-
Notifications
You must be signed in to change notification settings - Fork 117
/
loopin.go
1190 lines (984 loc) · 32.9 KB
/
loopin.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package loop
import (
"context"
"crypto/rand"
"crypto/sha256"
"errors"
"fmt"
"sync"
"time"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/mempool"
"github.com/btcsuite/btcd/wire"
"github.com/lightninglabs/lndclient"
"github.com/lightninglabs/loop/labels"
"github.com/lightninglabs/loop/loopdb"
"github.com/lightninglabs/loop/swap"
"github.com/lightninglabs/loop/utils"
"github.com/lightningnetwork/lnd/chainntnfs"
invpkg "github.com/lightningnetwork/lnd/invoices"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
)
var (
// MaxLoopInAcceptDelta configures the maximum acceptable number of
// remaining blocks until the on-chain htlc expires. This value is used
// to decide whether we want to continue with the swap parameters as
// proposed by the server. It is a protection to prevent the server from
// getting us to lock up our funds to an arbitrary point in the future.
MaxLoopInAcceptDelta = int32(1500)
// MinLoopInPublishDelta defines the minimum number of remaining blocks
// until on-chain htlc expiry required to proceed to publishing the htlc
// tx. This value isn't critical, as we could even safely publish the
// htlc after expiry. The reason we do implement this check is to
// prevent us from publishing an htlc that the server surely wouldn't
// follow up to.
MinLoopInPublishDelta = int32(10)
// TimeoutTxConfTarget defines the confirmation target for the loop in
// timeout tx.
TimeoutTxConfTarget = int32(2)
// ErrSwapFinalized is returned when a to be executed swap is already in
// a final state.
ErrSwapFinalized = errors.New("swap is in a final state")
)
// loopInSwap contains all the in-memory state related to a pending loop in
// swap.
type loopInSwap struct {
swapKit
executeConfig
loopdb.LoopInContract
htlc *swap.Htlc
htlcP2WSH *swap.Htlc
htlcP2TR *swap.Htlc
// htlcTxHash is the confirmed htlc tx id.
htlcTxHash *chainhash.Hash
timeoutAddr btcutil.Address
abandonChan chan struct{}
wg sync.WaitGroup
}
// loopInInitResult contains information about a just-initiated loop in swap.
type loopInInitResult struct {
swap *loopInSwap
serverMessage string
}
// newLoopInSwap initiates a new loop in swap.
func newLoopInSwap(globalCtx context.Context, cfg *swapConfig,
currentHeight int32, request *LoopInRequest) (*loopInInitResult,
error) {
var err error
// Private and route hints are mutually exclusive as setting private
// means we retrieve our own route hints from the connected node.
if len(request.RouteHints) != 0 && request.Private {
return nil, fmt.Errorf("private and route_hints both set")
}
// If Private is set, we generate route hints.
if request.Private {
// If last_hop is set, we'll only add channels with peers set to
// the last_hop parameter.
includeNodes := make(map[route.Vertex]struct{})
if request.LastHop != nil {
includeNodes[*request.LastHop] = struct{}{}
}
// Because the Private flag is set, we'll generate our own set
// of hop hints.
request.RouteHints, err = SelectHopHints(
globalCtx, cfg.lnd.Client, request.Amount,
DefaultMaxHopHints, includeNodes,
)
if err != nil {
return nil, err
}
}
// Request current server loop in terms and use these to calculate the
// swap fee that we should subtract from the swap amount in the payment
// request that we send to the server. We pass nil as optional route
// hints as hop hint selection when generating invoices with private
// channels is an LND side black box feature. Advanced users will quote
// directly anyway and there they have the option to add specific route
// hints.
quote, err := cfg.server.GetLoopInQuote(
globalCtx, request.Amount, cfg.lnd.NodePubkey, request.LastHop,
request.RouteHints, request.Initiator,
)
if err != nil {
return nil, wrapGrpcError("loop in terms", err)
}
swapFee := quote.SwapFee
if swapFee > request.MaxSwapFee {
log.Warnf("Swap fee %v exceeding maximum of %v",
swapFee, request.MaxSwapFee)
return nil, ErrSwapFeeTooHigh
}
// Calculate the swap invoice amount. The prepay is added which
// effectively forces the server to pay us back our prepayment on a
// successful swap.
swapInvoiceAmt := request.Amount - swapFee
// Generate random preimage.
var swapPreimage lntypes.Preimage
if _, err := rand.Read(swapPreimage[:]); err != nil {
log.Error("Cannot generate preimage")
}
swapHash := lntypes.Hash(sha256.Sum256(swapPreimage[:]))
// Derive a sender key for this swap.
keyDesc, err := cfg.lnd.WalletKit.DeriveNextKey(
globalCtx, swap.KeyFamily,
)
if err != nil {
return nil, err
}
var senderKey [33]byte
copy(senderKey[:], keyDesc.PubKey.SerializeCompressed())
// Create the swap invoice in lnd.
_, swapInvoice, err := cfg.lnd.Client.AddInvoice(
globalCtx, &invoicesrpc.AddInvoiceData{
Preimage: &swapPreimage,
Value: lnwire.NewMSatFromSatoshis(swapInvoiceAmt),
Memo: "swap",
Expiry: 3600 * 24 * 365,
RouteHints: request.RouteHints,
},
)
if err != nil {
return nil, err
}
// Create the probe invoice in lnd. Derive the payment hash
// deterministically from the swap hash in such a way that the server
// can be sure that we don't know the preimage.
probeHash := lntypes.Hash(sha256.Sum256(swapHash[:]))
probeHash[0] ^= 1
log.Infof("Creating probe invoice %v", probeHash)
probeInvoice, err := cfg.lnd.Invoices.AddHoldInvoice(
globalCtx, &invoicesrpc.AddInvoiceData{
Hash: &probeHash,
Value: lnwire.NewMSatFromSatoshis(swapInvoiceAmt),
Memo: "loop in probe",
Expiry: 3600,
RouteHints: request.RouteHints,
},
)
if err != nil {
return nil, err
}
// Default the HTLC internal key to our sender key.
senderInternalPubKey := senderKey
// If this is a MuSig2 swap then we'll generate a brand new key pair and
// will use that as the internal key for the HTLC.
if loopdb.CurrentProtocolVersion() >= loopdb.ProtocolVersionMuSig2 {
secret, err := sharedSecretFromHash(
globalCtx, cfg.lnd.Signer, swapHash,
)
if err != nil {
return nil, err
}
_, pubKey := btcec.PrivKeyFromBytes(secret[:])
copy(senderInternalPubKey[:], pubKey.SerializeCompressed())
}
// Create a cancellable context that is used for monitoring the probe.
probeWaitCtx, probeWaitCancel := context.WithCancel(globalCtx)
// Launch a goroutine to monitor the probe.
probeResult, err := awaitProbe(probeWaitCtx, *cfg.lnd, probeHash)
if err != nil {
probeWaitCancel()
return nil, fmt.Errorf("probe failed: %v", err)
}
// Post the swap parameters to the swap server. The response contains
// the server success key and the expiry height of the on-chain swap
// htlc.
log.Infof("Initiating swap request at height %v", currentHeight)
swapResp, err := cfg.server.NewLoopInSwap(globalCtx, swapHash,
request.Amount, senderKey, senderInternalPubKey, swapInvoice,
probeInvoice, request.LastHop, request.Initiator,
)
probeWaitCancel()
if err != nil {
return nil, wrapGrpcError("cannot initiate swap", err)
}
// Because the context is cancelled, it is guaranteed that we will be
// able to read from the probeResult channel.
err = <-probeResult
if err != nil {
return nil, fmt.Errorf("probe error: %v", err)
}
// Validate if the response parameters are outside our allowed range
// preventing us from continuing with a swap.
err = validateLoopInContract(currentHeight, swapResp)
if err != nil {
return nil, err
}
// Instantiate a struct that contains all required data to start the
// swap.
initiationTime := time.Now()
contract := loopdb.LoopInContract{
HtlcConfTarget: request.HtlcConfTarget,
LastHop: request.LastHop,
ExternalHtlc: request.ExternalHtlc,
SwapContract: loopdb.SwapContract{
InitiationHeight: currentHeight,
InitiationTime: initiationTime,
HtlcKeys: loopdb.HtlcKeys{
SenderScriptKey: senderKey,
SenderInternalPubKey: senderKey,
ReceiverScriptKey: swapResp.receiverKey,
ReceiverInternalPubKey: swapResp.receiverKey,
ClientScriptKeyLocator: keyDesc.KeyLocator,
},
Preimage: swapPreimage,
AmountRequested: request.Amount,
CltvExpiry: swapResp.expiry,
MaxMinerFee: request.MaxMinerFee,
MaxSwapFee: request.MaxSwapFee,
Label: request.Label,
ProtocolVersion: loopdb.CurrentProtocolVersion(),
},
}
// For MuSig2 swaps we store the proper internal keys that we generated
// and received from the server.
if loopdb.CurrentProtocolVersion() >= loopdb.ProtocolVersionMuSig2 {
contract.HtlcKeys.SenderInternalPubKey = senderInternalPubKey
contract.HtlcKeys.ReceiverInternalPubKey = swapResp.receiverInternalKey
}
swapKit := newSwapKit(
swapHash, swap.TypeIn,
cfg, &contract.SwapContract,
)
swapKit.lastUpdateTime = initiationTime
swap := &loopInSwap{
LoopInContract: contract,
swapKit: *swapKit,
}
if err := swap.initHtlcs(); err != nil {
return nil, err
}
// Persist the data before exiting this function, so that the caller can
// trust that this swap will be resumed on restart.
err = cfg.store.CreateLoopIn(globalCtx, swapHash, &swap.LoopInContract)
if err != nil {
return nil, fmt.Errorf("cannot store swap: %v", err)
}
if swapResp.serverMessage != "" {
swap.log.Infof("Server message: %v", swapResp.serverMessage)
}
swap.abandonChan = make(chan struct{}, 1)
return &loopInInitResult{
swap: swap,
serverMessage: swapResp.serverMessage,
}, nil
}
// awaitProbe waits for a probe payment to arrive and cancels it. This is a
// workaround for the current lack of multi-path probing.
func awaitProbe(ctx context.Context, lnd lndclient.LndServices,
probeHash lntypes.Hash) (chan error, error) {
// Subscribe to the probe invoice.
updateChan, errChan, err := lnd.Invoices.SubscribeSingleInvoice(
ctx, probeHash,
)
if err != nil {
return nil, err
}
// Wait in the background for the probe to arrive.
probeResult := make(chan error, 1)
go func() {
for {
select {
case update := <-updateChan:
switch update.State {
case invpkg.ContractAccepted:
log.Infof("Server probe successful")
probeResult <- nil
// Cancel probe invoice so that the
// server will know that its probe was
// successful.
err := lnd.Invoices.CancelInvoice(
ctx, probeHash,
)
if err != nil {
log.Errorf("Cancel probe "+
"invoice: %v", err)
}
return
case invpkg.ContractCanceled:
probeResult <- errors.New(
"probe invoice expired")
return
case invpkg.ContractSettled:
probeResult <- errors.New(
"impossible that probe " +
"invoice was settled")
return
}
case err := <-errChan:
probeResult <- err
return
case <-ctx.Done():
probeResult <- ctx.Err()
return
}
}
}()
return probeResult, nil
}
// resumeLoopInSwap returns a swap object representing a pending swap that has
// been restored from the database.
func resumeLoopInSwap(_ context.Context, cfg *swapConfig,
pend *loopdb.LoopIn) (*loopInSwap, error) {
hash := lntypes.Hash(sha256.Sum256(pend.Contract.Preimage[:]))
log.Infof("Resuming loop in swap %v", hash)
swapKit := newSwapKit(
hash, swap.TypeIn, cfg,
&pend.Contract.SwapContract,
)
swap := &loopInSwap{
LoopInContract: *pend.Contract,
swapKit: *swapKit,
}
if err := swap.initHtlcs(); err != nil {
return nil, err
}
lastUpdate := pend.LastUpdate()
if lastUpdate == nil {
swap.lastUpdateTime = pend.Contract.InitiationTime
} else {
swap.state = lastUpdate.State
swap.lastUpdateTime = lastUpdate.Time
swap.htlcTxHash = lastUpdate.HtlcTxHash
swap.cost = lastUpdate.Cost
}
// Upon restoring the swap we also need to assign a new abandon channel
// that the client can use to signal that the swap should be abandoned.
swap.abandonChan = make(chan struct{}, 1)
return swap, nil
}
// validateLoopInContract validates the contract parameters against our request.
func validateLoopInContract(height int32, response *newLoopInResponse) error {
// Verify that we are not forced to publish a htlc that locks up our
// funds for too long in case the server doesn't follow through.
if response.expiry-height > MaxLoopInAcceptDelta {
return ErrExpiryTooFar
}
return nil
}
// initHtlcs creates and updates the native and nested segwit htlcs of the
// loopInSwap.
func (s *loopInSwap) initHtlcs() error {
htlc, err := utils.GetHtlc(
s.hash, &s.SwapContract, s.swapKit.lnd.ChainParams,
)
if err != nil {
return err
}
switch htlc.OutputType {
case swap.HtlcP2WSH:
s.htlcP2WSH = htlc
case swap.HtlcP2TR:
s.htlcP2TR = htlc
default:
return fmt.Errorf("invalid output type")
}
s.swapKit.log.Infof("Htlc address (%s): %v", htlc.OutputType,
htlc.Address)
return nil
}
// sendUpdate reports an update to the swap state.
func (s *loopInSwap) sendUpdate(ctx context.Context) error {
info := s.swapInfo()
s.log.Infof("Loop in swap state: %v", info.State)
if IsTaprootSwap(&s.SwapContract) {
info.HtlcAddressP2TR = s.htlcP2TR.Address
} else {
info.HtlcAddressP2WSH = s.htlcP2WSH.Address
}
info.ExternalHtlc = s.ExternalHtlc
// In order to avoid potentially dangerous ownership sharing we copy the
// last hop vertex.
if s.LastHop != nil {
lastHop := &route.Vertex{}
copy(lastHop[:], s.LastHop[:])
info.LastHop = lastHop
}
select {
case s.statusChan <- *info:
case <-ctx.Done():
return ctx.Err()
}
return nil
}
// execute starts/resumes the swap. It is a thin wrapper around executeSwap to
// conveniently handle the error case.
func (s *loopInSwap) execute(mainCtx context.Context,
cfg *executeConfig, height int32) error {
defer s.wg.Wait()
s.executeConfig = *cfg
s.height = height
// Create context for our state subscription which we will cancel once
// swap execution has completed, ensuring that we kill the subscribe
// goroutine.
subCtx, cancel := context.WithCancel(mainCtx)
defer cancel()
s.wg.Add(1)
go func() {
defer s.wg.Done()
subscribeAndLogUpdates(
subCtx, s.hash, s.log, s.server.SubscribeLoopInUpdates,
)
}()
// Announce swap by sending out an initial update.
err := s.sendUpdate(mainCtx)
if err != nil {
return err
}
// Execute the swap until it either reaches a final state or a temporary
// error occurs.
err = s.executeSwap(mainCtx)
// If there are insufficient confirmed funds to publish the swap, we
// finalize its state so a new swap will be published if funds become
// available.
if errors.Is(err, ErrInsufficientBalance) {
return err
}
// Stop the execution if the swap has been abandoned.
if err != nil && s.state == loopdb.StateFailAbandoned {
return err
}
// Sanity check. If there is no error, the swap must be in a final
// state.
if err == nil && s.state.Type() == loopdb.StateTypePending {
err = fmt.Errorf("swap in non-final state %v", s.state)
}
// If an unexpected error happened, report a temporary failure but don't
// persist the error. Otherwise, for example a connection error could
// lead to abandoning the swap permanently and losing funds.
if err != nil {
s.log.Errorf("Swap error: %v", err)
s.setState(loopdb.StateFailTemporary)
// If we cannot send out this update, there is nothing we can
// do.
_ = s.sendUpdate(mainCtx)
return err
}
s.log.Infof("Loop in swap completed: %v "+
"(final cost: server %v, onchain %v, offchain %v)",
s.state,
s.cost.Server,
s.cost.Onchain,
s.cost.Offchain,
)
return nil
}
// executeSwap executes the swap.
func (s *loopInSwap) executeSwap(globalCtx context.Context) error {
var err error
// If the swap is already in a final state, we can return immediately.
if s.state.IsFinal() {
return ErrSwapFinalized
}
// For loop in, the client takes the first step by publishing the
// on-chain htlc. Only do this if we haven't already done so in a
// previous run.
if s.state == loopdb.StateInitiated {
if s.ExternalHtlc {
// If an external htlc was indicated, we can move to the
// HtlcPublished state directly and wait for
// confirmation.
s.setState(loopdb.StateHtlcPublished)
err = s.persistAndAnnounceState(globalCtx)
if err != nil {
return err
}
} else {
published, err := s.publishOnChainHtlc(globalCtx)
if err != nil {
return err
}
if !published {
return nil
}
}
}
// Wait for the htlc to confirm. After a restart, this will pick up a
// previously published tx.
conf, err := s.waitForHtlcConf(globalCtx)
if err != nil {
return err
}
// Determine the htlc outpoint by inspecting the htlc tx.
htlcOutpoint, htlcValue, err := swap.GetScriptOutput(
conf.Tx, s.htlc.PkScript,
)
if err != nil {
return err
}
// Verify that the confirmed (external) htlc value matches the swap
// amount. If the amounts mismatch we update the swap state to indicate
// this, but end processing the swap. Instead, we continue to wait for
// the htlc to expire and publish a timeout tx to reclaim the funds. We
// skip this part if the swap was recovered from this state.
if s.state != loopdb.StateFailIncorrectHtlcAmt &&
htlcValue != s.LoopInContract.AmountRequested {
s.setState(loopdb.StateFailIncorrectHtlcAmt)
err = s.persistAndAnnounceState(globalCtx)
if err != nil {
log.Errorf("Error persisting state: %v", err)
}
}
// The server is expected to see the htlc on-chain and know that it can
// sweep that htlc with the preimage, it should pay our swap invoice,
// receive the preimage and sweep the htlc. We are waiting for this to
// happen and simultaneously watch the htlc expiry height. When the htlc
// expires, we will publish a timeout tx to reclaim the funds.
err = s.waitForSwapComplete(globalCtx, htlcOutpoint, htlcValue)
if err != nil {
return err
}
// Persist swap outcome.
if err := s.persistAndAnnounceState(globalCtx); err != nil {
return err
}
return nil
}
// waitForHtlcConf watches the chain until the htlc confirms.
func (s *loopInSwap) waitForHtlcConf(globalCtx context.Context) (
*chainntnfs.TxConfirmation, error) {
// Register for confirmation of the htlc. It is essential to specify not
// just the pk script, because an attacker may publish the same htlc
// with a lower value, and we don't want to follow through with that tx.
// In the unlikely event that our call to SendOutputs crashes, and we
// restart, htlcTxHash will be nil at this point. Then only register
// with PkScript and accept the risk that the call triggers on a
// different htlc outpoint.
s.log.Infof("Register for htlc conf (hh=%v, txid=%v)",
s.InitiationHeight, s.htlcTxHash)
if s.htlcTxHash == nil {
s.log.Warnf("No htlc tx hash available, registering with " +
"just the pkscript")
}
ctx, cancel := context.WithCancel(globalCtx)
defer cancel()
notifier := s.lnd.ChainNotifier
notifyConfirmation := func(htlc *swap.Htlc) (
chan *chainntnfs.TxConfirmation, chan error, error) {
if htlc == nil {
return nil, nil, nil
}
return notifier.RegisterConfirmationsNtfn(
ctx, s.htlcTxHash, htlc.PkScript, 1, s.InitiationHeight,
)
}
confChanP2WSH, confErrP2WSH, err := notifyConfirmation(s.htlcP2WSH)
if err != nil {
return nil, err
}
confChanP2TR, confErrP2TR, err := notifyConfirmation(s.htlcP2TR)
if err != nil {
return nil, err
}
var conf *chainntnfs.TxConfirmation
for conf == nil {
select {
// P2WSH htlc confirmed.
case conf = <-confChanP2WSH:
s.htlc = s.htlcP2WSH
s.log.Infof("P2WSH htlc confirmed")
// P2TR htlc confirmed.
case conf = <-confChanP2TR:
s.htlc = s.htlcP2TR
s.log.Infof("P2TR htlc confirmed")
// Conf ntfn error.
case err := <-confErrP2WSH:
return nil, err
// Conf ntfn error.
case err := <-confErrP2TR:
return nil, err
// Keep up with block height.
case notification := <-s.blockEpochChan:
s.height = notification.(int32)
// If the client requested the swap to be abandoned, we override
// the status in the database.
case <-s.abandonChan:
return nil, s.setStateAbandoned(ctx)
// Cancel.
case <-globalCtx.Done():
return nil, globalCtx.Err()
}
}
// Store htlc tx hash for accounting purposes. Usually this call is a
// no-op because the htlc tx hash was already known. Exceptions are:
//
// - Old pending swaps that were initiated before we persisted the htlc
// tx hash directly after publish.
//
// - Swaps that experienced a crash during their call to SendOutputs. In
// that case, we weren't able to record the tx hash.
txHash := conf.Tx.TxHash()
s.htlcTxHash = &txHash
return conf, nil
}
// publishOnChainHtlc checks whether there are still enough blocks left and if
// so, it publishes the htlc and advances the swap state.
func (s *loopInSwap) publishOnChainHtlc(ctx context.Context) (bool, error) {
var err error
blocksRemaining := s.CltvExpiry - s.height
s.log.Infof("Blocks left until on-chain expiry: %v", blocksRemaining)
// Verify whether it still makes sense to publish the htlc.
if blocksRemaining < MinLoopInPublishDelta {
s.setState(loopdb.StateFailTimeout)
return false, s.persistAndAnnounceState(ctx)
}
// Get fee estimate from lnd.
feeRate, err := s.lnd.WalletKit.EstimateFeeRate(
ctx, s.LoopInContract.HtlcConfTarget,
)
if err != nil {
return false, fmt.Errorf("estimate fee: %v", err)
}
// Transition to state HtlcPublished before calling SendOutputs to
// prevent us from ever paying multiple times after a crash.
s.setState(loopdb.StateHtlcPublished)
err = s.persistAndAnnounceState(ctx)
if err != nil {
return false, err
}
s.log.Infof("Publishing on chain HTLC with fee rate %v", feeRate)
var pkScript []byte
if IsTaprootSwap(&s.SwapContract) {
pkScript = s.htlcP2TR.PkScript
} else {
pkScript = s.htlcP2WSH.PkScript
}
tx, err := s.lnd.WalletKit.SendOutputs(
ctx, []*wire.TxOut{{
PkScript: pkScript,
Value: int64(s.LoopInContract.AmountRequested),
}}, feeRate, labels.LoopInHtlcLabel(swap.ShortHash(&s.hash)),
)
if err != nil {
s.log.Errorf("send outputs: %v", err)
s.setState(loopdb.StateFailInsufficientConfirmedBalance)
// If we cannot send out this update, there is nothing we can
// do.
_ = s.persistAndAnnounceState(ctx)
return false, ErrInsufficientBalance
}
txHash := tx.TxHash()
fee := getTxFee(tx, feeRate.FeePerKVByte())
s.log.Infof("Published on chain HTLC tx %v, fee: %v", txHash, fee)
// Persist the htlc hash so that after a restart we are still waiting
// for our own htlc. We don't need to announce to clients, because the
// state remains unchanged.
s.htlcTxHash = &txHash
// We do not expect any on-chain fees to be recorded yet, and we only
// publish our htlc once, so we set our total on-chain costs to equal
// the fee for publishing the htlc.
s.cost.Onchain = fee
s.lastUpdateTime = time.Now()
if err := s.persistState(ctx); err != nil {
return false, fmt.Errorf("persist htlc tx: %v", err)
}
return true, nil
}
// getTxFee calculates our fee for a transaction that we have broadcast. We use
// sat per kvbyte because this is what lnd uses, and we will run into rounding
// issues if we do not use the same fee rate as lnd.
func getTxFee(tx *wire.MsgTx, fee chainfee.SatPerKVByte) btcutil.Amount {
btcTx := btcutil.NewTx(tx)
vsize := mempool.GetTxVirtualSize(btcTx)
return fee.FeeForVSize(lntypes.VByte(vsize))
}
// waitForSwapComplete waits until a spending tx of the htlc gets confirmed and
// the swap invoice is either settled or canceled. If the htlc times out, the
// timeout tx will be published.
func (s *loopInSwap) waitForSwapComplete(ctx context.Context,
htlcOutpoint *wire.OutPoint, htlcValue btcutil.Amount) error {
// Register the htlc spend notification.
rpcCtx, cancel := context.WithCancel(ctx)
defer cancel()
spendChan, spendErr, err := s.lnd.ChainNotifier.RegisterSpendNtfn(
rpcCtx, htlcOutpoint, s.htlc.PkScript, s.InitiationHeight,
)
if err != nil {
return fmt.Errorf("register spend ntfn: %v", err)
}
// Register for swap invoice updates.
rpcCtx, cancel = context.WithCancel(ctx)
defer cancel()
s.log.Infof("Subscribing to swap invoice %v", s.hash)
swapInvoiceChan, swapInvoiceErr, err := s.lnd.Invoices.SubscribeSingleInvoice(
rpcCtx, s.hash,
)
if err != nil {
return fmt.Errorf("subscribe to swap invoice: %v", err)
}
// publishTxOnTimeout publishes the timeout tx if the contract has
// expired.
publishTxOnTimeout := func() (btcutil.Amount, error) {
if s.height >= s.LoopInContract.CltvExpiry {
return s.publishTimeoutTx(ctx, htlcOutpoint, htlcValue)
}
return 0, nil
}
// Check timeout at current height. After a restart we may want to
// publish the tx immediately.
var sweepFee btcutil.Amount
sweepFee, err = publishTxOnTimeout()
if err != nil {
return err
}
htlcSpend := false
invoiceFinalized := false
htlcKeyRevealed := false
for !htlcSpend || !invoiceFinalized {
select {
// If the client requested the swap to be abandoned, we override
// the status in the database.
case <-s.abandonChan:
return s.setStateAbandoned(ctx)
// Spend notification error.
case err := <-spendErr:
return err
// Receive block epochs and start publishing the timeout tx
// whenever possible.
case notification := <-s.blockEpochChan:
s.height = notification.(int32)
sweepFee, err = publishTxOnTimeout()
if err != nil {
return err
}
if invoiceFinalized && !htlcKeyRevealed {
htlcKeyRevealed = s.tryPushHtlcKey(ctx)
}
// The htlc spend is confirmed. Inspect the spending tx to
// determine the final swap state.
case spendDetails := <-spendChan:
s.log.Infof("Htlc spend by tx: %v",
spendDetails.SpenderTxHash)
err := s.processHtlcSpend(ctx, spendDetails, sweepFee)
if err != nil {
return err
}
htlcSpend = true
// Swap invoice ntfn error.
case err, ok := <-swapInvoiceErr:
// If the channel has been closed, the server has
// finished sending updates, so we set the channel to
// nil because we don't want to constantly select this
// case.
if !ok {
swapInvoiceErr = nil
continue
}
return err
// An update to the swap invoice occurred. Check the new state
// and update the swap state accordingly.
case update, ok := <-swapInvoiceChan:
// If the channel has been closed, the server has
// finished sending updates, so we set the channel to
// nil because we don't want to constantly select this
// case.
if !ok {
swapInvoiceChan = nil
continue
}
s.log.Infof("Received swap invoice update: %v",
update.State)
switch update.State {
// Swap invoice was paid, so update server cost balance.
case invpkg.ContractSettled:
// If invoice settlement and htlc spend happen
// in the expected order, move the swap to an
// intermediate state that indicates that the
// swap is complete from the user point of view,
// but still incomplete with regards to
// accounting data.
if s.state == loopdb.StateHtlcPublished {
s.setState(loopdb.StateInvoiceSettled)
err := s.persistAndAnnounceState(ctx)
if err != nil {
return err
}
}
invoiceFinalized = true
htlcKeyRevealed = s.tryPushHtlcKey(ctx)
s.cost.Server = s.AmountRequested -
update.AmtPaid
// Canceled invoice has no effect on server cost
// balance.
case invpkg.ContractCanceled:
invoiceFinalized = true
}
case <-ctx.Done():
return ctx.Err()
}
}
return nil
}
// tryPushHtlcKey attempts to push the htlc key to the server. If the server
// returns an error of any kind we'll log it as a warning but won't act as the
// swap execution can just go on without the server gaining knowledge of our
// internal key.
func (s *loopInSwap) tryPushHtlcKey(ctx context.Context) bool {
if s.ProtocolVersion < loopdb.ProtocolVersionMuSig2 {
return false
}