-
Notifications
You must be signed in to change notification settings - Fork 58
/
bench_conv.cpp
345 lines (307 loc) · 11.4 KB
/
bench_conv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <algorithm>
#include <random>
#include <cstdint>
#include <complex>
#include "papi_perf_counter.h"
//#if defined(HAVE_MIPP) && !defined(NO_MIPP)
#if defined(HAVE_MIPP)
#include <mipp.h>
#define MIPP_VECTOR mipp::vector
#else
#define MIPP_VECTOR std::vector
#endif
#include "pf_conv_dispatcher.h"
#include "pf_conv.h"
#define TEST_WITH_MIN_LEN 0
MIPP_VECTOR<float> generate_rng_vec(int M, int N = -1, int seed_value = 1)
{
MIPP_VECTOR<float> v(N < 0 ? M : N);
std::mt19937 g;
g.seed(seed_value);
constexpr float scale = 1.0F / (1.0F + float(INT_FAST32_MAX));
for (int k = 0; k < M; ++k)
v[k] = float(int_fast32_t(g())) * scale;
for (int k = M; k < N; ++k)
v[k] = 0.0F;
return v;
}
int bench_oop_core(
const conv_f_ptrs & conv_arch,
const float * signal, const int sz_signal,
const float * filter, const int sz_filter,
const int blockLen,
float * y
)
{
conv_buffer_state state;
const auto conv_oop = conv_arch.fp_conv_float_oop;
int n_out_sum = 0;
state.offset = 0;
state.size = 0;
papi_perf_counter perf_counter(1);
for (int off = 0; off + blockLen <= sz_signal; off += blockLen)
{
state.size += blockLen;
int n_out = conv_oop(signal, &state, filter, sz_filter, y);
n_out_sum += n_out;
}
return n_out_sum;
}
int bench_inplace_core(
const conv_f_ptrs & conv_arch,
float * signal, const int sz_signal,
const float * filter, const int sz_filter,
const int blockLen
)
{
conv_buffer_state state;
const auto conv_inplace = conv_arch.fp_conv_float_inplace;
int n_out_sum = 0;
state.offset = 0;
state.size = 0;
papi_perf_counter perf_counter(1);
for (int off = 0; off + blockLen <= sz_signal; off += blockLen)
{
state.size += blockLen;
int n_out = conv_inplace(signal, &state, filter, sz_filter);
n_out_sum += n_out;
}
return n_out_sum;
}
int bench_oop(
const conv_f_ptrs & conv_arch,
float * buffer,
const float * signal, const int sz_signal,
const float * filter, const int sz_filter,
const int blockLen,
float * y
)
{
conv_buffer_state state;
const auto conv_oop = conv_arch.fp_conv_float_oop;
const auto move_rest = conv_arch.fp_conv_float_move_rest;
int n_out_sum = 0;
state.offset = 0;
state.size = 0;
papi_perf_counter perf_counter(1);
for (int off = 0; off + blockLen <= sz_signal; off += blockLen)
{
move_rest(buffer, &state);
//memcpy(buffer+state.size, &s[off], B * sizeof(s[0]));
std::copy(&signal[off], &signal[off+blockLen], buffer+state.size);
state.size += blockLen;
int n_out = conv_oop(buffer, &state, filter, sz_filter, &y[n_out_sum]);
n_out_sum += n_out;
}
return n_out_sum;
}
int bench_cx_real_oop(
const conv_f_ptrs & conv_arch,
complexf * buffer,
const float * signal_re, const int sz_signal_re,
const float * filter, const int sz_filter,
const int blockLen,
float * y_re
)
{
conv_buffer_state state;
const auto conv_oop = conv_arch.fp_conv_cplx_float_oop;
const auto move_rest = conv_arch.fp_conv_cplx_move_rest;
// interpret buffer, signal and output vector y as complex data
complexf * y = reinterpret_cast<complexf *>(y_re);
const complexf * signal = reinterpret_cast<const complexf *>(signal_re);
const int sz_signal = sz_signal_re / 2;
int n_out_sum = 0;
state.offset = 0;
state.size = 0;
papi_perf_counter perf_counter(1);
for (int off = 0; off + blockLen <= sz_signal; off += blockLen)
{
move_rest(buffer, &state);
//memcpy(buffer+state.size, &s[off], B * sizeof(s[0]));
std::copy(&signal[off], &signal[off+blockLen], &buffer[state.size]);
state.size += blockLen;
int n_out = conv_oop(buffer, &state, filter, sz_filter, &y[n_out_sum]);
n_out_sum += n_out;
}
return n_out_sum;
}
int main(int argc, char *argv[])
{
// cli defaults:
// process up to 64 MSample (512 MByte) in blocks of 1 kSamples (=64 kByte) with filterLen 128
int arch = 0, N = 64 * 1024 * 1024;
int filterLen = 128, blockLen = 1024;
int seed_sig = 1, seed_filter = 2;
bool verbose = false, exitFromUsage = false, showUsage = (argc <= 1);
for (int i = 1; i < argc; ++i)
{
if (i+1 < argc && !strcmp(argv[i], "-a"))
arch = atoi(argv[++i]);
else if (i+1 < argc && !strcmp(argv[i], "-n"))
N = atoi(argv[++i]) * 1024 * 1024;
else if (i+1 < argc && !strcmp(argv[i], "-f"))
filterLen = atoi(argv[++i]);
else if (i+1 < argc && !strcmp(argv[i], "-b"))
blockLen = atoi(argv[++i]);
else if (i+1 < argc && !strcmp(argv[i], "-ss"))
seed_sig = atoi(argv[++i]);
else if (i+1 < argc && !strcmp(argv[i], "-sf"))
seed_filter = atoi(argv[++i]);
else if (!strcmp(argv[i], "-v"))
verbose = true;
else if (!strcmp(argv[i], "-h"))
showUsage = exitFromUsage = true;
else
fprintf(stderr, "warning: ignoring/skipping unknown option '%s'\n", argv[i]);
}
int num_arch = 0;
const ptr_to_conv_f_ptrs * conv_arch_ptrs = get_all_conv_arch_ptrs(&num_arch);
if (verbose)
{
fprintf(stderr, "num_arch is %d\n", num_arch);
for (int a = 0; a < num_arch; ++a)
if (conv_arch_ptrs[a])
fprintf(stderr, " arch %d is '%s'\n", a, conv_arch_ptrs[a]->id );
else
fprintf(stderr, " arch %d is nullptr !!!\n", a );
fprintf(stderr, "\n");
}
if ( arch < 0 || arch >= num_arch || !blockLen || !N || !filterLen || showUsage )
{
fprintf(stderr, "%s [-v] [-a <arch>] [-n <total # of MSamples> [-f <filter length>] [-b <blockLength in samples>]\n", argv[0]);
fprintf(stderr, " [-ss <random seed for signal>] [-sf <random seed for filter coeffs>]\n");
fprintf(stderr, "arch is one of:");
for (int a = 0; a < num_arch; ++a)
if (conv_arch_ptrs[a])
fprintf(stderr, " %d for '%s'%s", a, conv_arch_ptrs[a]->id, (a < num_arch-1 ? ",":"") );
fprintf(stderr, "\n");
if ( exitFromUsage || !blockLen || !N || !filterLen || arch < 0 || arch >= num_arch )
return 0;
}
if (verbose)
{
#ifdef HAVE_PAPI
fprintf(stderr, "PAPI is available\n");
#else
fprintf(stderr, "PAPI is NOT available!\n");
#endif
}
#if !defined(HAVE_MIPP)
fprintf(stderr, "MIPP is NOT available!\n");
#endif
//int float_simd_size[num_arch];
int max_simd_size = -1;
for (int a = 0; a < num_arch; ++a)
{
if (conv_arch_ptrs[a])
{
const int sz = conv_arch_ptrs[a]->fp_conv_float_simd_size();
//float_simd_size[a] = sz;
if (max_simd_size < sz)
max_simd_size = sz;
if (verbose)
fprintf(stderr, "float simd size for '%s': %d\n", conv_arch_ptrs[a]->id, sz);
}
//else
// float_simd_size[a] = 0;
}
//const int max_simd_size = *std::max_element( &float_simd_size[0], &float_simd_size[num_arch] );
if (verbose)
fprintf(stderr, "max float simd size: %d\n", max_simd_size);
#if TEST_WITH_MIN_LEN
filterLen = 2;
#endif
// round up filter length
filterLen = max_simd_size * ( ( filterLen + max_simd_size -1 ) / max_simd_size );
#if TEST_WITH_MIN_LEN
blockLen = 1;
N = 2 * (3 + filterLen); // produce 3+1 samples
#endif
if (!conv_arch_ptrs[arch])
{
fprintf(stderr, "Error: architecture %d is NOT available!\n", arch);
return 1;
}
const conv_f_ptrs & conv_arch = *conv_arch_ptrs[arch];
if (verbose)
fprintf(stderr, "arch is using mipp: %d\n", conv_arch.using_mipp);
fprintf(stderr, "processing N = %d MSamples with block length of %d samples with filter length %d taps on '%s'\n",
N / (1024 * 1024), blockLen, filterLen, conv_arch.id );
MIPP_VECTOR<float> s = generate_rng_vec(N + 1, N + 1, seed_sig);
MIPP_VECTOR<float> y(N + 1, 0.0F);
MIPP_VECTOR<float> filter = generate_rng_vec(filterLen, filterLen, seed_filter);
MIPP_VECTOR<float> buffer(blockLen + filterLen + 1, 0.0F);
MIPP_VECTOR<complexf> buffer_cx(blockLen + filterLen + 1);
#if 1 && TEST_WITH_MIN_LEN
for (int k = 0; k < N; ++k)
s[k] = (k+1);
for (int k = 0; k < filterLen; ++k)
filter[k] = (k+1);
#endif
s[N] = 123.0F;
y[N] = 321.0F;
buffer[blockLen + filterLen] = 789.0F;
buffer_cx[blockLen + filterLen].i = 987.0F;
fprintf(stderr, "\nrunning out-of-place convolution core for '%s':\n", conv_arch.id);
int n_oop_out = bench_oop_core(conv_arch, s.data(), N, filter.data(), filterLen, blockLen, y.data());
fprintf(stderr, "oop produced %d output samples\n", n_oop_out);
#if TEST_WITH_MIN_LEN
for (int k = 0; k < n_oop_out; ++k )
fprintf(stderr, "y[%2d] = %g\n", k, y[k]);
fprintf(stderr, "\n");
#endif
fprintf(stderr, "\nrunning out-of-place convolution for '%s':\n", conv_arch.id);
n_oop_out = bench_oop(conv_arch, buffer.data(), s.data(), N, filter.data(), filterLen, blockLen, y.data());
fprintf(stderr, "oop produced %d output samples\n", n_oop_out);
assert(s[N] == 123.0F);
assert(y[N] == 321.0F);
assert(buffer[blockLen + filterLen] == 789.0F);
assert(buffer_cx[blockLen + filterLen].i == 987.0F);
#if TEST_WITH_MIN_LEN
for (int k = 0; k < n_oop_out; ++k )
fprintf(stderr, "y[%2d] = %g\n", k, y[k]);
fprintf(stderr, "\n");
#endif
fprintf(stderr, "\nrunning out-of-place complex/real convolution for '%s':\n", conv_arch.id);
n_oop_out = bench_cx_real_oop(conv_arch, buffer_cx.data(), s.data(), N, filter.data(), filterLen, blockLen, y.data());
fprintf(stderr, "oop produced %d output samples\n", n_oop_out);
assert(s[N] == 123.0F);
assert(y[N] == 321.0F);
assert(buffer[blockLen + filterLen] == 789.0F);
assert(buffer_cx[blockLen + filterLen].i == 987.0F);
#if TEST_WITH_MIN_LEN
fprintf(stderr, "complex output (%d complex samples):\n", n_oop_out);
for (int k = 0; k < n_oop_out; ++k )
fprintf(stderr, "y[%2d] = %g %+g * i\n", k, y[2*k], y[2*k+1]);
fprintf(stderr, "\n");
const std::complex<float> * sc = reinterpret_cast< std::complex<float>* >( s.data() );
const int Nc = N /2;
fprintf(stderr, "reference with std::complex<float>:\n");
for (int off = 0; off +filterLen <= Nc; ++off )
{
std::complex<float> sum(0.0F, 0.0F);
for (int k=0; k < filterLen; ++k)
sum += sc[off+k] * filter[k];
fprintf(stderr, "yv[%2d] = %g %+g * i\n", off, sum.real(), sum.imag() );
}
#endif
fprintf(stderr, "\nrunning inplace convolution core for '%s':\n", conv_arch.id);
int n_inp_out = bench_inplace_core(conv_arch, s.data(), N, filter.data(), filterLen, blockLen);
fprintf(stderr, "inp produced %d output samples\n", n_inp_out);
assert(s[N] == 123.0F);
assert(y[N] == 321.0F);
assert(buffer[blockLen + filterLen] == 789.0F);
assert(buffer_cx[blockLen + filterLen].i == 987.0F);
#if TEST_WITH_MIN_LEN
for (int k = 0; k < n_inp_out; ++k )
fprintf(stderr, "y[%2d] = %g\n", k, s[k]);
fprintf(stderr, "\n");
#endif
fprintf(stderr, "\n");
return 0;
}