diff --git a/Mathlib/GroupTheory/Congruence/Basic.lean b/Mathlib/GroupTheory/Congruence/Basic.lean index 3bae7589d7021..0c9e3103728fb 100644 --- a/Mathlib/GroupTheory/Congruence/Basic.lean +++ b/Mathlib/GroupTheory/Congruence/Basic.lean @@ -298,9 +298,8 @@ lemma comapQuotientEquivOfSurj_symm_mk (c : Con M) {f : N →* M} (hf : Function /-- This version infers the surjectivity of the function from a MulEquiv function -/ @[simp] lemma comapQuotientEquivOfSurj_symm_mk' (c : Con M) (f : N ≃* M) (x : N) : - ((@MulEquiv.symm (Con.Quotient (comap ⇑f _ c)) _ (hasMul (comap ⇑f _ c)) - _ (comapQuotientEquivOfSurj c ↑f f.surjective)) - ⟦f x⟧) = ↑x := + ((@MulEquiv.symm (Con.Quotient (comap ⇑f _ c)) _ _ _ + (comapQuotientEquivOfSurj c f f.surjective)) ⟦f x⟧) = ↑x := (MulEquiv.symm_apply_eq (@comapQuotientEquivOfSurj M N _ _ c f _)).mpr rfl /-- The **second isomorphism theorem for monoids**. -/