diff --git a/README.md b/README.md index 488402ea..43df8c14 100644 --- a/README.md +++ b/README.md @@ -118,7 +118,7 @@ python train.py --config-file configs/vgg_ssd300_voc0712.yaml ```bash # for example, train SSD300 with 4 GPUs: export NGPUS=4 -python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py --config-file configs/vgg_ssd300_voc0712.yaml +python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py --config-file configs/vgg_ssd300_voc0712.yaml SOLVER.WARMUP_FACTOR 0.03333 SOLVER.WARMUP_ITERS 1000 ``` The configuration files that I provide assume that we are running on single GPU. When changing number of GPUs, hyper-parameter (lr, max_iter, ...) will also changed according to this paper: [Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677).