diff --git a/Mathlib/NumberTheory/NumberField/Units/Regulator.lean b/Mathlib/NumberTheory/NumberField/Units/Regulator.lean index 63b7cd807c1f8..34d7ce2339491 100644 --- a/Mathlib/NumberTheory/NumberField/Units/Regulator.lean +++ b/Mathlib/NumberTheory/NumberField/Units/Regulator.lean @@ -57,11 +57,11 @@ local instance : CommGroup (𝓞 K)ˣ := inferInstance set_option maxSynthPendingDepth 2 -- Note this is active for the remainder of the file. theorem regulator_eq_det' (e : {w : InfinitePlace K // w ≠ w₀} ≃ Fin (rank K)) : - regulator K = |(Matrix.of fun i ↦ (logEmbedding K) (fundSystem K (e i))).det| := by + regulator K = |(Matrix.of fun i ↦ + logEmbedding K (Additive.ofMul (fundSystem K (e i)))).det| := by simp_rw [regulator, ZLattice.covolume_eq_det _ (((basisModTorsion K).map (logEmbeddingEquiv K)).reindex e.symm), Basis.coe_reindex, - Function.comp_def, Basis.map_apply, ← fundSystem_mk, Equiv.symm_symm] - rfl + Function.comp_def, Basis.map_apply, ← fundSystem_mk, Equiv.symm_symm, logEmbeddingEquiv_apply] /-- Let `u : Fin (rank K) → (𝓞 K)ˣ` be a family of units and let `w₁` and `w₂` be two infinite places. Then, the two square matrices with entries `(mult w * log w (u i))_i, {w ≠ w_i}`, `i = 1,2`,