diff --git a/Mathlib/RingTheory/WittVector/Basic.lean b/Mathlib/RingTheory/WittVector/Basic.lean index d0f920a3c845f..9355949e1e507 100644 --- a/Mathlib/RingTheory/WittVector/Basic.lean +++ b/Mathlib/RingTheory/WittVector/Basic.lean @@ -158,7 +158,6 @@ private def ghostFun : 𝕎 R → ℕ → R := fun x n => aeval x.coeff (W_ ℤ section Tactic open Lean Elab Tactic --- porting note: removed mathport output related to meta code. /-- An auxiliary tactic for proving that `ghostFun` respects the ring operations. -/ elab "ghost_fun_tac" φ:term "," fn:term : tactic => do evalTactic (← `(tactic| ( @@ -219,14 +218,10 @@ private theorem ghostFun_intCast (i : ℤ) : ghostFun (i : 𝕎 R) = i := alias ghostFun_int_cast := ghostFun_intCast private lemma ghostFun_nsmul (m : ℕ) (x : WittVector p R) : ghostFun (m • x) = m • ghostFun x := by - -- porting note: I had to add the explicit type ascription. - -- This could very well be due to my poor tactic writing! - ghost_fun_tac m • (X 0 : MvPolynomial _ ℤ), ![x.coeff] + ghost_fun_tac m • (X 0), ![x.coeff] private lemma ghostFun_zsmul (m : ℤ) (x : WittVector p R) : ghostFun (m • x) = m • ghostFun x := by - -- porting note: I had to add the explicit type ascription. - -- This could very well be due to my poor tactic writing! - ghost_fun_tac m • (X 0 : MvPolynomial _ ℤ), ![x.coeff] + ghost_fun_tac m • (X 0), ![x.coeff] private theorem ghostFun_pow (m : ℕ) : ghostFun (x ^ m) = ghostFun x ^ m := by ghost_fun_tac X 0 ^ m, ![x.coeff] @@ -256,8 +251,6 @@ private def ghostEquiv' [Invertible (p : R)] : 𝕎 R ≃ (ℕ → R) where @[local instance] private def comm_ring_aux₁ : CommRing (𝕎 (MvPolynomial R ℚ)) := - -- Porting note: no longer needed? - -- letI : CommRing (MvPolynomial R ℚ) := MvPolynomial.commRing (ghostEquiv' p (MvPolynomial R ℚ)).injective.commRing ghostFun ghostFun_zero ghostFun_one ghostFun_add ghostFun_mul ghostFun_neg ghostFun_sub ghostFun_nsmul ghostFun_zsmul ghostFun_pow ghostFun_natCast ghostFun_intCast