From b772cd7ab2a09530e2e1b80ec58481497ef2645d Mon Sep 17 00:00:00 2001 From: Alvan Caleb Arulandu Date: Thu, 10 Oct 2024 11:32:51 -0400 Subject: [PATCH] move to rclike section --- .../MeasureTheory/Integral/IntegrableOn.lean | 48 ++++++++++--------- 1 file changed, 25 insertions(+), 23 deletions(-) diff --git a/Mathlib/MeasureTheory/Integral/IntegrableOn.lean b/Mathlib/MeasureTheory/Integral/IntegrableOn.lean index d48186e7ac4e6..2def8a063c89f 100644 --- a/Mathlib/MeasureTheory/Integral/IntegrableOn.lean +++ b/Mathlib/MeasureTheory/Integral/IntegrableOn.lean @@ -338,6 +338,31 @@ theorem IntegrableOn.setLIntegral_lt_top {f : α → ℝ} {s : Set α} (hf : Int @[deprecated (since := "2024-06-29")] alias IntegrableOn.set_lintegral_lt_top := IntegrableOn.setLIntegral_lt_top +section RCLike + +variable {𝕜 : Type*} [RCLike 𝕜] + +theorem IntegrableOn.iff_ofReal {f : α → ℝ} : + IntegrableOn f s μ ↔ IntegrableOn (fun x ↦ (f x : ℂ)) s μ := + MeasureTheory.Integrable.iff_ofReal + +theorem IntegrableOn.ofReal {f : α → ℝ} (hf : IntegrableOn f s μ) : + IntegrableOn (fun x => (f x : 𝕜)) s μ := by + rw [IntegrableOn, ← memℒp_one_iff_integrable] at hf ⊢ + exact hf.ofReal + +theorem IntegrableOn.re_im_iff {f : α → 𝕜} : + IntegrableOn (fun x => RCLike.re (f x)) s μ ∧ IntegrableOn (fun x => RCLike.im (f x)) s μ ↔ + IntegrableOn f s μ := Integrable.re_im_iff (f := f) + +theorem IntegrableOn.re {f : α → 𝕜} (hf : IntegrableOn f s μ) : + IntegrableOn (fun x => RCLike.re (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).left + +theorem IntegrableOn.im {f : α → 𝕜} (hf : IntegrableOn f s μ) : + IntegrableOn (fun x => RCLike.im (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).right + +end RCLike + /-- We say that a function `f` is *integrable at filter* `l` if it is integrable on some set `s ∈ l`. Equivalently, it is eventually integrable on `s` in `l.smallSets`. -/ def IntegrableAtFilter (f : α → E) (l : Filter α) (μ : Measure α := by volume_tac) := @@ -695,26 +720,3 @@ theorem integrableOn_Iic_iff_integrableOn_Iio : integrableOn_Iic_iff_integrableOn_Iio' (by rw [measure_singleton]; exact ENNReal.zero_ne_top) end PartialOrder - -namespace MeasureTheory -variable {X : Type*} [MeasurableSpace X] {𝕜 : Type*} [RCLike 𝕜] {μ : Measure X} {s : Set X} -theorem IntegrableOn.iff_ofReal {f : X → ℝ} : - IntegrableOn f s μ ↔ IntegrableOn (fun x ↦ (f x : ℂ)) s μ := - MeasureTheory.Integrable.iff_ofReal - -theorem IntegrableOn.ofReal {f : X → ℝ} (hf : IntegrableOn f s μ) : - IntegrableOn (fun x => (f x : 𝕜)) s μ := by - rw [IntegrableOn, ← memℒp_one_iff_integrable] at hf ⊢ - exact hf.ofReal - -theorem IntegrableOn.re_im_iff {f : X → 𝕜} : - IntegrableOn (fun x => RCLike.re (f x)) s μ ∧ IntegrableOn (fun x => RCLike.im (f x)) s μ ↔ - IntegrableOn f s μ := Integrable.re_im_iff (f := f) - -theorem IntegrableOn.re {f : X → 𝕜} (hf : IntegrableOn f s μ) : - IntegrableOn (fun x => RCLike.re (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).left - -theorem IntegrableOn.im {f : X → 𝕜} (hf : IntegrableOn f s μ) : - IntegrableOn (fun x => RCLike.im (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).right - -end MeasureTheory