diff --git a/Mathlib/Algebra/GroupPower/Order.lean b/Mathlib/Algebra/GroupPower/Order.lean index 64ceddae0f399..5a41cc99d3ee5 100644 --- a/Mathlib/Algebra/GroupPower/Order.lean +++ b/Mathlib/Algebra/GroupPower/Order.lean @@ -532,7 +532,7 @@ namespace Nat variable {n : ℕ} {f : α → ℕ} /-- See also `pow_left_strictMonoOn`. -/ -protected lemma pow_left_strictMono (hn : n ≠ 0) : StrictMono (. ^ n : ℕ → ℕ) := +protected lemma pow_left_strictMono (hn : n ≠ 0) : StrictMono (· ^ n : ℕ → ℕ) := fun _ _ h ↦ Nat.pow_lt_pow_left h hn #align nat.pow_left_strict_mono Nat.pow_left_strictMono diff --git a/Mathlib/Algebra/Polynomial/Basic.lean b/Mathlib/Algebra/Polynomial/Basic.lean index 05a2446d2cf27..c6c33bae55741 100644 --- a/Mathlib/Algebra/Polynomial/Basic.lean +++ b/Mathlib/Algebra/Polynomial/Basic.lean @@ -299,7 +299,7 @@ instance semiring : Semiring R[X] := toMul := Polynomial.mul' toZero := Polynomial.zero toOne := Polynomial.one - nsmul := (. • .) + nsmul := (· • ·) npow := fun n x => (x ^ n) } #align polynomial.semiring Polynomial.semiring @@ -1190,7 +1190,7 @@ instance ring : Ring R[X] := toIntCast := Polynomial.intCast toNeg := Polynomial.neg' toSub := Polynomial.sub - zsmul := ((. • .) : ℤ → R[X] → R[X]) } + zsmul := ((· • ·) : ℤ → R[X] → R[X]) } #align polynomial.ring Polynomial.ring @[simp] diff --git a/Mathlib/Data/Fin/Tuple/Curry.lean b/Mathlib/Data/Fin/Tuple/Curry.lean index e58ab105fd22d..1b752e325ecb5 100644 --- a/Mathlib/Data/Fin/Tuple/Curry.lean +++ b/Mathlib/Data/Fin/Tuple/Curry.lean @@ -73,7 +73,7 @@ variable {n : ℕ} {p : Fin n → Type u} {τ : Type u} theorem curry_uncurry (f : Function.FromTypes p τ) : curry (uncurry f) = f := by induction n with | zero => rfl - | succ n ih => exact funext (ih $ f .) + | succ n ih => exact funext (ih $ f ·) @[simp] theorem uncurry_curry (f : ((i : Fin n) → p i) → τ) : diff --git a/Mathlib/Data/Pi/Lex.lean b/Mathlib/Data/Pi/Lex.lean index f2b05078e2c7e..6f7239630b3d8 100644 --- a/Mathlib/Data/Pi/Lex.lean +++ b/Mathlib/Data/Pi/Lex.lean @@ -119,7 +119,7 @@ open Function theorem toLex_monotone : Monotone (@toLex (∀ i, β i)) := fun a b h => or_iff_not_imp_left.2 fun hne => - let ⟨i, hi, hl⟩ := IsWellFounded.wf.has_min (r := (· < · )) { i | a i ≠ b i } + let ⟨i, hi, hl⟩ := IsWellFounded.wf.has_min (r := (· < ·)) { i | a i ≠ b i } (Function.ne_iff.1 hne) ⟨i, fun j hj => by contrapose! hl @@ -127,7 +127,7 @@ theorem toLex_monotone : Monotone (@toLex (∀ i, β i)) := fun a b h => #align pi.to_lex_monotone Pi.toLex_monotone theorem toLex_strictMono : StrictMono (@toLex (∀ i, β i)) := fun a b h => - let ⟨i, hi, hl⟩ := IsWellFounded.wf.has_min (r := (· < · )) { i | a i ≠ b i } + let ⟨i, hi, hl⟩ := IsWellFounded.wf.has_min (r := (· < ·)) { i | a i ≠ b i } (Function.ne_iff.1 h.ne) ⟨i, fun j hj => by contrapose! hl diff --git a/Mathlib/Data/Set/Subset.lean b/Mathlib/Data/Set/Subset.lean index 8f67365a303f0..f6aca09eb48ec 100644 --- a/Mathlib/Data/Set/Subset.lean +++ b/Mathlib/Data/Set/Subset.lean @@ -74,7 +74,7 @@ lemma preimage_val_sInter : A ↓∩ (⋂₀ S) = ⋂₀ { (A ↓∩ B) | B ∈ erw [sInter_image] simp_rw [sInter_eq_biInter, preimage_iInter] -lemma preimage_val_sInter_eq_sInter : A ↓∩ (⋂₀ S) = ⋂₀ ((A ↓∩ .) '' S) := by +lemma preimage_val_sInter_eq_sInter : A ↓∩ (⋂₀ S) = ⋂₀ ((A ↓∩ ·) '' S) := by simp only [preimage_sInter, sInter_image] lemma eq_of_preimage_val_eq_of_subset (hB : B ⊆ A) (hC : C ⊆ A) (h : A ↓∩ B = A ↓∩ C) : B = C := by diff --git a/Mathlib/GroupTheory/Exponent.lean b/Mathlib/GroupTheory/Exponent.lean index f2f0578d553d5..0b7472fe9bc4a 100644 --- a/Mathlib/GroupTheory/Exponent.lean +++ b/Mathlib/GroupTheory/Exponent.lean @@ -93,7 +93,7 @@ open MulOpposite in theorem _root_.MulOpposite.exponent : exponent (MulOpposite G) = exponent G := by simp only [Monoid.exponent, ExponentExists] congr! - all_goals exact ⟨(op_injective <| · <| op ·), (unop_injective <| . <| unop .)⟩ + all_goals exact ⟨(op_injective <| · <| op ·), (unop_injective <| · <| unop ·)⟩ @[to_additive] theorem ExponentExists.isOfFinOrder (h : ExponentExists G) {g : G} : IsOfFinOrder g := diff --git a/Mathlib/GroupTheory/HNNExtension.lean b/Mathlib/GroupTheory/HNNExtension.lean index a6c5fd4777f71..c4af9564ddb23 100644 --- a/Mathlib/GroupTheory/HNNExtension.lean +++ b/Mathlib/GroupTheory/HNNExtension.lean @@ -591,7 +591,7 @@ open NormalWord theorem of_injective : Function.Injective (of : G → HNNExtension G A B φ) := by rcases TransversalPair.nonempty G A B with ⟨d⟩ refine Function.Injective.of_comp - (f := ((. • .) : HNNExtension G A B φ → NormalWord d → NormalWord d)) ?_ + (f := ((· • ·) : HNNExtension G A B φ → NormalWord d → NormalWord d)) ?_ intros _ _ h exact eq_of_smul_eq_smul (fun w : NormalWord d => by simp_all [Function.funext_iff, of_smul_eq_smul]) diff --git a/Mathlib/GroupTheory/PushoutI.lean b/Mathlib/GroupTheory/PushoutI.lean index 48e938f32da86..3019f3918016f 100644 --- a/Mathlib/GroupTheory/PushoutI.lean +++ b/Mathlib/GroupTheory/PushoutI.lean @@ -596,7 +596,7 @@ theorem of_injective (hφ : ∀ i, Function.Injective (φ i)) (i : ι) : let _ := Classical.decEq ι let _ := fun i => Classical.decEq (G i) refine Function.Injective.of_comp - (f := ((. • .) : PushoutI φ → NormalWord d → NormalWord d)) ?_ + (f := ((· • ·) : PushoutI φ → NormalWord d → NormalWord d)) ?_ intros _ _ h exact eq_of_smul_eq_smul (fun w : NormalWord d => by simp_all [Function.funext_iff, of_smul_eq_smul]) @@ -607,7 +607,7 @@ theorem base_injective (hφ : ∀ i, Function.Injective (φ i)) : let _ := Classical.decEq ι let _ := fun i => Classical.decEq (G i) refine Function.Injective.of_comp - (f := ((. • .) : PushoutI φ → NormalWord d → NormalWord d)) ?_ + (f := ((· • ·) : PushoutI φ → NormalWord d → NormalWord d)) ?_ intros _ _ h exact eq_of_smul_eq_smul (fun w : NormalWord d => by simp_all [Function.funext_iff, base_smul_eq_smul]) diff --git a/Mathlib/ModelTheory/Definability.lean b/Mathlib/ModelTheory/Definability.lean index 38a310e9e21bc..1bec13723cfe3 100644 --- a/Mathlib/ModelTheory/Definability.lean +++ b/Mathlib/ModelTheory/Definability.lean @@ -60,7 +60,7 @@ theorem Definable.map_expansion {L' : FirstOrder.Language} [L'.Structure M] (h : theorem definable_iff_exists_formula_sum : A.Definable L s ↔ ∃ φ : L.Formula (A ⊕ α), s = {v | φ.Realize (Sum.elim (↑) v)} := by rw [Definable, Equiv.exists_congr_left (BoundedFormula.constantsVarsEquiv)] - refine exists_congr (fun φ => iff_iff_eq.2 (congr_arg (s = .) ?_)) + refine exists_congr (fun φ => iff_iff_eq.2 (congr_arg (s = ·) ?_)) ext simp only [Formula.Realize, BoundedFormula.constantsVarsEquiv, constantsOn, mk₂_Relations, BoundedFormula.mapTermRelEquiv_symm_apply, mem_setOf_eq] diff --git a/Mathlib/ModelTheory/Syntax.lean b/Mathlib/ModelTheory/Syntax.lean index 07ebed4538a4d..1e5964ee9e17d 100644 --- a/Mathlib/ModelTheory/Syntax.lean +++ b/Mathlib/ModelTheory/Syntax.lean @@ -667,11 +667,11 @@ def toFormula : ∀ {n : ℕ}, L.BoundedFormula α n → L.Formula (Sum α (Fin /-- take the disjunction of a finite set of formulas -/ noncomputable def iSup (s : Finset β) (f : β → L.BoundedFormula α n) : L.BoundedFormula α n := - (s.toList.map f).foldr (. ⊔ .) ⊥ + (s.toList.map f).foldr (· ⊔ ·) ⊥ /-- take the conjunction of a finite set of formulas -/ noncomputable def iInf (s : Finset β) (f : β → L.BoundedFormula α n) : L.BoundedFormula α n := - (s.toList.map f).foldr (. ⊓ .) ⊤ + (s.toList.map f).foldr (· ⊓ ·) ⊤ variable {l : ℕ} {φ ψ : L.BoundedFormula α l} {θ : L.BoundedFormula α l.succ} diff --git a/Mathlib/Order/CompletePartialOrder.lean b/Mathlib/Order/CompletePartialOrder.lean index 75339b3c8abad..6eb960bb57485 100644 --- a/Mathlib/Order/CompletePartialOrder.lean +++ b/Mathlib/Order/CompletePartialOrder.lean @@ -39,23 +39,23 @@ Complete partial orders are partial orders where every directed set has a least -/ class CompletePartialOrder (α : Type*) extends PartialOrder α, SupSet α where /-- For each directed set `d`, `sSup d` is the least upper bound of `d`. -/ - lubOfDirected : ∀ d, DirectedOn (. ≤ .) d → IsLUB d (sSup d) + lubOfDirected : ∀ d, DirectedOn (· ≤ ·) d → IsLUB d (sSup d) variable [CompletePartialOrder α] [Preorder β] {f : ι → α} {d : Set α} {a : α} -protected lemma DirectedOn.isLUB_sSup : DirectedOn (. ≤ .) d → IsLUB d (sSup d) := +protected lemma DirectedOn.isLUB_sSup : DirectedOn (· ≤ ·) d → IsLUB d (sSup d) := CompletePartialOrder.lubOfDirected _ -protected lemma DirectedOn.le_sSup (hd : DirectedOn (. ≤ .) d) (ha : a ∈ d) : a ≤ sSup d := +protected lemma DirectedOn.le_sSup (hd : DirectedOn (· ≤ ·) d) (ha : a ∈ d) : a ≤ sSup d := hd.isLUB_sSup.1 ha -protected lemma DirectedOn.sSup_le (hd : DirectedOn (. ≤ .) d) (ha : ∀ b ∈ d, b ≤ a) : sSup d ≤ a := +protected lemma DirectedOn.sSup_le (hd : DirectedOn (· ≤ ·) d) (ha : ∀ b ∈ d, b ≤ a) : sSup d ≤ a := hd.isLUB_sSup.2 ha -protected lemma Directed.le_iSup (hf : Directed (. ≤ .) f) (i : ι) : f i ≤ ⨆ j, f j := +protected lemma Directed.le_iSup (hf : Directed (· ≤ ·) f) (i : ι) : f i ≤ ⨆ j, f j := hf.directedOn_range.le_sSup <| Set.mem_range_self _ -protected lemma Directed.iSup_le (hf : Directed (. ≤ .) f) (ha : ∀ i, f i ≤ a) : ⨆ i, f i ≤ a := +protected lemma Directed.iSup_le (hf : Directed (· ≤ ·) f) (ha : ∀ i, f i ≤ a) : ⨆ i, f i ≤ a := hf.directedOn_range.sSup_le <| Set.forall_mem_range.2 ha --TODO: We could mimic more `sSup`/`iSup` lemmas @@ -63,7 +63,7 @@ hf.directedOn_range.sSup_le <| Set.forall_mem_range.2 ha /-- Scott-continuity takes on a simpler form in complete partial orders. -/ lemma CompletePartialOrder.scottContinuous {f : α → β} : ScottContinuous f ↔ - ∀ ⦃d : Set α⦄, d.Nonempty → DirectedOn (. ≤ .) d → IsLUB (f '' d) (f (sSup d)) := by + ∀ ⦃d : Set α⦄, d.Nonempty → DirectedOn (· ≤ ·) d → IsLUB (f '' d) (f (sSup d)) := by refine' ⟨fun h d hd₁ hd₂ ↦ h hd₁ hd₂ hd₂.isLUB_sSup, fun h d hne hd a hda ↦ ?_⟩ rw [hda.unique hd.isLUB_sSup] exact h hne hd diff --git a/Mathlib/Order/RelSeries.lean b/Mathlib/Order/RelSeries.lean index a9e3d2b09fa8e..894debf053298 100644 --- a/Mathlib/Order/RelSeries.lean +++ b/Mathlib/Order/RelSeries.lean @@ -256,7 +256,7 @@ For two types `α, β` and relation on them `r, s`, if `f : α → β` preserves def map (p : RelSeries r) (f : r →r s) : RelSeries s where length := p.length toFun := f.1.comp p - step := (f.2 <| p.step .) + step := (f.2 <| p.step ·) @[simp] lemma map_apply (p : RelSeries r) (f : r →r s) (i : Fin (p.length + 1)) : p.map f i = f (p i) := rfl @@ -479,7 +479,7 @@ end RelSeries /-- A type is finite dimensional if its `LTSeries` has bounded length. -/ abbrev FiniteDimensionalOrder (γ : Type*) [Preorder γ] := - Rel.FiniteDimensional ((. < .) : γ → γ → Prop) + Rel.FiniteDimensional ((· < ·) : γ → γ → Prop) instance FiniteDimensionalOrder.ofUnique (γ : Type*) [Preorder γ] [Unique γ] : FiniteDimensionalOrder γ where @@ -489,7 +489,7 @@ instance FiniteDimensionalOrder.ofUnique (γ : Type*) [Preorder γ] [Unique γ] /-- A type is infinite dimensional if it has `LTSeries` of at least arbitrary length -/ abbrev InfiniteDimensionalOrder (γ : Type*) [Preorder γ] := - Rel.InfiniteDimensional ((. < .) : γ → γ → Prop) + Rel.InfiniteDimensional ((· < ·) : γ → γ → Prop) section LTSeries @@ -497,7 +497,7 @@ variable (α) [Preorder α] [Preorder β] /-- If `α` is a preorder, a LTSeries is a relation series of the less than relation. -/ -abbrev LTSeries := RelSeries ((. < .) : Rel α α) +abbrev LTSeries := RelSeries ((· < ·) : Rel α α) namespace LTSeries diff --git a/Mathlib/SetTheory/Ordinal/Arithmetic.lean b/Mathlib/SetTheory/Ordinal/Arithmetic.lean index 498cb3bb26225..27a56bc660431 100644 --- a/Mathlib/SetTheory/Ordinal/Arithmetic.lean +++ b/Mathlib/SetTheory/Ordinal/Arithmetic.lean @@ -2009,8 +2009,8 @@ def blsub₂ (o₁ o₂ : Ordinal) (op : {a : Ordinal} → (a < o₁) → {b : O theorem lt_blsub₂ {o₁ o₂ : Ordinal} (op : {a : Ordinal} → (a < o₁) → {b : Ordinal} → (b < o₂) → Ordinal) {a b : Ordinal} (ha : a < o₁) (hb : b < o₂) : op ha hb < blsub₂ o₁ o₂ op := by - convert lt_lsub _ (Prod.mk (enum (· < · ) a (by rwa [type_lt])) - (enum (· < · ) b (by rwa [type_lt]))) + convert lt_lsub _ (Prod.mk (enum (· < ·) a (by rwa [type_lt])) + (enum (· < ·) b (by rwa [type_lt]))) simp only [typein_enum] #align ordinal.lt_blsub₂ Ordinal.lt_blsub₂