-
https://github.com/thunlp/RCPapers
Must-read papers on Machine Reading Comprehension.
-
Neural Machine Reading Comprehension: Methods and Trends - NUDT2019
综述:总结机器阅读理解领域已经提出的方法和近期发展趋势。
-
https://github.com/ymcui/Chinese-Cloze-RC
A Chinese Cloze-style Reading Comprehension Dataset: People Daily & Children's Fairy Tale (CFT)
AI Challenger 2018 观点型问题阅读理解
-
https://github.com/yuhaitao1994/AIchallenger2018_MachineReadingComprehension (Tensorflow)
复赛第8名 解决方案
法研杯 2019 阅读理解
-
https://github.com/circlePi/2019Cail-A-Bert-Joint-Baseline-for-Machine-Comprehension (PyTorch)
A pytorch implement of bert joint baseline for machine comprehension task in 2019 cail
-
https://github.com/chineseGLUE/chineseGLUE
中文语言理解基准测评:Language Understanding Evaluation benchmark for Chinese: datasets, baselines, pre-trained models,corpus and leaderboard
Memory Networks - Facebook2015
End-To-End Memory Networks - Facebook2015
- https://github.com/brightmart/text_classification (Tensorflow)
R-Net: Machine Reading Comprehension with Self-Matching- MSRA2017
- https://github.com/NLPLearn/R-net (Tensorflow)
Tracking the World State with Recurrent Entity Networks - Facebook2017
Structure:
Input (Context, Question) -> Encoding (BOW with Position Mask or BiRNN) ->
Dynamic Memory (Similarity of keys, values-> Gate -> Candidate Hidden State -> Current Hidden State) ->
Output Module (Similarity of Query and Hidden State -> Possibility Distribution -> Weighted Sum -> Non-linearity Transform -> Predicted Label)
-
https://github.com/facebook/MemNN/tree/master/EntNet-babi (Torch, Lua)
-
https://github.com/jimfleming/recurrent-entity-networks (Tensorflow)
-
https://github.com/brightmart/text_classification (Tensorflow)
-
https://github.com/laddie132/Match-LSTM (PyTorch)
Paper: 1, 2, R-NET