diff --git a/Pdl/DagTableau.lean b/Pdl/DagTableau.lean index 8a383fa..aaa6faa 100644 --- a/Pdl/DagTableau.lean +++ b/Pdl/DagTableau.lean @@ -8,8 +8,8 @@ import Pdl.Star import Pdl.Closure inductive DagFormula : Type - | dag : Program → Formula → DagFormula - | box : Program → DagFormula → DagFormula + | dag : Program → Formula → DagFormula -- ⌈a†⌉f + | box : Program → DagFormula → DagFormula -- ⌈a⌉df deriving Repr, DecidableEq @[simp] @@ -332,7 +332,7 @@ decreasing_by simp_wf; assumption theorem dagEnd_subset_next : Ω ∈ dagNext Γ → dagEndNodes Ω ⊆ dagEndNodes Γ := by - sorry + sorry -- medium? -- A normal successor is an endNode. theorem dagNormal_is_dagEnd @@ -340,7 +340,7 @@ theorem dagNormal_is_dagEnd (Γ_normal : Γ.2 = none) : (Γ.1 ∈ dagEndNodes S) := by - sorry + sorry -- should be easy theorem dagEnd_subset_trf {Ω Γ} : Ω ∈ dagNextTransRefl Γ → dagEndNodes Ω ⊆ dagEndNodes Γ := by @@ -420,3 +420,4 @@ decreasing_by simp_wf; assumption theorem starSoundness (M : KripkeModel W) (v : W) : (M, v) ⊨ S ↔ ∃ Γ ∈ boxDagEndNodes S, (M, v) ⊨ Γ := by sorry + -- TODO: this is not true, needs to be adjusted or done in Tableau.localRuleTruth dircetly, like in the diamond case.