Skip to content

Latest commit

 

History

History
124 lines (113 loc) · 3.45 KB

Covariance_Matrix.md

File metadata and controls

124 lines (113 loc) · 3.45 KB

Covariance Matrix

形象理解协方差矩阵 - 知乎 (zhihu.com)

设$\mathbf{x}=[x_1,\ldots,x_n]^T$,其协方差矩阵 $C=(c_{ij})=E[(x_i-E(x_i))(x_j-E(x_j))]$. 证明经过线性变换$A\mathbf{x}$后,$A\mathbf{x}$的协方差矩阵为$\overline{C}=ACA^T$

协方差矩阵更加简洁的定义就是 $$ C=E[(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^T]=\begin{bmatrix} E[(x_1-E(x_1))(x_1-E(x_1))] & E[(x_1-E(x_1))(x_2-E(x_2))] & \cdots & E[(x_1-E(x_1))(x_n-E(x_n))]\ E[(x_2-E(x_2))(x_1-E(x_1))] & E[(x_2-E(x_2))(x_2-E(x_2))] & \cdots & E[(x_2-E(x_2))(x_n-E(x_n))]\ \vdots & \vdots & \ddots & \vdots\ E[(x_n-E(x_n))(x_1-E(x_1))] & E[(x_n-E(x_n))(x_2-E(x_2))] & \cdots & E[(x_n-E(x_n))(x_n-E(x_n))]\ \end{bmatrix} $$ 符号描述 $$ \mathbf{x}=\begin{bmatrix} x_1\ x_2\ \vdots \ x_n \end{bmatrix} \quad E(\mathbf{x})=\begin{bmatrix} E(x_1)\ E(x_2)\ \vdots \ E(x_n) \end{bmatrix} \quad A= \begin{bmatrix} \vec{a}_1^T\ \vec{a}_2^T\ \vdots \ \vec{a}_m^T \end{bmatrix}

\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n}\ a_{21} & a_{22} & \cdots & a_{2n}\ \vdots & \vdots & \ddots & \vdots\ a_{m1} & a_{m2} & \cdots & a_{mn}\ \end{bmatrix} \quad \vec{a}i^T = \begin{bmatrix} a{i1} \ a_{i2} \ \vdots \ a_{in}
\end{bmatrix} $$ 证明: $$ A\mathbf{x}= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n}\ a_{21} & a_{22} & \cdots & a_{2n}\ \vdots & \vdots & \ddots & \vdots\ a_{m1} & a_{m2} & \cdots & a_{mn}\ \end{bmatrix} \begin{bmatrix} x_1\ x_2\ \vdots \ x_n \end{bmatrix}

\begin{bmatrix} \vec{a}_1^T\ \vec{a}_2^T\ \vdots \ \vec{a}_m^T \end{bmatrix} \mathbf{x}

\begin{bmatrix} \vec{a}1^T\mathbf{x} \ \vec{a}2^T\mathbf{x} \ \vdots \ \vec{a}m^T\mathbf{x} \end{bmatrix}{m\times1} $$ $A\mathbf{x}$的协方差矩阵的元素等于 $$ \begin{split} \bar{c}{ij}=E[(\vec{a}i^T\mathbf{x}-E(\vec{a}i^T\mathbf{x}))(\vec{a}j^T\mathbf{x}-E(\vec{a}j^T\mathbf{x}))] \end{split} $$ 由于$E(\vec{a}i^T\mathbf{x})=E(a{i1}x{1}+a{i2}x{2}+\cdots +a{in}x{n})=\vec{a}i^TE(\mathbf{x})$ $$ \begin{split} \bar{c}{ij}&=E[(\vec{a}_i^T\mathbf{x}-E(\vec{a}_i^T\mathbf{x}))(\vec{a}_j^T\mathbf{x}-E(\vec{a}_j^T\mathbf{x}))]\ &= E[(\vec{a}_i^T\mathbf{x}-\vec{a}_i^TE(\mathbf{x}))(\vec{a}_j^T\mathbf{x}-\vec{a}_j^TE(\mathbf{x}))]\ &= E[\vec{a}_i^T(\mathbf{x}-E(\mathbf{x}))\vec{a}_j^T(\mathbf{x}-E(\mathbf{x}))] \end{split} $$ $\vec{a}_j^T(\mathbf{x}-E(\mathbf{x}))$是一个标量,因此$\vec{a}_j^T(\mathbf{x}-E(\mathbf{x}))=(\mathbf{x}-E(\mathbf{x}))^T\vec{a}j$ $$ \begin{split} \overline{c}{ij} &= E[\vec{a}_i^T(\mathbf{x}-E(\mathbf{x}))\vec{a}_j^T(\mathbf{x}-E(\mathbf{x}))]\ &= E[\vec{a}_i^T(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^T\vec{a}_j]\ &= \vec{a}_i^TE[(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^T]\vec{a}j\ \end{split} $$ 因为 $$ C=E[(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^T] $$ 故 $$ \begin{split} \overline{c}{ij} &= \vec{a}_i^TC\vec{a}_j\ \end{split} $$ 那么就有 $$ \overline{C}= \begin{bmatrix} \vec{a}_1^TC\vec{a}_1 & \vec{a}_1^TC\vec{a}_2 & \cdots & \vec{a}_1^TC\vec{a}_m \ \vec{a}_2^TC\vec{a}_1 & \vec{a}_2^TC\vec{a}_2 & \cdots & \vec{a}_2^TC\vec{a}_m \ \vdots & \vdots & \ddots & \vdots\ \vec{a}_m^TC\vec{a}_1 & \vec{a}_m^TC\vec{a}_2 & \cdots & \vec{a}_m^TC\vec{a}_m \ \end{bmatrix} =\begin{bmatrix} \vec{a}_1^T\ \vec{a}_2^T\ \vdots \ \vec{a}_m^T \end{bmatrix} C \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_m \end{bmatrix}

ACA^T $$