA) for Aerospace Applications"\ +"NASA Glenn Research Center"\"Application"\"LEW-18900-1"\\\"High Efficiency, High Temperature Titanium Heat Pipe Radiator for Space Power and Propulsion Systems"\ +"NASA Glenn Research Center"\"Application"\"LEW-18902-1"\\"14/094,006"\"Analog Correlator Based on One Bit Digital Correlator"\"12/02/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18903-1"\\"13/923,441"\"Modeling and Simulation of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation"\"06/21/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18919-1"\\"13/645,799"\"Wireless Controlled Chalcogenide Nanoionic Radio Frequency Switch"\"04/04/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18923-1"\\"13/963,060"\"New Power Source For Deep Space Missions- Utilizing The Doubly Exothermic Reaction Between Deuterium And Palladium To Produce Electrical Power"\"08/09/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18928-1"\\\"Pt-Ti-Si Simultaneous Ohmic Contacts to N- and P-Type Silicon Carbide"\ +"NASA Glenn Research Center"\"Application"\"LEW-18934-1"\\"13/900,642"\"Conditionally Active Min-Max Limit Regulators"\"05/23/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18939-1"\\"13/916,797"\"Magnetostrictive Alternator - Low cost, No moving part, High Efficiency, Oscillating Acoustic Pressure Wave to Electric Power Transducer"\"06/13/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18942-1"\\"13/771,920"\"Adaptive Phase Delay Generator"\"02/20/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18949-1"\\"13/923,450"\"Advanced High Temperature and Fatigue Resistant Environmental Barrier Coating Bond Coat Systems for SiC/SiC Ceramic Matrix Composites"\"06/21/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18952-1"\\\"A Novel Real Time Adaptive Filter For The Reduction Of Artifacts In Functional Near Infrared Spectroscopy Signals"\ +"NASA Glenn Research Center"\"Application"\"LEW-18957-1"\\"14/048,895"\"Dynamic Range Enhancement Of High-Speed Data Acquisition Systems By Reversible Non-Linear Amplitude Compression"\"10/08/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18960-1"\\"13/891,461"\"Dry Snorkel Cold Immersion Suit for Hypothermia Prevention"\"05/11/2032" +"NASA Glenn Research Center"\"Application"\"LEW-18963-1"\\"13/853,308"\"Flywheel Pulse & Glide System for Vehicles"\ +"NASA Glenn Research Center"\"Application"\"LEW-18964-1"\\"13/905,333"\"High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications"\"05/30/2033" +"NASA Glenn Research Center"\"Application"\"LEW-18970-1"\\"14/158,080"\"Methods for Intercalating and Exfoliating Hexagonal Boron Nitride"\"01/17/2034" +"NASA Glenn Research Center"\"Application"\"LEW-18986-1"\\\"Generation Of High Pressure Oxygen Via Electrochemical Pumping In A Multi-Stage Electrolysis Stack"\ +"NASA Glenn Research Center"\"Application"\"LEW-19013-1"\\"14/095,442"\"Spoked Wheel Assembly With Two Rotational Modes"\"12/03/2033" +"NASA Glenn Research Center"\"Application"\"LEW-19029-1"\\"14/191,708"\"Superelastic Ternary Ordered Intermetallic Compounds"\"02/27/2034" +"NASA Glenn Research Center"\"Application"\"LEW-19040-1"\\"14/193,024"\"Fast, Large Area, Wide Band Gap UV Photodetector for Cherenkov Light Detection"\"02/28/2034" +"NASA Glenn Research Center"\"Application"\"LEW-19045-1"\\"13/968,531"\"Multimode Directional Coupler for Measurement and Utilization of Harmonic Frequencies from Traveling Wave Tube Amplifiers"\"08/16/2033" +"NASA Glenn Research Center"\"Application"\"LEW-19053-1"\\"14/193,719"\"Process for Preparing Aerogels from Polyamides"\"02/28/2034" +"NASA Glenn Research Center"\"Application"\"LEW-19067-1"\\\"Plasma Spray-Physical Vapor Deposition (PS-PVD) of Advanced Environmental Barrier Coatings"\ +"NASA Glenn Research Center"\"Application"\"LEW-19077-1"\\\"Improved Composite Damage Tolerance and Through Thickness Conductivity By Interleaving Carbon Fiber Veil Nanocomposites"\ +"NASA Glenn Research Center"\"Application"\"LEW-19080-1"\\\"Crosslinked Polyethylene Aerogels from Low Density Polyethylene, Linear Low Density Polyethylene, and Repurposed Polyethylene"\ +"NASA Glenn Research Center"\"Application"\"LEW-19098-1"\\"61/866,585"\"High Temperature, Flexible Composite Seals for Aeronautics and Space Environments Incorporating Aerogel Insulation"\ +"NASA Glenn Research Center"\"Application"\"LEW-19171-1"\\"61/931,189"\"Low Power Charged Particle Counter for Space Radiation Monitoring"\ +"NASA Marshall Space Flight Center"\"Issued"\"MFS-28402-2"\5780594\"08/448,196"\"Biologically Active Protein Fragments Containing Specific Binding Regions Of Serum Albumin Or Related Proteins"\"07/14/2015" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-28985-1"\5641681\"08/422,963"\"Device And Method For Screening Crystallization Conditions In Solution Crystal Growth"\"04/17/2015" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31175-2-CIP"\6578851\"09/693,098"\"Gasket Assembly For Sealing Mating Surfaces"\"10/16/2020" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31243-1"\6459822\" 09/364,919"\"Video Image Stabilization And Registration (VISAR)"\"07/26/2019" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31243-2-CON"\6560375\"10/143,539"\"Video Image Stabilization And Registration"\"05/10/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31258-1"\6135255\"09/207,710"\"Releasable Conical Roller Clutch"\"12/09/2018" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31294-2-CIP2"\6592687\"10/196,389"\"Aluminum Alloy And Article Cast Therefrom"\"07/11/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31294-5-CIP"\6399020\"09/688,729"\"Aluminum-Silicon Alloy Having Improved Properties At Elevated Temperatures And Articles Cast Therefrom"\"10/11/2020" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31294-6-CIP"\6419769\"09/749,503"\"Aluminum-Silicon Alloy Having Improved Properties At Elevated Temperatures And Process For Producing Cast Articles Therefrom"\"12/22/2020" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31294-7-CIP"\6669792\"09/800,312"\"Process For Producing A Cast Article From A Hypereutectic Aluminum-Silicon Alloy"\"03/02/2021" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31303-1"\6748349\"09/313,576"\"Generalized Fluid System Simulation Program (GFSSP) Version 2.01c"\"05/07/2019" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31387-1"\6361961\"09/560,532"\"GRAVITY RESPONSIVE NADH OXIDASE OF THE PLASMA MEMBRANE"\"04/25/2020" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31399-1"\6658329\"10/138,887"\"Addition Of Rangefinder To The Video Guidance Sensor"\"06/05/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31413-1"\6497355\"09/690,035"\"Precision Penetration Control System For The Friction Stir Welding (FSW) Retractable Pin Tool"\"10/19/2020" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31475-1"\6424470\"09/616,624"\"Panoramic Refracting Optic (PRO)"\"07/28/2020" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31475-2-DIV"\6580567\"10/173,410"\"Panoramic Refracting Conical Optic"\"06/17/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31488-1"\6028693\"09/7,124"\"Microresonator And Associated Method For Producing And Controlling Photonic Signals With A Photonic Bandgap Delay Apparatus"\"01/14/2018" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31490-1"\7118074\"10/690,161"\"Electrodynamic Tether System Design For Spacecraft Deorbit"\"10/17/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31529-1"\7081730\"10/857,375"\"Micro-Commanding Servo Motor Controller With Greater Than Fifty Million To One Dynamic Rate Range"\"06/19/2024" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31559-1-CON"\8127977\"13/157,895"\"Phase/Matrix Transformation Weld Process And Apparatus"\"11/27/2021" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31559-1-DIV"\7980449\"10/385,168"\"Phase/Matrix Transformation Weld Process And Apparatus"\"11/27/2021" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31559-2-DIV"\8225984\"13/157988"\"Phase/Matrix Transformation Weld Process And Apparatus"\"11/27/2021" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31565-1"\6885779\"09/877,801"\"Full-Cycle, Low Loss, Low Distortion Phase Modulation From Multi-Layered Dielectric Stack With Terahertz Optical Bandwidth"\"08/17/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31584-1"\6497091\"09/877,800"\"Hypergolic Ignitor Assembly"\"06/06/2021" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31584-1-CIP"\6845605\"10/288,800"\"Hypergolic Ignitor"\"01/26/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31593-1"\6939610\"10/212,564"\"Smart Thermal Management Coating"\"09/20/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31596-1"\6873762\"10/118,626"\"Fabrication Of Fiber-Optic Gratings Over A Wide Range Of Bragg Wavelength And Bandwidth Using A Single Phase Mask"\"10/12/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31616-1"\6540426\"09/949,408"\"Passive Ball Capture Latch Docking Mechanism"\"09/04/2021" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31646-1"\6860099\"10/263,297"\"Liquid Propellant Tracing Impingement Injector"\"05/24/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31649-1"\7446860\"11/527,648"\"Nonintrusive, Remote, Micron Accuracy, Laser Fresnel Ranging System"\"10/19/2026" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31698-1"\6802999\"10/173,536"\"Method Of Fabricating A Protective Crucible Wall Coating Incorporating Designed Multi-Use Channels"\"05/02/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31706-1"\6886392\"10/622,174"\"Single Ball Bearing Lubricant And Material Evaluator"\"07/17/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31727-1"\6953129\"10/231,428"\"Impact And Fire Resistant Coating For Pressure Vessels"\"11/07/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31761-1"\6802488\"10/232,974"\"Electro-Mechanically Actuated Propellant Valve"\"01/29/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31768-1"\6745942\"10/214,482"\"Magnetic Symbology Reader"\"08/05/2022" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31776-1"\7735265\"11/780,610"\"Foam-Rigidized Inflatable Tubular Space Booms"\"07/20/2027" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31785-1"\7006203\"10/646,000"\"Integrated Rangefinding Measurement In Video Guidance Sensor"\"08/21/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31789-1"\7265476\"10/975,121"\"MEMS- Micro-Translation Stage With Indefinite Linear Travel Capability"\"11/01/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31807-1"\7050161\"10/637,085"\"Global Radius Of Curvature Estimation And Control System For Segmented Mirrors (GRoCECS)"\"01/07/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31813-1"\7802799\"11/527,653"\"Joining Metallic To Composite Components"\"07/29/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31815-1"\7325749\"10/738,352"\"Distributed Solid State Programmable Thermostat / Power Controller"\"01/29/2026" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31817-1"\7515257\"11/14,455"\"Short-Range / Long-Range Integrated Target (SLIT) For Video Guidance Sensor Rendezvous And Docking"\"06/07/2027" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31823-1-DIV"\7095000\"10/943,827"\"Radio-Frequency Driven Dielectric Heaters For Non-Nuclear Testing In Nuclear Core Development"\"11/27/2024" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31828-1"\6918970\"10/120,226"\"High Strength Aluminum Alloy For High Temperature Applications"\"04/12/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31838-1"\7641949\"10/857,379"\"Improved Pressure Vessel Impact Resistance Utilizing Filament Wound Hybrid Fibers"\"10/15/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31842-1"\7347089\"11/215,749"\"Gas Volume Contents Within A Container, Smart Volume Instrument"\"11/26/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31843-1"\7174077\"10/631,220"\"Fiber-Coupled Laser Diodes With Even Illumination Pattern"\"07/30/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31852-1"\7106457\"10/857,372"\"Achromatic Shearing Phase Sensor For Phase Alignment Of A Segmented Telescope"\"01/21/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31865-1"\6888476\"10/615,369"\"Advanced Video Guidance Sensor Software"\"07/21/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31886-1"\6850592\"10/321,873"\"Digital Equivalent System (DEDS) For X-Ray Flourescent Spectral Output"\"01/08/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31891-1"\7375801\"11/108,140"\"Video Sensor With Range Measurement Capability"\"11/06/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31918-1"\7275675\"10/928,876"\"Optimal Design Geometry For All Friction Stir Weld Tools"\"01/15/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-31944-1"\7017812\"10/730,191"\"Variable Distance Angular Symbology Reader"\"11/26/2023" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32024-1"\8297468\"10/857,380"\"Liquefied Natural Gas Fuel Tank"\"07/13/2021" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32031-1"\7738084\"11/543,284"\"Fiber Optic Liquid Mass Flow Sensor - Improved Prototype Design"\"09/29/2026" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32099-1-CON"\8561829\"13/544,066"\"Composite Pressure Vessel Including Crack Arresting Barrier"\"10/23/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32102-1"\7540143\"11/172,665"\"Heated Pressure Balls Monopropellant Thermal Rocket Engine Cycle"\"12/12/2026" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32105-1-DIV"\7568608\"11/700,972"\"Ultrasonic Stir Welding Process And Apparatus"\"01/29/2027" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32115-1"\7686202\"11/543,287"\"Gimbling Shoulder For Friction Stir Welding"\"06/18/2027" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32136-1"\7595841\"11/174,210"\"Video Image Stabilization And Registration - Plus (VISAR+)"\"12/03/2027" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32137-1"\7177164\"11/376,632"\"Multi-loop High Voltage Power Supply with Fast Rise/Fall Time"\"03/10/2026" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32175-1"\7228241\"11/152,810"\"An Extended Lee-Kesler Equation-of-State (ELK-EoS) For The Volumetric And Thermodynamic Properties Of Propellant Fluids, Including The Non-Polar Quantum And Polar Fluids"\"06/13/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32192-1"\7116098\"11/357,454"\"Absolute Limit Sensor (ALS)"\"02/16/2026" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32208-1"\7259981\"11/296,719"\"Analog Nonvolatile Computer Memory"\"12/14/2025" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32214-1"\7418814\"11/172,666"\"Dual Expander Cycle Rocket Engine Cycle with an Intermediate Brayton Cycle Heat Exchanger"\"12/19/2026" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32228-1"\8290435\"12/241,322"\"Short Range Antenna / Close Proximity Transmitter and Receiver"\"08/17/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32253-1"\7469878\"11/518,733"\"Magnetorestrictive Valves"\"10/17/2026" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32307-1"\7908079\"11/527,658"\"Portable Runway Intersection Display And Monitoring System"\"01/13/2030" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32311-1"\7623621\"12/47,686"\"Identification And Authentication System Using Integrated Optical And X-ray Fluorescene Spectral Methods"\"03/13/2028" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32318-1"\8098060\"12/173,318"\"SCAPS(Single Coil Absolute Position Sensor) GAPSYN (Inductive Gap Sensor) Digital Signal Conditioning Electronics"\"09/29/2030" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32323-1"\8169620\"12/563,819"\"Sub-Pixel Spatial Resolution Interferometry With Interlaced Stitching"\"10/15/2030" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32324-1"\7594530\"11/942,322"\"Orbital Foamed Metal Extruder"\"06/09/2028" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32341-1"\8550468\"12/210,843"\"High Load Fully Retained Dynamic Cryogenic Seal"\"01/09/2032" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32364-1"\7808353\"11/513,433"\"Plasmoid Thruster for Electrode-less, High Specific Impulse Propulsion"\"07/22/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32390-1"\7867589\"11/780,561"\"Hybrid composite cryogenic tank structure"\"10/14/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32400-1"\7900436\"11/780,626"\"Gas Generator Augmented Expander Cycle Rocket Engine"\"01/04/2030" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32402-1"\7911174\"12/39,506"\"Inexpensive, Rate Insensitive, Linear, Load Compensating System for Hybrid Stepper Motors"\"01/25/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32429-1"\7807097\"12/123,170"\"Orbital Batch Process Foamed Aluminum Facility"\"07/11/2028" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32438-1"\8004364\"11/828,563"\"16-Kilowatt (KW) 2-30MHz Solid State Power Amplifier using innovative combining methods"\"11/03/2028" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32439-1"\7831225\"11/828,590"\"H2O-NaCl based radio frequency power load"\"04/07/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32497-1"\7848606\"12/047,805"\"Reprocessing Non-Oxide Optical Fiber Preforms Utilizing an Axial Magnetic Field"\"05/26/2029" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32518-1-CIP"\\"13/452,303"\"Liquid Propellant Injection Elements with Self-Adjusted Inlet Area for Rocket and Other Combustor-Type Engines Applications"\"10/03/2028" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32521-1"\7804600\"12/44,740"\"Dispersive Filter For Enhancement Of Laser Gyroscopes"\"06/10/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32548-1"\7409875\"11/862,793"\"Optical Hotspot Conductive Fluid Flow Sensor"\"09/27/2027" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32558-1"\8490470\"12/569,555"\"True Shear Parallel Plate Viscometer"\"12/04/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32584-1"\7929144\"12/336,260"\"Local Leak Detection and Health Monitoring of Pressurized Tanks in a Space Environment"\"11/17/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32588-1"\8052860\"11/957,051"\"ELECTROCHEMICALLY-ENHANCED MECHANICAL POLISHING OF OPTICS"\"09/06/2030" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32605-1"\8309944\"12/240,626"\"Grazing Incidence Optics for Neutron Analysis and Imaging"\"12/07/2030" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32605-1-CIP"\0\"12/717,450"\"Novel Grazing Incidence Neutron Optics"\"09/29/2028" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32605-1-DIV"\8575577\"13/534,951"\"Novel Grazing Incidence Neutron Optics"\"09/29/2028" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32612-1-CIP"\\"13/796,693"\"Protective Safety Cover for Pool and Spa Drains"\"03/24/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32614-1"\464750\"12/826,887"\"Magnetostrictive Regulator"\"04/03/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32615-1"\8132772\"12/567,451"\"Avionics/Electronics Box Rail Mount System"\"11/27/2030" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32638-1"\8291776\"12/827,515"\"Magnetostrictive Force-to-Angle Sensor"\"03/12/2031" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32642-1"\0\"12/827,598"\"Cryogenic and Non-Cryogenic Optical Liquid Level Instrument for Stratified Conditions"\"04/05/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32651-1"\8090484\"12/403,096"\"A Planar Translation Device for Solar Sail Spacecraft Attitude Control and Maneuvering"\"07/03/2030" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32655-1"\0\"12/862,510"\"AEROSPACE LASER IGNITION/ABLATION VARIABLE, HIGH PRECISION THRUSTER"\ +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32667-1"\8357884\"12/839,848"\"Extraction of Water from the Soil of Space Bodies Using Microwave processes"\"04/22/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32697-1"\8252734\"12/634,502"\"Multi Layered or Mixed Element Aqueous Ionic Fluids As Fuel or Lubrication Friction Modifiers"\"08/26/2030" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32697-1-CIP"\8563487\"13/525,623"\"Multi Layered or Mixed Element Aqueous Ionic Fluids As Fuel or Lubrication Friction Modifiers"\"12/09/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32715-1"\8535440\"12/758169"\"Improvement of Crystalline Quality during Melt Growth of Semiconductors by Mechanically Induced Nucleation"\"07/18/2032" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32719-1"\8564770\"13/150832"\"Field-Deployable Spectral Estimator of Trichloroacetic Acid (TCAA) in Plants"\"05/18/2032" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32733-1"\7621670\"12/392,867"\"Unbalanced Flow Distribution Mixer with Flow Metering Capability"\"02/25/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32737-1"\8448498\"12/870,468"\"Hermetic Seal Leak Detection Apparatus"\"06/06/2031" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32737-1-CIP"\\"13/874182"\"Hermetic Seal Leak Detection Apparatus"\"08/27/2030" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32748-1"\8132961\"12/397,973"\"Optimized Length-to-Diameter Ratio Flow Meter"\"08/16/2030" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32757-1"\0\"13/118086"\"Compliant Mechanical Motor"\ +"NASA Marshall Space Flight Center"\"Application"\"MFS-32761-1-CIP"\\"13/673,309"\"Multi-Channel Flow Plug with Eddy Current Minimization for Metering, Mixing, and Conditioning"\"07/23/2029" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32761-1-CON"\\"13/729,861"\"Multi-Channel Flow Plug with Eddy Current Minimization for Meeting, Mixing, and Conditioning"\"07/23/2029" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32777-1"\8425751\"13/020144"\"Electrodeposited Nickel-Cobalt Alloy Development"\"05/31/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32797-1"\8330961\"12/837,173"\"A compact sensor for in-situ measurements of gas leaks"\"08/24/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32803-1"\8133768\"12/560,371"\"Method of Manufacturing Light Emmitting, Photovoltaic or other Electronic Apparatus"\"05/31/2027" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32809-1"\0\"13/369,704"\"Telemetry encoder/decoder"\ +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32817-1"\8290006\"13/281,025"\"Variable Power Handheld Laser Torch for Joining Processes"\"10/25/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32826-1"\8316884\"12/846,429"\"Drain System for Pools, Spas, and Tanks. (Reference MFS 32612-1)"\"03/23/2031" +"NASA Marshall Space Flight Center"\"Application"\"MFS-33054-1"\\"14/020,326"\"Multi-spacecraft Autonomous Positioning System / Network-Based Navigation"\"09/06/2033" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32830-1"\8420582\"13/027472"\"FRICTION MANAGEMENT USING SOLVENT PARTITIONING OF SINGLE ELEMENT AND MULTI-ELEMENT HYDROPHILIC SURFACE-INTERACTIVE CHEMICALS CONTAINED IN HYDROPHILIC TARGETED EMULSIONS"\"02/15/2031" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32830-1-CIP"\\"13/900,452"\"Friction and Wear Management Using Solvent Partioning of Hydrophilic Surface-Interactive Chemicals contains in Boundary Layer-Targeted Emulsions"\"03/07/2033" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32840-1"\8322685\"12/842,218"\"Non-collinear Valve Actuator"\"04/02/2031" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32841-1"\\"13/424,754"\"DUPLICATE of Telemetry encoder/decoder"\ +"NASA Marshall Space Flight Center"\"Application"\"MFS-32853-1"\\"14/196,203"\"Particle Damping for Vibration Mitigation of Circuit Cards"\"03/04/2034" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32857-1"\8668168\"13/326,513"\"Rocket Vent Design with Variable Flow Control and Rain Protection"\"01/21/2032" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32859-1"\8393520\"13/240,075"\"Variably Pulsed High Power Ultrasonic (HPU) Energy for Ultrasonic Stir Welding (USW)"\"11/07/2031" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32859-1-DIV"\8393523\"13/523,310"\"Pulsed Ultrasonic Stir Welding Method"\"09/22/2031" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32865-1"\\"13/302,734"\"Easily Installed, In-situ Adaptable Flow Measurement Device and Method."\ +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32865-2"\8555731\"13/302,773"\"Easily Installed, In-situ Adaptable Flow Measurement Device and Method."\"06/04/2032" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32865-3"\\"13/302,817"\"Easily Installed, In-situ Adaptable Flow Measurement Device and Method."\ +"NASA Marshall Space Flight Center"\"Application"\"MFS-32865-4"\\"13/302,845"\"Easily Installed, In-situ Adaptable Flow Measurement Device and Method."\"08/23/2032" +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32871-1"\8577519\"13/424,898"\"Low Cost Telemetry System for Small/micro satellites"\"06/13/2032" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32873-1"\\"13/523210"\"High-current, high-voltage switch using non-hazardous liquid metals"\"11/29/2032" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32889-1"\\"13/174,084"\"Pyrotechnic Pipe Plug and Variable Area Flow Meter"\ +"NASA Marshall Space Flight Center"\"Application"\"MFS-32895-1"\\"13/242,734"\"High Powered Ultrasonically Assisted Thermal Stir Welding"\ +"NASA Marshall Space Flight Center"\"Application"\"MFS-32912-1"\\"13/299,930"\"Salt Water Power Load - Part II"\ +"NASA Marshall Space Flight Center"\"Application"\"MFS-32916-1"\\"13/333283"\"Improved Impact Toughness and Heat Treatment for Cast Aluminum Wheels"\ +"NASA Marshall Space Flight Center"\"Application"\"MFS-32924-1"\\"13/312,481"\"Partial Automated Alignment & Integration System"\"07/09/2032" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32934-1"\\"12/833,894"\"Methods, Devices, and Systems Relating to a Sensing Device"\ +"NASA Marshall Space Flight Center"\"Issued"\"MFS-32940-1"\8657179\"13/430,268"\"Closed Loop Temperature Control for the Thermal Stir Welding Process"\"03/26/2032" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32944-1"\\"13/896,137"\"Mitigation of Sonic Boom from Supersonic Vehicles by means of Long Penetration Mode (LPM) Counter-Flowing Cold Gas Jets"\"05/16/2033" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32945-1"\\"14/082,956"\"Piezoelectric Gravity Gradient and Multiple Purpose Sensor Detection System"\"11/18/2033" +"NASA Marshall Space Flight Center"\"Application"\"MFS-32986-1"\\"13/961,573"\"Non-Explosively-Actuated Pressurization Start Valve"\"08/07/2033" +"NASA Marshall Space Flight Center"\"Application"\"MFS-33007-1"\\"14/192,350"\"Carbon Nanotube Tape Vibrating Gyroscope Update"\"02/27/2034" +"NASA Marshall Space Flight Center"\"Application"\"MFS-33022-1"\\"14/192,395"\"A Design Technology to Eliminate Dribble Volume in Rocket Engine Manifolds for Swirl-Coaxial Injectors"\"02/27/2034" +"NASA Marshall Space Flight Center"\"Application"\"MFS-33031-1"\\"13/949,361"\"An aerodynamic design concept for rocket nozzle side load reduction"\"07/24/2033" +"NASA Marshall Space Flight Center"\"Application"\"MFS-33060-1"\\"14/104,881"\"Carbon Nanotube Tape Single Axis Accelerometer"\"12/12/2033" +"NASA Johnson Space Center"\"Issued"\"MSC-21715-2"\5869238\"08/390,904"\"Quantitative Method Of Measuring Cancer Cell Urokinase And Metastatic Potential"\"02/09/2016" +"NASA Johnson Space Center"\"Issued"\"MSC-21947-1"\7541159\"10/828,531"\"MOLECULAR SPECIFIC ANTIBODIES AGAINST UROKINASE"\"08/28/2025" +"NASA Johnson Space Center"\"Issued"\"MSC-22119-1"\5851816\"08/172,962"\"A PROCESS FOR DEVELOPING HIGH-FIDELITY THREE-DIMENSIONAL TUMOR MODELS OF HUMAN PROSTATE CARCINOMA"\"12/22/2015" +"NASA Johnson Space Center"\"Issued"\"MSC-22122-1"\6117674\"08/366,065"\"HORIZONTAL ROTATING-WALL VESSEL PROPAGATION IN IN VITRO HUMAN TISSUE MODELS"\"09/12/2017" +"NASA Johnson Space Center"\"Issued"\"MSC-22489-1"\5827531\"08/349,169"\"Multi-Lamellar, Immiscible-Phase Microencapsulation of Drugs"\"10/27/2015" +"NASA Johnson Space Center"\"Issued"\"MSC-22616-2"\6133036\"09/7,239"\"Preservation Of Liquid Biological Samples"\"12/12/2015" +"NASA Johnson Space Center"\"Issued"\"MSC-22616-3"\6716392\"09/630,979"\"Preservation Of Liquid Biological Samples"\"01/14/2018" +"NASA Johnson Space Center"\"Issued"\"MSC-22633-1"\6485963\"09/587,028"\"Electrically Potentiated Growth Of Mammalian Neuronal Tissue Facilitated By Rotating Wall Vessel Culture"\"06/02/2020" +"NASA Johnson Space Center"\"Issued"\"MSC-22633-2"\6673597\"09/798,854"\"Growth Stimulation Of Biological Cells And Tissue By Electromagnetic Fields And Uses Thereof"\"02/28/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-22695-1"\6261844\"09/213,988"\"A Unique Urine Preservative With Combined Antibacterial And Antioxidant Properties"\"12/17/2018" +"NASA Johnson Space Center"\"Issued"\"MSC-22721-2"\6254359\"09/354,915"\"Blood Pump Bearing System"\"07/09/2019" +"NASA Johnson Space Center"\"Issued"\"MSC-22724-1"\6047216\"09/129,832"\"Millimeter Wave/Microwave Ablation For Treatment Of Atherosclerotic Lesions"\"08/05/2018" +"NASA Johnson Space Center"\"Issued"\"MSC-22724-2"\6226553\"09/501,150"\"Endothelium Preserving Microwave Treatment For Atherosclerosis"\"02/09/2020" +"NASA Johnson Space Center"\"Issued"\"MSC-22724-3"\6223086\"09/504,768"\"Endothelium Preserving Microwave Treatment For Atherosclerosis"\"02/09/2020" +"NASA Johnson Space Center"\"Issued"\"MSC-22724-5"\6496736\"09/500,538"\"Endothelium Preserving Microwave Treatment For Atherosclerosis"\"02/09/2020" +"NASA Johnson Space Center"\"Issued"\"MSC-22757-1"\5879079\"08/917,581"\"Automated Propellant Blending Machine"\"08/20/2017" +"NASA Johnson Space Center"\"Issued"\"MSC-22797-1"\6312398\"08/786,842"\"A Method Of Applying External Power To Assist In The Operation Of Joints In Pressure Suits And Inflatable Structures2283"\"12/19/2016" +"NASA Johnson Space Center"\"Issued"\"MSC-22839-1"\6501414\"09/826,402"\"Locating Concealed Objects Using Spectral Signatures"\"04/02/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-22859-1"\6730498\"09/56,363"\"Production Of 1-25diOH Vitamin D3, Erythropoietin And Other Products By Epithelial And Interstitial Cells In Response To Shear Stress"\"04/08/2017" +"NASA Johnson Space Center"\"Issued"\"MSC-22859-2"\6946246\"09/532,001"\"Production Of Functional Proteins: Balance Of Shear Stress And Gravity"\"03/21/2020" +"NASA Johnson Space Center"\"Issued"\"MSC-22859-3"\7198947\"10/734,759"\"Production Of Functional Proteins: Balance Of Shear Stress And Gravity"\"12/22/2023" +"NASA Johnson Space Center"\"Issued"\"MSC-22859-5"\7972821\"12/174,221"\"Production of Functional Proteins: Balance of Shear Stress and Gravity"\"02/11/2029" +"NASA Johnson Space Center"\"Issued"\"MSC-22863-1"\7122071\"10/263,280"\"Centrifugal Adsorption Cartridge System (CACS)"\"12/21/2022" +"NASA Johnson Space Center"\"Issued"\"MSC-22866-1"\6099864\"09/79,741"\"INSITU Activation Of Microcapsules"\"05/15/2018" +"NASA Johnson Space Center"\"Issued"\"MSC-22900-1"\6231010\"09/236,785"\"Advanced Structural/Inflatable Hybrid Spacecraft Habitation Module"\"01/25/2019" +"NASA Johnson Space Center"\"Issued"\"MSC-23563-2"\8039099\"11/848,332"\"Nanoencapsulated Aerogels Produced By Monomer Vapor Deposition And Polymerization"\"08/13/2028" +"NASA Johnson Space Center"\"Issued"\"MSC-22931-1"\6354540\"09/405,301"\"Electro-Mechanically Actuated Magnetic Ring With Load Sensing Feedback And Closed Loop Control Docking/Berthing System For Alignment And Mating Of Multiple Vehicles, Structures, And/or Assemblies"\"09/20/2019" +"NASA Johnson Space Center"\"Issued"\"MSC-22936-1"\6387399\"09/79,766"\"Protein Crystal Encapsulation Process"\"05/15/2018" +"NASA Johnson Space Center"\"Issued"\"MSC-22936-2"\6558698\"09/733,391"\"Microencapsulated Bioactive Agents And Method Of Making"\"12/06/2020" +"NASA Johnson Space Center"\"Issued"\"MSC-22936-3"\6676964\"09/774,168"\"Method For Determining The Three-Dimensional Structure Of A Protein"\"01/26/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-22936-4"\6599449\"09/774,169"\"X-Ray Crystallography Reagent"\"01/24/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-22937-1"\6214300\"09/79,833"\"Microencapsulation And Electrostatic Processing Device (MEPS)"\"05/15/2018" +"NASA Johnson Space Center"\"Issued"\"MSC-22938-1"\6103271\"09/79,770"\"Low-Shear Microencapsulation & Electrostatic Coating Process"\"05/15/2018" +"NASA Johnson Space Center"\"Issued"\"MSC-22939-4"\7968117\"12/100,009"\"Externally Triggered Microcapsules"\"07/09/2029" +"NASA Johnson Space Center"\"Issued"\"MSC-22970-1"\6253563\"09/337,208"\"Solar-Powered Refrigeration System"\"06/03/2019" +"NASA Johnson Space Center"\"Issued"\"MSC-22970-2"\6469487\"09/838,679"\"Solar Powered Refrigeration System"\"06/03/2019" +"NASA Johnson Space Center"\"Issued"\"MSC-22970-3"\6453693\"09/838,680"\"Solar Powered Refrigeration System"\"06/03/2019" +"NASA Johnson Space Center"\"Issued"\"MSC-23029-1"\6651739\"09/793,817"\"Medium Frequency Pseudo Noise Geological Radar"\"07/20/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-23037-1"\6864473\"09/988,855"\"Variable Shadow Screen For Optical Devices"\"11/14/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-23041-1"\6334302\"09/351,152"\"Variable Specific Impulse Magnetoplasma Rocket (VASIMR)"\"06/28/2019" +"NASA Johnson Space Center"\"Issued"\"MSC-23049-3"\6592579\"09/746,542"\"Method For Selective Thermal Ablation"\"06/28/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-23049-4"\6675050\"09/746,533"\"Computer Program For Microwave Antenna"\"05/07/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-23076-1"\6321746\"09/574,758"\"Collapsable, Light, Portable Human Hyperbaric Chamber/Airlock System"\"05/17/2020" +"NASA Johnson Space Center"\"Issued"\"MSC-23092-1"\6547189\"09/826,403"\"Advanced, Large Volume, Highly Loaded, Hybrid Inflatable Pressure Vessel"\"05/26/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-23153-1"\6995572\"09/803,613"\"Coplanar Waveguide Ice Detection Sensor"\"11/04/2023" +"NASA Johnson Space Center"\"Issued"\"MSC-23154-1"\7113820\"09/906,013"\"A Real-Time, High Frequency QRS Electrocardiograph."\"05/03/2023" +"NASA Johnson Space Center"\"Issued"\"MSC-23154-2"\7539535\"11/345,687"\"A Real-Time, High Frequency QRS Electrocardiograph"\"07/13/2027" +"NASA Johnson Space Center"\"Issued"\"MSC-23178-1"\6997637\"10/5,820"\"Deceleration Limiting Safety Crash Wall"\"05/19/2022" +"NASA Johnson Space Center"\"Issued"\"MSC-23193-1"\6618010\"09/994,989"\"Passive Noncoherent Tracking Of A Data-Modulated Signal"\"11/14/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-23277-1"\7295309\"10/734,753"\"Microcapsule Flow Sensor"\"11/12/2024" +"NASA Johnson Space Center"\"Issued"\"MSC-23303-1"\7397774\"10/446,283"\"Downlink Data Multiplexer"\"01/16/2026" +"NASA Johnson Space Center"\"Issued"\"MSC-23307-1"\6559645\"10/28,962"\"Detection Of Subterranean Metal Objects Using Differential Spectral Processing"\"11/17/2020" +"NASA Johnson Space Center"\"Issued"\"MSC-23309-1"\7040319\"10/87,866"\"Oxygen Partial Pressure Monitoring Device For Aircraft Oxygen Masks."\"04/27/2022" +"NASA Johnson Space Center"\"Issued"\"MSC-23311-1"\6650280\"09/953,612"\"Mass Measurement During Fluid Flow Using An Integrated Sonic/Microwave Detector."\"09/14/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-23314-1"\6899009\"09/892,355"\"Flexshield (Flexible Multi-Shock Shield Technology)"\"06/26/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-23349-1"\7415005\"10/283,354"\"MCC Voice Over Internet Protocol (VOIP)"\"08/08/2026" +"NASA Johnson Space Center"\"Application"\"MSC-23349-2-SB"\0\"12/170,614"\"Ad Hoc Selection of Voice Over Internet Streams"\ +"NASA Johnson Space Center"\"Issued"\"MSC-23424-1"\6985606\"10/212,579"\"Global Distribution Of Large Fluvial Fans/Potential Hydrocarbon Exploration Guide"\"06/12/2024" +"NASA Johnson Space Center"\"Issued"\"MSC-23427-1"\6944504\"10/302,323"\"Microwave Ablation Of Prostatic Cells Using A Separated Antenna Array"\"07/23/2023" +"NASA Johnson Space Center"\"Issued"\"MSC-23436-1"\7126553\"10/679,688"\"Tri-Sector Deployable Array Antenna"\"08/11/2024" +"NASA Johnson Space Center"\"Issued"\"MSC-23443-1"\6647855\"10/263,293"\"Method And Apparatus For Deploying A Hypervelocity Shield"\"09/30/2022" +"NASA Johnson Space Center"\"Issued"\"MSC-23444-1"\6932090\"10/361,046"\"A Simple Countermeasure For Management Of Motion Sickness And Vestibular/Sensory-Motor Problems Associated With Space Flight And Terrestial Motion Sickness"\"07/01/2023" +"NASA Johnson Space Center"\"Issued"\"MSC-23449-1"\7386340\"10/402,866"\"Method For Diagnosis Of Coronary Artery Disease And Related Conditions Using 12-Lead High Frequency QRS Electrocardiography"\"12/30/2025" +"NASA Johnson Space Center"\"Issued"\"MSC-23510-1"\6851647\"10/417,377"\"Portable Catapult Launcher For Small Aircraft"\"04/03/2023" +"NASA Johnson Space Center"\"Issued"\"MSC-23518-1"\7168935\"10/637,086"\"Low Voltage Electron Beam Solid Freeform Fabrication System"\"09/29/2024" +"NASA Johnson Space Center"\"Issued"\"MSC-23538-1"\6943619\"10/443,233"\"Practical Active Capacitor Filter"\"05/21/2023" +"NASA Johnson Space Center"\"Issued"\"MSC-23539-1"\6943621\"10/443,234"\"Auto-Routable, Configurable, Daisy Chainable Data Acquisition System"\"08/16/2023" +"NASA Johnson Space Center"\"Issued"\"MSC-23563-1"\7270851\"10/985,081"\"Nano-Encapsulated Aerogel"\"05/14/2025" +"NASA Johnson Space Center"\"Issued"\"MSC-23594-1"\7125370\"10/845,608"\"Articulating Subject Support For Resistive Exercise In The Horizontal Position"\"02/22/2025" +"NASA Johnson Space Center"\"Issued"\"MSC-23623-1"\7212934\"11/370,379"\"String Resistance Detector Concept"\"03/06/2026" +"NASA Johnson Space Center"\"Issued"\"MSC-23659-1"\7094045\"10/734,754"\"Pulse-Flow Microencapsulation System"\"06/09/2024" +"NASA Johnson Space Center"\"Issued"\"MSC-23659-2"\7588703\"11/428,465"\"Microencapsulation System And Method"\"03/14/2027" +"NASA Johnson Space Center"\"Issued"\"MSC-23668-1"\7250075\"10/874,004"\"Water Outlet Control Mechanism For Fuel Cell System Operation In Variable Gravity Environments"\"11/04/2025" +"NASA Johnson Space Center"\"Issued"\"MSC-23695-1"\7249540\"11/177,652"\"Torquing Tool Attachment For Round Connectors With Attached Cables"\"08/27/2025" +"NASA Johnson Space Center"\"Issued"\"MSC-23781-1"\7410485\"11/40,613"\"Directional Microwave Applicator/Antenna"\"10/16/2026" +"NASA Johnson Space Center"\"Issued"\"MSC-23805-1"\7462141\"11/31,942"\"Advanced Resistive Exercise Device (ARED)"\"01/10/2027" +"NASA Johnson Space Center"\"Issued"\"MSC-23881-1"\7686529\"11/958,908"\"Low Friction, Low Profile, High Moment Two-Axis Joint"\"12/18/2027" +"NASA Johnson Space Center"\"Application"\"MSC-23882-1"\0\"12/899654"\"Analog Strain Gage Conditioning System for Space Environment"\ +"NASA Johnson Space Center"\"Issued"\"MSC-23906-1"\7295884\"11/158,354"\"Method for the Design and Analysis of the Primary Load Bearing Layer of an Inflatable Vessel"\"07/20/2026" +"NASA Johnson Space Center"\"Issued"\"MSC-23933-1"\7543779\"11/625,066"\"Low Impact Docking System (LIDS) A.k.a, International Berthing Docking Mechanism (IBDM)"\"02/22/2028" +"NASA Johnson Space Center"\"Issued"\"MSC-23954-1"\7357606\"11/357,461"\"Self-Advancing Step-Tap Drill"\"08/14/2026" +"NASA Johnson Space Center"\"Issued"\"MSC-23988-1"\8343740\"12/58,227"\"Micro-Organ Device"\"10/31/2031" +"NASA Johnson Space Center"\"Issued"\"MSC-23988-2"\8580546\"13/688982"\"Micro-Organ Device"\"11/29/2032" +"NASA Johnson Space Center"\"Issued"\"MSC-23997-2"\7815149\"12/388,345"\"Magnetic Capture Docking Mechanism"\"04/01/2025" +"NASA Johnson Space Center"\"Issued"\"MSC-24000-1"\8076136\"/0"\"Development And Characterization Of A Three-Dimensional Tissue Culture Model Of Bone"\"10/31/2021" +"NASA Johnson Space Center"\"Issued"\"MSC-24042-1"\7411198\"11/421,174"\"New Architecture for Space Radiation Detection"\"02/01/2027" +"NASA Johnson Space Center"\"Issued"\"MSC-24106-1"\7577482\"11/683,770"\"Network System Plug And Play Through Positional And Functional Connectivity Identification"\"04/21/2028" +"NASA Johnson Space Center"\"Issued"\"MSC-24115-1"\8022307\"11/772,999"\"Method and Apparatus for Fabric Circuits and Antennas"\"06/19/2030" +"NASA Johnson Space Center"\"Issued"\"MSC-24149-1"\8122646\"12/402,986"\"A Description Of An Improved Method For Folding, Assembling, And Weight Relief Of An Inflatable Shell"\"02/04/2030" +"NASA Johnson Space Center"\"Issued"\"MSC-24149-2"\8266866\"13/346137"\"A Description Of An Improved Method For Folding, Assembling, And Weight Relief Of An Inflatable Shell"\"03/12/2029" +"NASA Johnson Space Center"\"Issued"\"MSC-24164-1"\8338114\"11/789,117"\"Methods For Growing Tissue-Like 3D Assemblies (TLA) Of Human Broncho-Epithelial Cells"\"05/04/2030" +"NASA Johnson Space Center"\"Issued"\"MSC-24169-1"\7862946\"11/671,210"\"Self-Regulating Control of Parasitic Electric Loads in Fuel Cell Power Systems"\"11/05/2029" +"NASA Johnson Space Center"\"Issued"\"MSC-24180-1"\7935259\"12/167,332"\"Water Filtering Device, 100% Effective"\"09/14/2029" +"NASA Johnson Space Center"\"Issued"\"MSC-24184-1"\8116350\"12/353,755"\"Ultra-Wideband (UWB) Two-Cluster Angle Of Arrival (AOA) Passive Tracking System Design"\"07/22/2030" +"NASA Johnson Space Center"\"Issued"\"MSC-24201-1"\7509774\"11/610,295"\"A Description Of An Improved Method For Attaching An Inflatable Shell To A Rigid Interface"\"06/13/2027" +"NASA Johnson Space Center"\"Issued"\"MSC-24207-1"\7604782\"11/625,670"\"X-38 Advanced Sublimator"\"04/12/2028" +"NASA Johnson Space Center"\"Issued"\"MSC-24215-1"\8070105\"11/956,826"\"A Description Of A Concentric Nested Torroidal Inflatable Habitat"\"10/04/2030" +"NASA Johnson Space Center"\"Issued"\"MSC-24216-1"\8047473\"12/240,537"\"A Description Of An Octonode Connecting Node Concept And Method"\"01/10/2030" +"NASA Johnson Space Center"\"Issued"\"MSC-24228-1"\7521682\"11/421,196"\"New Architecture For Space Radiation Detection"\"03/07/2027" +"NASA Johnson Space Center"\"Issued"\"MSC-24238-1"\8388613\"12/757657"\"Microwave Tissue Welding For Wound Closure"\"11/17/2031" +"NASA Johnson Space Center"\"Issued"\"MSC-24263-1"\7805276\"11/958,937"\"Impact Detection System"\"02/12/2029" +"NASA Johnson Space Center"\"Issued"\"MSC-24273-1"\7840387\"11/778,858"\"Method For The Design And Analysis Of The Primary Load Bearing Layer That Interfaces To The Structural Pass-through Of An Inflatable Vessel"\"07/31/2029" +"NASA Johnson Space Center"\"Application"\"MSC-24314-1"\0\"12/880602"\"HDSS - High Density Spot Seeding"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24346-1"\8466776\"12/828558"\"Extended Range RFID and Sensor Tag"\"09/05/2031" +"NASA Johnson Space Center"\"Issued"\"MSC-24387-1"\8011229\"12/323,912"\"Artificial Intelligence Algorithm For Assessing Postural Stability During Normal Daily Activities Using Shoe Insert Pressure Sensors"\"11/26/2028" +"NASA Johnson Space Center"\"Issued"\"MSC-24441-1"\7905946\"12/190,364"\"A Capillary-based Static Phase Separator For Highly Variable Wetting Conditions"\"07/02/2029" +"NASA Johnson Space Center"\"Issued"\"MSC-24444-1"\8577120\"12/900644"\"Flash Infrared (IR) Thermography Contrast Computer Simulation And Data Analysis Software"\"04/22/2031" +"NASA Johnson Space Center"\"Application"\"MSC-24451-1"\0\"13/057399"\"Rapid Detection Of The Varicella Zoster Virus (VZV) In Saliva Samples"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24464-1"\7859292\"12/502,575"\"Reconfigurable SEU/SET Tolerance for FPGAs"\"07/14/2029" +"NASA Johnson Space Center"\"Issued"\"MSC-24466-1"\8183870\"12/370,021"\"Battery cell voltage sensing and balancing using addressable transformers with electrical isolation and minimal additional connector pins and circuitry."\"07/01/2030" +"NASA Johnson Space Center"\"Application"\"MSC-24490-1"\0\"12/612,171"\"High Altitude Hydration System"\ +"NASA Johnson Space Center"\"Application"\"MSC-24506-1"\0\"12/971919"\"A Method to Measure and Estimate Normalized contrast In Infrared Flash Thermography"\"01/08/2030" +"NASA Johnson Space Center"\"Issued"\"MSC-24508-1"\8343403\"12/174,380"\"METHOD FOR MAKING A MICROPOROUS MEMBRANE"\"12/31/2030" +"NASA Johnson Space Center"\"Issued"\"MSC-24509-1"\8570047\"12/855384"\"Battery Fault Detection with Saturating Transformers"\"02/02/2032" +"NASA Johnson Space Center"\"Issued"\"MSC-24525-1"\8384614\"12/894749"\"Deployable Fresnel Rings"\"10/11/2031" +"NASA Johnson Space Center"\"Application"\"MSC-24541-1"\0\"12/899815"\"Electromagnetic Time-Variance Magnetic Fields (TVMF) to generate, and re-grow Cartilage Cells by a Noninvasive Method"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24569-1"\8176809\"12/331844"\"Planar Torsion Spring"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24570-1"\8276958\"12/269579"\"Bidirectional Tendon Terminator"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24571-1"\8371177\"12/241309"\"Tendon Tension Sensor"\ +"NASA Johnson Space Center"\"Application"\"MSC-24685-1"\8056423\"12/269,552"\"Sensing the Tendon Tension through the Conduit Reaction Forces"\"11/12/2028" +"NASA Johnson Space Center"\"Application"\"MSC-24686-1"\8060250\"12/335,153"\"Joint Space Impedance Control for Tendon-Driven Manipulators"\"12/15/2028" +"NASA Johnson Space Center"\"Issued"\"MSC-24687-1"\8170718\"12/338697"\"Multiple Priority Operational Space Impedance Control"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24688-1"\8280837\"12/474068"\"CONTACT STATE ESTIMATION FOR MULTI-FINGER ROBOT HANDS USING PARTICLE FILTERS"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24689-1"\7784363\"12/241320"\"PHALANGE TACTILE LOAD CELL"\"09/30/2028" +"NASA Johnson Space Center"\"Issued"\"MSC-24732-1"\8364314\"12/624445"\"METHOD AND APPARATUS FOR AUTOMATIC CONTROL OF A HUMANOID ROBOT"\ +"NASA Johnson Space Center"\"Application"\"MSC-24733-1"\0\"13/349265"\"Pyrometer"\ +"NASA Johnson Space Center"\"Application"\"MSC-24734-1"\8498741\"12/564088"\"Dexterous Humanoid Robotic Wrist"\ +"NASA Johnson Space Center"\"Application"\"MSC-24735-1"\8467903\"12/564086"\"Tendon Driven Finger Actuation System"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24736-1"\8291788\"12/564090"\"Rotary Series Elastic Actuator"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24737-1"\8401700\"12/564124"\"ACTUATOR AND ELECTRONICS PACKAGING FOR EXTRINSIC HUMANOID HAND"\ +"NASA Johnson Space Center"\"Application"\"MSC-24738-1"\0\"12/564094"\"FRAMEWORK AND METHOD FOR CONTROLLING A ROBOTIC SYSTEM USING A DISTRIBUTED COMPUTER NETWORK"\ +"NASA Johnson Space Center"\"Application"\"MSC-24739-1"\8511964\"12/564084"\"Dexterous Humanoid Robot"\ +"NASA Johnson Space Center"\"Application"\"MSC-24740-1"\0\"12/564078"\"Dexterous Humanoid Robotic Finger"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24741-1"\8255079\"12/564095"\"Human Grasp Assist"\"09/23/2029" +"NASA Johnson Space Center"\"Application"\"MSC-24742-1"\8442684\"12/564076"\"Integrated High Speed FPGA Based Torque Controller"\ +"NASA Johnson Space Center"\"Application"\"MSC-24743-1"\8250901\"12/564092"\"Rotary Absolute Position Sensor Calibration"\ +"NASA Johnson Space Center"\"Application"\"MSC-24744-1"\8369992\"12/564083"\"Diagnostics, prognostics & health management for humanoid robotics and method thereof"\ +"NASA Johnson Space Center"\"GM"\"MSC-24745-1"\8424941\"12/564085"\"ROBOTIC THUMB ASSEMBLY"\ +"NASA Johnson Space Center"\"Application"\"MSC-24746-1"\8260460\"12/564096"\"Interactive Robot Control System"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24747-1"\8244402\"12/564074"\"VISUAL PERCEPTION SYSTEM AND METHOD FOR A HUMANOID ROBOT"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24750-1"\8483882\"12/686512"\"HIERARCHICAL ROBOT CONTROL SYSTEM AND METHOD FOR CONTROLLING SELECT DEGREES OF FREEDOM OF AN OBJECT USING MULTIPLE MANIPULATORS"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24751-1"\8412376\"12/720725"\"TENSION DISTRIBUTION IN A TENDON-DRIVEN ROBOTIC FINGER"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24752-1"\8033876\"12/706744"\"CONNECTOR PIN AND METHOD"\ +"NASA Johnson Space Center"\"Application"\"MSC-24753-1"\0\"12/720727"\"UNDERACTUATED DESIGN AND CONTROL OF A TENDON-DRIVEN FINGER"\ +"NASA Johnson Space Center"\"Application"\"MSC-24755-1"\0\"12/698832"\"Architecture For Robust Force and Impedance Control Of Series Elastic Actuators"\ +"NASA Johnson Space Center"\"Application"\"MSC-24758-1"\0\"14/184278"\"RFID Cavity"\"03/11/2033" +"NASA Johnson Space Center"\"Application"\"MSC-24798-1"\0\"13/789903"\"Soft Decision Analyzer (SDA)"\"03/08/2033" +"NASA Johnson Space Center"\"Application"\"MSC-24811-1"\0\"13/461,487"\"Self-enclosed and pipette free DNA/RNA Isolation device"\ +"NASA Johnson Space Center"\"Application"\"MSC-24813-1"\0\"13/791290"\"Pre-Polymerase Chain Reaction Preparation Kit"\"08/06/2032" +"NASA Johnson Space Center"\"Application"\"MSC-24817-1"\8265792\"12/760954"\"Method and Apparatus for Calibrating Multi-Axis Load Cells in a Dexterous Robot"\ +"NASA Johnson Space Center"\"Application"\"MSC-24837-1"\0\"12/787479"\"Applying Workspace Limitations in a Velocity-Controlled Robotic Mechanism"\ +"NASA Johnson Space Center"\"Application"\"MSC-24919-1"\0\"13/790591"\"RFID Waveguide, Antenna, and Cavity Sensors"\"07/13/2032" +"NASA Johnson Space Center"\"Issued"\"MSC-24926-1"\8412378\"12/629637"\"IN-VIVO TENSION CALIBRATION IN TENDON-DRIVEN MANIPULATORS"\ +"NASA Johnson Space Center"\"Issued"\"MSC-24930-1"\8489239\"12/916803"\"ROBUST OPERATION OF TENDON-DRIVEN ROBOT FINGERS USING FORCE AND POSITION-BASED CONTROL LAWS"\ +"NASA Johnson Space Center"\"Application"\"MSC-25026-1"\0\"13/354552"\"Battery Charge Equalizer with transformer array"\ +"NASA Johnson Space Center"\"Issued"\"MSC-25053-1"\"D628,609"\"29/359105"\"ROBOT"\"04/06/2030" +"NASA Johnson Space Center"\"Application"\"MSC-25056-1"\0\"13/014901"\"SYSTEM AND METHOD FOR TENSIONING A ROBOTICALLY ACTUATED TENDON"\ +"NASA Johnson Space Center"\"Issued"\"MSC-25084-1"\8067909\"12/474430"\"METHOD AND APPARATUS FOR ELECTROMAGNETICALLY BRAKING A MOTOR"\"05/29/2029" +"NASA Johnson Space Center"\"Application"\"MSC-25084-DE"\0\"12/474430"\"Method and Apparatus for Electromagnetically Braking a Motor"\ +"NASA Johnson Space Center"\"Application"\"MSC-25084-JP"\0\"12/474430"\"Method and Apparatus for Electromagnetically Braking a Motor"\ +"NASA Johnson Space Center"\"Application"\"MSC-25091-1"\0\"13/199484"\"FRET-Aptamer Assays for C-Telopeptide, Creatinine and Vitamin D"\"08/31/2031" +"NASA Johnson Space Center"\"Issued"\"MSC-25121-1"\8483877\"12/875254"\"WORKSPACE SAFE OPERATION OF A FORCE- OR IMPEDANCE-CONTROLLED ROBOT"\ +"NASA Johnson Space Center"\"Application"\"MSC-25149-1"\0\"13/196252"\"Controlling Execution Sequence Using Tactile-Classification during manipulation by a humanoid robot"\ +"NASA Johnson Space Center"\"Application"\"MSC-25216-1"\0\"13/439,546"\"METHOD AND COMPOSITION FOR AMELIORATING THE EFFECTS FOR A SUBJECT EXPOSED TO RADIATION OR OTHER SOURCES OF OXIDATIVE STRESS"\ +"NASA Johnson Space Center"\"Application"\"MSC-25217-1"\0\"13/272442"\"METHOD FOR DYNAMIC OPTIMIZATION OF A ROBOT CONTROL INTERFACE"\ +"NASA Johnson Space Center"\"Application"\"MSC-25219"\0\"13/207911"\"FAST GRASP CONTACT COMPUTATION FOR A SERIAL ROBOT"\ +"NASA Johnson Space Center"\"Application"\"MSC-25265-1"\0\"13/851778"\"New method and device for digital to analog transformations and reconstructions of multichannel electrocardiograms"\"10/30/2032" +"NASA Johnson Space Center"\"Application"\"MSC-25286-1"\0\"14/252660"\"A chemical formulation to stabilize urine and minimize the precipitation potential of minerals during distillation of urine"\"03/11/2033" +"NASA Johnson Space Center"\"Application"\"MSC-25313-1"\0\"13/774835"\"Hydrostatic Hyperbaric Chamber"\"02/22/2033" +"NASA Johnson Space Center"\"Application"\"MSC-25318"\0\"13/408668"\"HUMAN GRASP ASSIST SOFT"\ +"NASA Johnson Space Center"\"Application"\"MSC-25319"\0\"13/408656"\"HUMAN GRASP ASSIST "\ +"NASA Johnson Space Center"\"Application"\"MSC-25320"\0\"13/408675"\"HUMAN GRASP ASSIST CONTROLS"\ +"NASA Johnson Space Center"\"Application"\"MSC-25327-1"\0\"13/459557"\"COMMUNICATION SYSTEM AND METHOD"\ +"NASA Johnson Space Center"\"Application"\"MSC-25386-1"\0\"13/951671"\"Active Response Gravity Offload System - Vertical Software Release"\"07/26/2033" +"NASA Johnson Space Center"\"Application"\"MSC-25590-1"\0\"13/790927"\"Systems and Methods for RFID-Enabled Information Collection"\ +"NASA Johnson Space Center"\"Application"\"MSC-25604-1"\0\"13/791584"\"Systems and Methods for RFID-Enabled Dispenser"\ +"NASA Johnson Space Center"\"Application"\"MSC-25605-1"\0\"13/790721"\"Switch Using Radio Frequency Identification"\ +"NASA Johnson Space Center"\"Application"\"MSC-25626-1"\0\"14/200,122"\"RFID Torque-Sensing Tag System for Fasteners"\"03/07/2034" +"NASA Johnson Space Center"\"Application"\"MSC-25632-1"\0\"13/803017"\"ROBOT TASK COMMANDER WITH EXTENSIBLE PROGRAMMING ENVIRONMENT +"\"03/14/2033" +"NASA Johnson Space Center"\"Application"\"MSC-25758-1"\0\"14/184303"\"Methods, Systems and Apparatuses for Radio Frequency Identification"\"03/11/2033" +"NASA Johnson Space Center"\"Application"\"MSC-25759-1"\0\"14/184337"\"Methods, Systems and Apparatuses for Radio Frequency Identification"\"03/11/2033" +"NASA Johnson Space Center"\"Application"\"MSC-25760-1"\0\"14/184365"\"Methods, Systems and Apparatuses for Radio Frequency Identification"\"03/11/2033" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-17734-1"\0\"07/700,830"\"Formation Of Self-Aligned Guard Ring For Silicide Schottky-Barrier Diodes Used For Infrared Detection"\ +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-19289-1"\6513023\"09/412,199"\"On-Chip Learning In VLSI Hardware"\"10/01/2019" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-19769-1"\0\"08/868,175"\"Automated Cargo Inventory Identification Transponder"\ +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-19855-1"\6374630\"09/853,931"\"Champagne Heat Pump"\"05/09/2021" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-20031-1"\6828935\"10/176,761"\"Receiver Controlled Phased Array Antenna"\"07/19/2022" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-20837-1"\6526556\"09/591,386"\"MORPHING TECHNIQUE FOR ACCELERATED EVOLUTIONARY SYNTHESIS OF ELECTRONIC CIRCUITS"\"06/07/2020" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-21136-1"\0\"10/219,384"\"A CMOS ACTIVE PIXEL SENSOR (APS) FOR READING COMPACT DISCS"\ +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-30703-1"\7240208\"10/424,287"\"ENCRYPTING DIGITAL CAMERA"\"04/23/2023" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-40040-1"\7480984\"40/863,835"\"A Concept For Suppressing Sublimation In Advanced Thermoelectric Devices"\"06/07/2024" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-40407-1"\7592747\"11/056,633"\"Piezoelectrically Enhanced PhotoCathode (PEPC)"\"02/09/2025" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-40827-1"\7156189\"11/1,465"\"SELF-MOUNTABLE AND EXTRACTABLE ULTRASONIC/SONIC ANCHOR (U/S-Anchor)"\"12/01/2024" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-41446-1"\8358723\"11/602,440"\"Architecture Of An Autonomous Radio"\"09/12/2031" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-41506-2"\8492160\"12/720,103"\"BIOMARKER SENSOR SYSTEM AND METHOD FOR MULTI-COLOR IMAGING AND PROCESSING OF SINGLE-MOLECULE LIFE SIGNATURES"\"04/09/2031" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-41511-1"\7385462\"11/376,638"\"Wideband (31 To 36 GHz) 24-Way Radial Power Combiner/Divider Fed By A Marie Transducer"\"03/14/2026" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-41982-1"\8078309\"12/415,206"\"Inverse Tomographic Approach To Create Arbitrary Sidewall Geometries In 3D Using LiGA Technologies"\"03/03/2021" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-42131-1"\7824247\"11/756,819"\"PORTABLE RAPID AND QUIET DRILL (PRAQD)"\"11/02/2027" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-42312-1"\7184624\"11/422,147"\"Slow light in chains of vertically coupled whispering gallery mode resonators"\"06/05/2026" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-42466-1"\7764384\"11/924,766"\"Swept frequency laser metrology system"\"10/26/2027" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-42563-1"\7353768\"11/456,441"\"Submersible Vehicle Propulsion and Power Generation"\"07/10/2026" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-42672-1"\7996112\"11/756,793"\"Micro Robot Explorer (SpiderBot) Mesh Crawler"\"06/08/2030" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-43213-1"\7850861\"11/764,359"\"Patterning packing materials for Fluidic Channels"\"10/13/2029" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-43348-1"\7809521\"12/40,459"\"Precise delay measurement circuit on FPGAs"\"01/31/2029" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-43361-1"\7773121\"11/741,213"\"High Resolution, Continuous Field of View, Non-Rotating Imaging Sensor Head"\"10/15/2028" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-43524-1"\7773362\"11/683,007"\"Dusty Plasma Thruster"\"01/03/2029" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-44079-1"\8022860\"11/781,022"\"Enhanced Interference Cancellation and Telemetry Reception with a Single Parabolic Dish Antenna using a Focal Plane Array"\"04/30/2030" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-44765-1"\7740088\"11/928,069"\"Ultrasonic/Sonic Rotary-Hammer Drill (USRoHD)"\"04/15/2028" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-44914-1"\8407979\"11/926,279"\"Magnetically-Conformed, Variable Area Discharge Chamber for Hall Thruster Plasma Accelerators"\"06/08/2031" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-45053-1"\8057283\"12/119,989"\"The process of significant improving of optical quality factor of whispering gallery mode resonator."\"09/15/2030" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-45911-1"\8163094\"12/508,006"\"Method to Improve Indium Bump Bonding Via Indium Oxide Removal Using a Two Step Plasma Process"\"08/16/2030" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-45948-1"\7843650\"12/490,422"\"Monolithic Afocal Telescope"\"06/24/2029" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-46253-1"\0\"12/237,159"\"Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump"\ +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-46843-1"\8169371\"12/541,725"\"A single-layer, all-metal patch antenna element with wide bandwidth"\"09/25/2030" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-46938-1"\8026768\"12/691,070"\"A 201Hg+ co-magnetometer for 199Hg+ trapped ion space atomic clocks"\"04/03/2030" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-47300-1"\0\"13/017,174"\"Textured Si Anode for High Capacity, Rapid Charge Rate Li Ion Batteries"\ +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-47300-2"\0\"13/895,499"\"Textured Si Anode for High Capacity, Rapid Charge Rate Li Ion Batteries"\"01/31/2031" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-47310-1"\8502987\"13/018,672"\"Coherent Detector for Near-Angle Scattering and Polarization Characterization of Telescope Mirror Coatings"\"03/24/2032" +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-47604-1"\8649000\"13/277,954"\"Surface Enhanced Raman Scattering using Silica Whispering-Gallery Mode Resonators"\"07/10/2032" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-47717-1"\\"13/281,683"\"360-Degree Camera Head for Unmanned Surface Sea Vehicles"\ +"NASA Jet Propulsion Laboratory"\"Issued"\"NPO-47869-1"\8649609\"13/071,299"\"FPGA Vision Data Architecture"\"04/17/2032" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-47881-1"\\"14/151,684"\"Pulsed Plasma Lubricator (PPL) Technology for the In Situ Replenishment of Dry Lubricants in Extreme Environments"\ +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-48140-1"\\"13/456,451"\"Probabilistic Surface Characterization for Safe Landing Hazard Detection and Avoidance"\ +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-48413-1"\\"13/757,929"\"Simple Laser-Communications Terminal for Downlink from Earth-Orbit at Rates Exceeding 10 Gb/s"\"02/04/2033" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-48539-1"\\"13/858,267"\"Neutral mounting of whispering gallery mode resonators for suppression of acceleration-induced frequency fluctuations"\"04/08/2033" +"NASA Jet Propulsion Laboratory"\"Application"\"NPO-49086-1"\\"14/101,547"\"Electride Mediated Surface Enhanced Raman Spectroscopy"\"12/10/2033" +"NASA Stennis Space Center"\"Issued"\"SSC-00040"\5726632\"08/622,178"\"HANDHELD HYDROGEN FIRE IMAGER"\"03/14/2016" +"NASA Stennis Space Center"\"Issued"\"SSC-00050"\6020587\"09/3,212"\"A HAND HELD PLANT STRESS DETECTION SYSTEM"\"01/06/2018" +"NASA Stennis Space Center"\"Issued"\"SSC-00247"\8618933\"11/866,042"\"Valve Health Monitoring System Utilizing Smart Instrumentation for Real Time and Historical Data Tracking"\"05/03/2032" +"NASA Stennis Space Center"\"Issued"\"SSC-00264"\8336849\"12/704193"\"Conical Seat Shut Off Valve"\"01/13/2031" +"NASA Stennis Space Center"\"Issued"\"SSC-00327"\8401820\"12/566,111"\"IN SITU HEALTH MONITORING OF PIEZOELECTRIC SENSORS"\"07/31/2030" diff --git a/mathesar/tests/imports/test_csv.py b/mathesar/tests/imports/test_csv.py index c039417320..d8d6329e4a 100644 --- a/mathesar/tests/imports/test_csv.py +++ b/mathesar/tests/imports/test_csv.py @@ -21,14 +21,6 @@ def data_file(patents_csv_filepath): return data_file -@pytest.fixture -def long_column_data_file(): - data_filepath = 'mathesar/tests/data/long_column_names.csv' - with open(data_filepath, "rb") as csv_file: - data_file = DataFile.objects.create(file=File(csv_file)) - return data_file - - @pytest.fixture def headerless_data_file(headerless_patents_csv_filepath): with open(headerless_patents_csv_filepath, "rb") as csv_file: @@ -98,74 +90,6 @@ def test_csv_upload(data_file, schema): ) -def test_csv_upload_long_columns(long_column_data_file, schema): - table_name = "long_cols" - table = create_table_from_csv(long_column_data_file, table_name, schema) - - num_records = 54 - expected_row = ( - 1, 'NATION', '8.6', '4.5', '8.5', '4.3', '8.3', '4.6', '78.6', '2.22', - '0.88', '0.66', '1.53', '3.75', '3.26', '0.45', '0.07', '53.9', '52.3', - '0.8', '0.38487', '3.15796', '2.3', '33247', '14.842144', '6.172333', - '47.158545', '1.698662', '2.345577', '7.882694', '0.145406', '3.395302', - '92.085375', '14.447634', '78.873848', '1.738571', '16.161024', - '19.436701', '8.145643', '94.937079', '74.115131', '75.601680', - '22.073834', '11.791045', '1.585233', '1.016932', '2023-02-01', - ) - expected_cols = [ - 'id', - 'State or Nation', - 'Cycle 1 Total Number of Health Deficiencies', - 'Cycle 1 Total Number of Fire Safety Deficiencies', - 'Cycle 2 Total Number of Health Deficiencies', - 'Cycle 2 Total Number of Fire Safety Deficiencies', - 'Cycle 3 Total Number of Health Deficiencies', - 'Cycle 3 Total Number of Fire Safety Deficiencies', - 'Average Number of Residents per Day', - 'Reported Nurse Aide Staffing Hours per Resident per Day', - 'Reported LPN Staffing Hours per Resident per Day', - 'Reported RN Staffing Hours per Resident per Day', - 'Reported Licensed Staffing Hours per Resident per Day', - 'Reported Total Nurse Staffing Hours per Resident per Day', - 'Total number of nurse staff hours per resident per day-8cd5ab5e', - 'Registered Nurse hours per resident per day on the weekend', - 'Reported Physical Therapist Staffing Hours per Resident Per Day', - 'Total nursing staff turnover', - 'Registered Nurse turnover', - 'Number of administrators who have left the nursing home', - 'Case-Mix RN Staffing Hours per Resident per Day', - 'Case-Mix Total Nurse Staffing Hours per Resident per Day', - 'Number of Fines', - 'Fine Amount in Dollars', - 'Percentage of long stay residents whose need for help-5c97c88f', - 'Percentage of long stay residents who lose too much weight', - 'Percentage of low risk long stay residents who lose co-fc6bc241', - 'Percentage of long stay residents with a catheter inse-ce71f22a', - 'Percentage of long stay residents with a urinary tract-f16fbec8', - 'Percentage of long stay residents who have depressive symptoms', - 'Percentage of long stay residents who were physically-f30de0aa', - 'Percentage of long stay residents experiencing one or-9f9e8f36', - 'Percentage of long stay residents assessed and appropr-84744861', - 'Percentage of long stay residents who received an anti-20fe5d12', - 'Percentage of short stay residents assessed and approp-3568770f', - 'Percentage of short stay residents who newly received-e98612b4', - 'Percentage of long stay residents whose ability to mov-66839cb4', - 'Percentage of long stay residents who received an anti-868593e4', - 'Percentage of high risk long stay residents with press-b624bbba', - 'Percentage of long stay residents assessed and appropr-999c26ef', - 'Percentage of short stay residents who made improvemen-ebe5c21e', - 'Percentage of short stay residents who were assessed a-26e64965', - 'Percentage of short stay residents who were rehospital-682a4dae', - 'Percentage of short stay residents who had an outpatie-9403ec21', - 'Number of hospitalizations per 1000 long-stay resident days', - 'Number of outpatient emergency department visits per 1-f0fed7b5', - 'Processing Date' - ] - check_csv_upload( - table, table_name, schema, num_records, expected_row, expected_cols - ) - - def test_headerless_csv_upload(headerless_data_file, schema): table_name = "NASA no headers" table = create_table_from_csv(headerless_data_file, table_name, schema) diff --git a/mathesar/tests/test_multi_db.py b/mathesar/tests/test_multi_db.py index fd8a04ce06..79af7489f4 100644 --- a/mathesar/tests/test_multi_db.py +++ b/mathesar/tests/test_multi_db.py @@ -1,11 +1,7 @@ import pytest -from django.core.cache import cache from django.core.exceptions import ValidationError from mathesar.models.base import Table, Schema, Database -from mathesar.state.django import reflect_db_objects - -from db.metadata import get_empty_metadata @pytest.fixture(autouse=True) @@ -20,14 +16,15 @@ def multi_db_engine(multi_db_test_db, MOD_engine_cache): return MOD_engine_cache(multi_db_test_db) -@pytest.mark.skip("Faulty DB handling assumptions; invalid") +# NOTE this test might result in false failures, because the way we define user +# databases might not support runtime changes in certain edge cases (and such changes are +# performed in this tests' fixtures). Talk to Brent or Dom in case of problems. def test_multi_db_schema(engine, multi_db_engine, client, create_db_schema): test_schemas = ["test_schema_1", "test_schema_2"] for schema_name in test_schemas: create_db_schema(schema_name, engine) create_db_schema("multi_db_" + schema_name, multi_db_engine) - cache.clear() response = client.get('/api/db/v0/schemas/') response_data = response.json() response_schemas = [ @@ -41,7 +38,9 @@ def test_multi_db_schema(engine, multi_db_engine, client, create_db_schema): assert set(response_schemas) == set(expected_schemas) -@pytest.mark.skip("Faulty DB handling assumptions; invalid") +# NOTE this test might result in false failures, because the way we define user +# databases might not support runtime changes in certain edge cases (and such changes are +# performed in this tests' fixtures). Talk to Brent or Dom in case of problems. def test_multi_db_tables(engine, multi_db_engine, client, create_mathesar_table): schema_name = "test_multi_db_tables_schema" test_tables = ["test_table_1", "test_table_2"] @@ -51,7 +50,6 @@ def test_multi_db_tables(engine, multi_db_engine, client, create_mathesar_table) "multi_db_" + table_name, schema_name, [], multi_db_engine ) - cache.clear() response = client.get('/api/db/v0/tables/') assert response.status_code == 200 @@ -66,16 +64,16 @@ def test_multi_db_oid_unique(): """ Ensure the same OID is allowed for different dbs """ - reflect_db_objects(metadata=get_empty_metadata()) schema_oid = 5000 table_oid = 5001 - for db in Database.objects.all(): + all_dbs = Database.objects.all() + assert len(all_dbs) > 1 + for db in all_dbs: schema = Schema.objects.create(oid=schema_oid, database=db) Table.objects.create(oid=table_oid, schema=schema) def test_single_db_oid_unique_exception(): - reflect_db_objects(metadata=get_empty_metadata()) table_oid = 5001 dbs = Database.objects.all() assert len(dbs) > 0 diff --git a/mathesar/urls.py b/mathesar/urls.py index 6f776359e4..931556ab67 100644 --- a/mathesar/urls.py +++ b/mathesar/urls.py @@ -46,9 +46,10 @@ path('administration/users/', views.admin_home, name='admin_users_home'), path('administration/users//', views.admin_home, name='admin_users_edit'), path('administration/update/', views.admin_home, name='admin_update'), - path('/', views.schemas, name='schemas'), + path('db/', views.home, name='db_home'), + path('db//', views.schemas, name='schemas'), re_path( - r'^(?P\w+)/(?P\w+)/', + r'^db/(?P\w+)/(?P\w+)/', views.schema_home, name='schema_home' ), diff --git a/mathesar/views.py b/mathesar/views.py index f643761343..acf58998d2 100644 --- a/mathesar/views.py +++ b/mathesar/views.py @@ -33,11 +33,11 @@ def get_schema_list(request, database): def _get_permissible_db_queryset(request): - qs = Database.objects.all() + qs = Database.objects.filter(deleted=False) permission_restricted_qs = DatabaseAccessPolicy.scope_queryset(request, qs) schema_qs = Schema.objects.all() permitted_schemas = SchemaAccessPolicy.scope_queryset(request, schema_qs) - databases_from_permitted_schema = Database.objects.filter(schemas__in=permitted_schemas) + databases_from_permitted_schema = Database.objects.filter(schemas__in=permitted_schemas, deleted=False) permission_restricted_qs = permission_restricted_qs | databases_from_permitted_schema return permission_restricted_qs.distinct() diff --git a/mathesar_ui/src/App.svelte b/mathesar_ui/src/App.svelte index d7d33c715f..6cf0abd319 100644 --- a/mathesar_ui/src/App.svelte +++ b/mathesar_ui/src/App.svelte @@ -11,6 +11,7 @@ } from '@mathesar/systems/record-selector/RecordSelectorController'; import { preloadCommonData } from '@mathesar/utils/preloadData'; import RootRoute from './routes/RootRoute.svelte'; + import { setNewClipboardHandlerStoreInContext } from './stores/clipboard'; import { modal } from './stores/modal'; import { setReleasesStoreInContext } from './stores/releases'; import ModalRecordSelector from './systems/record-selector/ModalRecordSelector.svelte'; @@ -28,6 +29,7 @@ // TODO: Throw an application wide error } + const clipboardHandlerStore = setNewClipboardHandlerStoreInContext(); const recordSelectorModal = modal.spawnModalController(); const recordSelectorController = new RecordSelectorController({ onOpen: () => recordSelectorModal.open(), @@ -35,8 +37,35 @@ nestingLevel: 0, }); setRecordSelectorControllerInContext(recordSelectorController); + + $: clipboardHandler = $clipboardHandlerStore; + + // Why are we handling clipboard events here? + // + // We originally implemented the clipboard handler lower down, in the Sheet + // component. That worked for Firefox because when the user pressed Ctrl+C the + // focused `.cell-wrapper` div node would emit a copy event. However, in + // Chrome and Safari, the focused `.cell-wrapper` div node does _not_ emit + // copy events! Perhaps that's because it doesn't contain any selected text? + // Instead, the copy event gets emitted from `body` in Chrome/Safari. + // Clipboard functionality seems inconsistent in subtle ways across browsers. + // Make sure to test in all browsers when making changes! + // + // On a record page with multiple table widgets, we should be able to copy + // cells from each table widget, and we should be able to copy plain text on + // the page, outside of the sheet. We also need to support copying from the + // Data Explorer. + + function handleCopy(e: ClipboardEvent) { + if (clipboardHandler) { + clipboardHandler.handleCopy(e); + e.preventDefault(); + } + } + + diff --git a/mathesar_ui/src/__tests__/App.test.ts b/mathesar_ui/src/__tests__/App.test.ts deleted file mode 100644 index 02667f286a..0000000000 --- a/mathesar_ui/src/__tests__/App.test.ts +++ /dev/null @@ -1,30 +0,0 @@ -import '@testing-library/jest-dom'; -import { render } from '@testing-library/svelte'; - -function addCommonDataScript() { - const commonDataScript = document.createElement('script'); - commonDataScript.id = 'common-data'; - commonDataScript.type = 'application/json'; - const currentDB = { id: 1, name: 'mathesar_tables' }; - commonDataScript.textContent = JSON.stringify({ - schemas: [], - databases: [currentDB], - current_db: currentDB.name, - }); - document.body.append(commonDataScript); -} - -function removeCommonDataScript() { - const commonDataScript = document.querySelector('#common-data'); - if (commonDataScript) { - commonDataScript.remove(); - } -} - -test('shows mathesar default text when rendered', async () => { - addCommonDataScript(); - const App = await import('../App.svelte'); - const { getAllByText } = render(App.default, {}); - expect(getAllByText('mathesar_tables').length).toBeGreaterThan(0); - removeCommonDataScript(); -}); diff --git a/mathesar_ui/src/component-library/button/Button.scss b/mathesar_ui/src/component-library/button/Button.scss index df1c5708eb..dd2ad2bb0a 100644 --- a/mathesar_ui/src/component-library/button/Button.scss +++ b/mathesar_ui/src/component-library/button/Button.scss @@ -6,12 +6,13 @@ color: inherit; font-family: inherit; font-size: inherit; + line-height: inherit; cursor: pointer; border-radius: 4px; box-shadow: #000 0 0 0 0, #000 0 0 0 0, rgba(0, 0, 0, 0.05) 0 1px 2px 0; font-weight: inherit; position: relative; - padding: 0.5em 0.5em; + padding: var(--input-padding); > * + * { margin-left: 0.25em; diff --git a/mathesar_ui/src/component-library/checkbox-group/CheckboxGroup.svelte b/mathesar_ui/src/component-library/checkbox-group/CheckboxGroup.svelte index 8f4c3a6ba3..d49b796e5a 100644 --- a/mathesar_ui/src/component-library/checkbox-group/CheckboxGroup.svelte +++ b/mathesar_ui/src/component-library/checkbox-group/CheckboxGroup.svelte @@ -25,6 +25,7 @@ optionToCompare: Option | undefined, selectedOption: Option | undefined, ) => boolean = (a, b) => a === b; + export let disabled = false; function handleChange(option: Option, checked: boolean) { if (checked) { @@ -39,6 +40,7 @@ {isInline} {options} {label} + {disabled} let:option let:disabled on:change diff --git a/mathesar_ui/src/component-library/common/actions/slider.ts b/mathesar_ui/src/component-library/common/actions/slider.ts new file mode 100644 index 0000000000..695a591db0 --- /dev/null +++ b/mathesar_ui/src/component-library/common/actions/slider.ts @@ -0,0 +1,151 @@ +import type { ActionReturn } from 'svelte/action'; + +interface Options { + /** + * This function must return the slider's numerical value when the user starts + * moving it. + */ + getStartingValue: () => number; + /** + * This function will be called with the updated value while the slider is + * moving. + */ + onMove?: (value: number) => void; + /** + * This function will be called when the user starts moving the slider. + */ + onStart?: () => void; + /** + * This function will be called with the final value when the user stops + * moving the slider. + */ + onStop?: (newValue: number) => void; + /** + * The minimum numerical value the slider can have. + * + * Defaults to `0`. + */ + min?: number; + /** + * The maximum numerical value the slider can have. + * + * Defaults to `Infinity`. + */ + max?: number; + /** + * Defaults to `'x'`. + */ + axis?: 'x' | 'y'; + /** + * When `false`, moving the slider leftwards or downwards will increase the + * value. + * + * When `true`, moving the slider rightwards or upwards will increase the + * value. + * + * Defaults to `false`. + */ + invert?: boolean; +} + +const defaults = { + onMove: () => {}, + onStart: () => {}, + onStop: () => {}, + min: 0, + max: Infinity, + axis: 'x', + invert: false, +} as const; + +function getFullDefaults(options: Options): Required { + return { ...defaults, ...options }; +} + +function isTouchEvent(e: MouseEvent | TouchEvent): e is TouchEvent { + return 'touches' in e; +} + +function getPosition(e: MouseEvent | TouchEvent, axis: 'x' | 'y') { + const singularEvent = isTouchEvent(e) ? e.touches[0] : e; + return axis === 'x' ? singularEvent.clientX : singularEvent.clientY; +} + +function disableSelect(event: Event) { + event.preventDefault(); +} + +/** + * This is a Svelte action that turns an element into a trigger which can be + * used to modify a numerical value via dragging the pointer. This action + * doesn't _do_ anything to the DOM node. It doesn't move the node or change any + * styles. It just binds the event listeners. In this sense, it's a pretty + * low-level action. But it can be used to construct more elaborate interfaces + * that rely on sliding. For example, a volume slider or a panel resizer. + * + * To use this action: + * + * 1. Provide a `getStartingValue` function so that the action knows the + * starting numerical value when the user grabs the trigger. + * 2. Provide an `onMove` function to update the value as the user moves. In the + * parent component, you can then use this value to update the DOM however + * you wish, potentially moving the trigger as the user updates the value. + * 1. Provide other options as necessary to customize the behavior. + */ +export default function slider( + node: HTMLElement, + options: Options, +): ActionReturn { + const opts = getFullDefaults(options); + let startingValue = 0; + let startingPosition = 0; + let value = 0; + + function setValue(v: number) { + value = v; + opts.onMove(value); + } + + function clamp(v: number) { + return Math.min(Math.max(v, opts.min), opts.max); + } + + function move(e: MouseEvent | TouchEvent) { + const sign = opts.invert ? -1 : 1; + const delta = getPosition(e, opts.axis) - startingPosition; + const newValue = clamp(startingValue + delta * sign); + setValue(newValue); + } + + function stop() { + opts.onStop(value); + window.removeEventListener('mousemove', move, true); + window.removeEventListener('touchmove', move, true); + window.removeEventListener('mouseup', stop, true); + window.removeEventListener('touchend', stop, true); + window.removeEventListener('touchcancel', stop, true); + window.removeEventListener('selectstart', disableSelect, true); + } + + function start(e: MouseEvent | TouchEvent) { + opts.onStart(); + startingValue = opts.getStartingValue(); + startingPosition = getPosition(e, opts.axis); + window.addEventListener('mousemove', move, true); + window.addEventListener('touchmove', move, true); + window.addEventListener('mouseup', stop, true); + window.addEventListener('touchend', stop, true); + window.addEventListener('touchcancel', stop, true); + window.addEventListener('selectstart', disableSelect, true); + } + + node.addEventListener('mousedown', start); + node.addEventListener('touchstart', start, { passive: false }); + + return { + destroy() { + node.removeEventListener('mousedown', start); + node.removeEventListener('touchstart', start); + }, + }; +} diff --git a/mathesar_ui/src/component-library/common/styles/components/input.scss b/mathesar_ui/src/component-library/common/styles/components/input.scss index 640accbf86..572ced8055 100644 --- a/mathesar_ui/src/component-library/common/styles/components/input.scss +++ b/mathesar_ui/src/component-library/common/styles/components/input.scss @@ -4,7 +4,7 @@ border-radius: 0.285rem; background: #fff; margin: 0; - padding: 6px 8px; + padding: var(--input-padding); line-height: inherit; font-family: inherit; font-size: inherit; diff --git a/mathesar_ui/src/component-library/common/styles/variables.scss b/mathesar_ui/src/component-library/common/styles/variables.scss index 0edf1d187c..594a046992 100644 --- a/mathesar_ui/src/component-library/common/styles/variables.scss +++ b/mathesar_ui/src/component-library/common/styles/variables.scss @@ -86,4 +86,6 @@ --border-radius-m: 0.285rem; //4px --border-radius-l: 0.571rem; //8px --border-radius-xl: 1.142rem; //16px + + --input-padding: 0.5em; } diff --git a/mathesar_ui/src/component-library/common/utils/ImmutableSet.ts b/mathesar_ui/src/component-library/common/utils/ImmutableSet.ts index 0f5d122a90..609c156ecd 100644 --- a/mathesar_ui/src/component-library/common/utils/ImmutableSet.ts +++ b/mathesar_ui/src/component-library/common/utils/ImmutableSet.ts @@ -1,4 +1,4 @@ -export default class ImmutableSet { +export default class ImmutableSet { private set: Set; constructor(i?: Iterable) { diff --git a/mathesar_ui/src/component-library/common/utils/ReductionStore.ts b/mathesar_ui/src/component-library/common/utils/ReductionStore.ts new file mode 100644 index 0000000000..93a4cd2a58 --- /dev/null +++ b/mathesar_ui/src/component-library/common/utils/ReductionStore.ts @@ -0,0 +1,43 @@ +import { + derived, + type Readable, + type Subscriber, + type Unsubscriber, +} from 'svelte/store'; +import { collapse, ensureReadable, unite } from './storeUtils'; +import WritableSet from './WritableSet'; + +/** + * A store that holds a dynamically writable collection of readable input stores + * and reduces all those input values down to a single readable output value. + */ +export default class ReductionStore implements Readable { + private inputs: WritableSet>; + + private output: Readable; + + constructor(reduce: (inputs: Input[]) => Output) { + this.inputs = new WritableSet(); + this.output = collapse( + derived(this.inputs, (inputs) => derived(unite([...inputs]), reduce)), + ); + } + + /** + * Add a new input to be incorporated into the reduced value of this store. + * + * @returns a function to unregister the input. + */ + registerInput(input: Readable | Input): () => void { + const readableInput = ensureReadable(input); + this.inputs.add(readableInput); + return () => this.inputs.delete(readableInput); + } + + subscribe( + run: Subscriber, + invalidate?: ((value?: Output | undefined) => void) | undefined, + ): Unsubscriber { + return this.output.subscribe(run, invalidate); + } +} diff --git a/mathesar_ui/src/component-library/common/utils/WritableSet.ts b/mathesar_ui/src/component-library/common/utils/WritableSet.ts index 4a132db90b..e1eb7ea8fa 100644 --- a/mathesar_ui/src/component-library/common/utils/WritableSet.ts +++ b/mathesar_ui/src/component-library/common/utils/WritableSet.ts @@ -7,7 +7,7 @@ import type { import { writable, get, derived } from 'svelte/store'; import ImmutableSet from './ImmutableSet'; -export default class WritableSet +export default class WritableSet implements Readable> { values: Writable>; diff --git a/mathesar_ui/src/component-library/common/utils/storeUtils.ts b/mathesar_ui/src/component-library/common/utils/storeUtils.ts index a8e2a8d364..52b60dacf1 100644 --- a/mathesar_ui/src/component-library/common/utils/storeUtils.ts +++ b/mathesar_ui/src/component-library/common/utils/storeUtils.ts @@ -1,5 +1,10 @@ -import type { Readable } from 'svelte/store'; -import { readable, derived } from 'svelte/store'; +import { + type Readable, + type Subscriber, + type Unsubscriber, + readable, + derived, +} from 'svelte/store'; export function isReadable(v: Readable | T): v is Readable { return ( @@ -55,3 +60,48 @@ export function unite(stores: Readable[]): Readable { return () => unsubscribers.forEach((unsubscriber) => unsubscriber()); }); } + +type StoreValue = S extends Readable ? T : never; + +/** + * This utility function allows you to set up `subscribe` functions on _other_ + * stores while ensuring that the corresponding unsubscriber functions will be + * automatically run when all subscribers unsubscribe from the store returned + * from this function. The use case for this function is rather esoteric, but it + * helps avoid memory leaks when working with stores at a low level outside + * Svelte components. + */ +export function withSideChannelSubscriptions>( + store: Store, + subscriptionCreators: (() => Unsubscriber)[], +): Store { + let childSubscriberCount = 0; + let sideChannelUnsubscribers: Unsubscriber[] = []; + + function subscribe(subscriber: Subscriber>) { + const unsubscribeFromParent = store.subscribe( + subscriber as Subscriber, + ); + childSubscriberCount += 1; + if (childSubscriberCount === 1) { + // The first subscriber has subscribed, so we need to subscribe to the + // side channel subscriptions. + sideChannelUnsubscribers = subscriptionCreators.map((h) => h()); + } + return () => { + unsubscribeFromParent(); + childSubscriberCount -= 1; + if (childSubscriberCount === 0) { + // The last subscriber has unsubscribed, so we need to unsubscribe from + // the side channel subscriptions. + sideChannelUnsubscribers.forEach((u) => u()); + sideChannelUnsubscribers = []; + } + }; + } + + return { + ...store, + subscribe, + }; +} diff --git a/mathesar_ui/src/component-library/confirmation/Confirmation.svelte b/mathesar_ui/src/component-library/confirmation/Confirmation.svelte index 5d96de3797..a4aac08434 100644 --- a/mathesar_ui/src/component-library/confirmation/Confirmation.svelte +++ b/mathesar_ui/src/component-library/confirmation/Confirmation.svelte @@ -6,7 +6,7 @@ export let controller: ConfirmationController; - $: ({ modal, confirmationProps, resolve } = controller); + $: ({ modal, confirmationProps, resolve, canProceed } = controller); $: ({ title, body, @@ -67,5 +67,6 @@ {proceedButton} onCancel={handleCancelButton} onProceed={handleProceedButton} + canProceed={$canProceed} /> diff --git a/mathesar_ui/src/component-library/confirmation/ConfirmationController.ts b/mathesar_ui/src/component-library/confirmation/ConfirmationController.ts index b728de0d43..2d6a52e2d6 100644 --- a/mathesar_ui/src/component-library/confirmation/ConfirmationController.ts +++ b/mathesar_ui/src/component-library/confirmation/ConfirmationController.ts @@ -40,6 +40,8 @@ export class ConfirmationController { resolve = writable<(isConfirmed: boolean) => void>(() => {}); + canProceed = writable(true); + constructor( modalController: ModalController, initialConfirmationProps: ConfirmationProps, @@ -72,6 +74,7 @@ export function makeConfirm({ async function confirm(props: Partial) { return new Promise((resolve) => { controller.resolve.set(resolve); + controller.canProceed.set(true); controller.confirmationProps.set({ ...fullDefaultConfirmationProps, ...props, diff --git a/mathesar_ui/src/component-library/dropdown-menu/DropdownMenu.svelte b/mathesar_ui/src/component-library/dropdown-menu/DropdownMenu.svelte index 82623e7130..3785e01ee2 100644 --- a/mathesar_ui/src/component-library/dropdown-menu/DropdownMenu.svelte +++ b/mathesar_ui/src/component-library/dropdown-menu/DropdownMenu.svelte @@ -1,12 +1,16 @@ - + diff --git a/mathesar_ui/src/component-library/index.ts b/mathesar_ui/src/component-library/index.ts index 9cdb1a4d3a..5662da11f6 100644 --- a/mathesar_ui/src/component-library/index.ts +++ b/mathesar_ui/src/component-library/index.ts @@ -6,6 +6,7 @@ export { getPageCount as getPaginationPageCount } from './pagination/paginationU export { default as clickOffBounds } from './common/actions/clickOffBounds'; export { default as popper } from './common/actions/popper'; export { default as portal } from './common/actions/portal'; +export { default as slider } from './common/actions/slider'; // Simple Components export { default as AnchorButton } from './anchorButton/AnchorButton.svelte'; @@ -45,6 +46,7 @@ export { default as TextInput } from './text-input/TextInput.svelte'; export { default as TextInputWithPrefix } from './text-input/TextInputWithPrefix.svelte'; export { default as Truncate } from './truncate/Truncate.svelte'; export { default as Tooltip } from './tooltip/Tooltip.svelte'; +export { default as WithPanel } from './with-panel/WithPanel.svelte'; // Compound Components (Ordered) export { DatePicker, InlineDateTimePicker } from './date-time-picker'; diff --git a/mathesar_ui/src/component-library/label/Label.svelte b/mathesar_ui/src/component-library/label/Label.svelte index de3c03d451..c7c8d16b70 100644 --- a/mathesar_ui/src/component-library/label/Label.svelte +++ b/mathesar_ui/src/component-library/label/Label.svelte @@ -31,6 +31,7 @@ -->