-
Notifications
You must be signed in to change notification settings - Fork 15
/
diffusion_reaction_inverse.py
188 lines (133 loc) · 4.46 KB
/
diffusion_reaction_inverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_bvp
import sys
import re
import deepxde as dde
from deepxde.backend import tf
def k(x):
return 0.1 + np.exp(-0.5 * (x - 0.5) ** 2 / 0.15 ** 2)
def fun(x, y):
return np.vstack((y[1], 100 * (k(x) * y[0] + np.sin(2 * np.pi * x))))
def bc(ya, yb):
return np.array([ya[0], yb[0]])
a = np.linspace(0, 1, 1000)
b = np.zeros((2, a.size))
res = solve_bvp(fun, bc, a, b)
def sol(x):
return res.sol(x)[0]
def du(x):
return res.sol(x)[1]
# PINN
l = 0.01
def gen_traindata(num):
xvals = np.linspace(0, 1, num)
yvals = sol(xvals)
return np.reshape(xvals, (-1, 1)), np.reshape(yvals, (-1, 1))
def output_transform(x, y):
return tf.concat(
(tf.math.tanh(x) * tf.math.tanh(1 - x) * y[:, 0:1], y[:, 1:2]), axis=1
)
geom = dde.geometry.Interval(0, 1)
ob_x, ob_u = gen_traindata(8)
observe_u = dde.PointSetBC(ob_x, ob_u, component=0)
bc = dde.DirichletBC(geom, sol, lambda _, on_boundary: on_boundary, component=0)
def pde(x, y):
u = y[:, 0:1]
k = y[:, 1:2]
du_xx = dde.grad.hessian(y, x, component=0)
return l * du_xx - k * u - tf.sin(2 * np.pi * x)
data = dde.data.PDE(
geom,
pde,
bcs=[bc, observe_u],
num_domain=8,
num_boundary=2,
train_distribution="uniform",
num_test=1000,
)
net = dde.maps.PFNN([1, [20, 20], [20, 20], [20, 20], 2], "tanh", "Glorot uniform")
PINNmodel = dde.Model(data, net)
PINNmodel.compile("adam", lr=0.0001, metrics=[])
losshistory, train_state = PINNmodel.train(epochs=200000, callbacks=[])
dde.saveplot(losshistory, train_state, issave=True, isplot=False)
# gPINN
l = 0.01
def gen_traindata(num):
xvals = np.linspace(0, 1, num)
yvals = sol(xvals)
return np.reshape(xvals, (-1, 1)), np.reshape(yvals, (-1, 1))
def output_transform(x, y):
return tf.concat((x * (1 - x) * y[:, 0:1], y[:, 1:2]), axis=1)
geom = dde.geometry.Interval(0, 1)
ob_x, ob_u = gen_traindata(8)
observe_u = dde.PointSetBC(ob_x, ob_u, component=0)
bc = dde.DirichletBC(geom, sol, lambda _, on_boundary: on_boundary, component=0)
def pde(x, y):
u = y[:, 0:1]
k = y[:, 1:2]
du_x = dde.grad.jacobian(y, x, i=0)
du_xx = dde.grad.hessian(y, x, component=0)
du_xxx = dde.grad.jacobian(du_xx, x)
dk_x = dde.grad.jacobian(y, x, i=1)
return [
l * du_xx - k * u - tf.sin(2 * np.pi * x),
l * du_xxx - k * du_x - u * dk_x - 2 * np.pi * tf.cos(2 * np.pi * x),
]
data = dde.data.PDE(
geom,
pde,
bcs=[bc, observe_u],
num_domain=8,
num_boundary=2,
train_distribution="uniform",
num_test=1000,
)
net = dde.maps.PFNN([1, [20, 20], [20, 20], [20, 20], 2], "tanh", "Glorot uniform")
gPINNmodel = dde.Model(data, net)
gPINNmodel.compile("adam", lr=0.0001, metrics=[], loss_weights=[1, 0.01, 1, 1])
losshistory, train_state = gPINNmodel.train(epochs=200000, callbacks=[])
dde.saveplot(losshistory, train_state, issave=True, isplot=False)
# plots
plt.rcParams.update({"font.size": 16})
x = geom.uniform_points(1000)
plt.figure()
plt.plot(x, sol(x), label="Exact", color="black")
plt.plot(x, PINNmodel.predict(x)[:, 0], label="PINN", linestyle="dashed", color="blue")
plt.plot(x, gPINNmodel.predict(x)[:, 0], label="gPINN", linestyle="dashed", color="red")
x = geom.uniform_points(8)
plt.plot(x, sol(x), label="Observed", color="black", marker="s", linestyle="none")
plt.legend(frameon=False)
plt.ylabel("u")
plt.xlabel("x")
x = geom.uniform_points(1000)
plt.figure()
plt.plot(x, k(x), label="Exact", color="black")
plt.plot(x, PINNmodel.predict(x)[:, 1], label="PINN", linestyle="dashed", color="blue")
plt.plot(x, gPINNmodel.predict(x)[:, 1], label="gPINN", linestyle="dashed", color="red")
plt.legend(frameon=False)
plt.ylabel("K")
plt.xlabel("x")
plt.figure()
plt.plot(x, du(x), label="Exact", color="black")
plt.plot(
x,
PINNmodel.predict(x, operator=lambda x, y: dde.grad.jacobian(y, x)),
label="PINN",
linestyle="dashed",
color="blue",
)
plt.plot(
x,
gPINNmodel.predict(x, operator=lambda x, y: dde.grad.jacobian(y, x)),
label="gPINN",
linestyle="dashed",
color="red",
)
plt.legend(frameon=False)
plt.ylabel("u'")
plt.xlabel("x")
plt.show()