diff --git a/README.md b/README.md index c7ae8215c..3e051a5a9 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,38 @@ +# Exx-Symmetry +记一次完不成的约定,一个永不再问的问题。 +> ——那等我解决了symmetry=1的问题再来问你 +> +> ——那希望我到时能有别的回答... +> +> ——嗯,拭目以待 + + +本仓库是尝试为ABACUS中的EXX添加symmetry==1的支持时的试验代码。 + +--- + +尝试用群论给出的波函数关系还原出DM(R): +$$S(gk)=\ket{\phi_{gk}}\bra{\phi_{gk}}=S^T(gk)\\ +S(g,k)\equiv\ket{\phi_{gk}}\bra{g\phi_{k}}$$ +群论给出的波函数关系:$$c^T_{gk}\ket{\phi_{gk}}=\pm c^T_k\ket{g\phi_k}$$ +右乘行向量$\bra{\phi_{gk}}$得到$$c^T_{gk}S^T(gk)=c^T_kS^T(g,k)$$ +两边转置得$$S(g,k)c_k=S(gk)c_{gk}, c_k=S^{-1}(g,k)S(gk)c_{gk}$$ + + +然而,实现出$S(g,k)$,发现$k_1\neq k_2$时是零矩阵... +$$S_{\mu\nu}(g,k)=\int{}d\mathbf{r} +\sum_\mathbf{R_1}\phi_\mu(\mathbf{r}-\tau_\mu-\mathbf{R}_1)e^{-i\alpha\mathbf{k}\cdot\mathbf{R_1}} +\sum_\mathbf{R_2}\phi_{\nu}(\mathbf{r}-\tau_{\nu}-\mathbf{R}_2)e^{i\mathbf{k}\cdot\mathbf{R}_2}$$ +——$\ket{\phi_{gk}}$和$\ket{g\phi_k}$是正交的?! + +那么每个k点的信息都不可或缺,symmetry=1无解。 + + +## However, something may still be useful: +- calculate kstar +- `Symmetry_Basic::atom_ordering_new`: preserve index for atom-map +- doc: https://xmywuqhxb0.feishu.cn/wiki/A7ETwz0wSiOZILk8yEac6IWGnWg +---