diff --git a/Mathlib/CategoryTheory/Functor/Currying.lean b/Mathlib/CategoryTheory/Functor/Currying.lean index edaba6e369347..e130aedb422c8 100644 --- a/Mathlib/CategoryTheory/Functor/Currying.lean +++ b/Mathlib/CategoryTheory/Functor/Currying.lean @@ -3,6 +3,7 @@ Copyright (c) 2017 Kim Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kim Morrison -/ +import Mathlib.CategoryTheory.EqToHom import Mathlib.CategoryTheory.Products.Basic /-! diff --git a/Mathlib/CategoryTheory/Monoidal/Category.lean b/Mathlib/CategoryTheory/Monoidal/Category.lean index c38de64d692f4..d80764aa71802 100644 --- a/Mathlib/CategoryTheory/Monoidal/Category.lean +++ b/Mathlib/CategoryTheory/Monoidal/Category.lean @@ -3,6 +3,7 @@ Copyright (c) 2018 Michael Jendrusch. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Jendrusch, Kim Morrison, Bhavik Mehta, Jakob von Raumer -/ +import Mathlib.CategoryTheory.EqToHom import Mathlib.CategoryTheory.Functor.Trifunctor import Mathlib.CategoryTheory.Products.Basic diff --git a/Mathlib/CategoryTheory/Products/Basic.lean b/Mathlib/CategoryTheory/Products/Basic.lean index c38b430629b3b..58958ff88a2de 100644 --- a/Mathlib/CategoryTheory/Products/Basic.lean +++ b/Mathlib/CategoryTheory/Products/Basic.lean @@ -3,7 +3,6 @@ Copyright (c) 2017 Kim Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Stephen Morgan, Kim Morrison -/ -import Mathlib.CategoryTheory.EqToHom import Mathlib.CategoryTheory.Functor.Const import Mathlib.CategoryTheory.Opposites import Mathlib.Data.Prod.Basic @@ -296,7 +295,18 @@ end Equivalence /-- `F.flip` composed with evaluation is the same as evaluating `F`. -/ @[simps!] def flipCompEvaluation (F : A ⥤ B ⥤ C) (a) : F.flip ⋙ (evaluation _ _).obj a ≅ F.obj a := - NatIso.ofComponents fun b => eqToIso rfl + NatIso.ofComponents fun b => Iso.refl _ + +theorem flip_comp_evaluation (F : A ⥤ B ⥤ C) (a) : F.flip ⋙ (evaluation _ _).obj a = F.obj a := + rfl + +/-- `F` composed with evaluation is the same as evaluating `F.flip`. -/ +@[simps!] +def compEvaluation (F : A ⥤ B ⥤ C) (b) : F ⋙ (evaluation _ _).obj b ≅ F.flip.obj b := + NatIso.ofComponents fun a => Iso.refl _ + +theorem comp_evaluation (F : A ⥤ B ⥤ C) (b) : F ⋙ (evaluation _ _).obj b = F.flip.obj b := + rfl variable (A B C)