diff --git a/Mathlib/Algebra/Order/CauSeq/Completion.lean b/Mathlib/Algebra/Order/CauSeq/Completion.lean index e835ea0fc6a27..43f63c26c1587 100644 --- a/Mathlib/Algebra/Order/CauSeq/Completion.lean +++ b/Mathlib/Algebra/Order/CauSeq/Completion.lean @@ -236,7 +236,7 @@ theorem inv_mk {f} (hf) : (@mk α _ β _ abv _ f)⁻¹ = mk (inv f hf) := #align cau_seq.completion.inv_mk CauSeq.Completion.inv_mk theorem cau_seq_zero_ne_one : ¬(0 : CauSeq _ abv) ≈ 1 := fun h => - have : LimZero (1 - 0) := Setoid.symm h + have : LimZero (1 - 0 : CauSeq _ abv) := Setoid.symm h have : LimZero 1 := by simpa by apply one_ne_zero <| const_limZero.1 this #align cau_seq.completion.cau_seq_zero_ne_one CauSeq.Completion.cau_seq_zero_ne_one diff --git a/Mathlib/Analysis/NormedSpace/OperatorNorm/Prod.lean b/Mathlib/Analysis/NormedSpace/OperatorNorm/Prod.lean index 06304fe75c151..e63fdf1c2ad26 100644 --- a/Mathlib/Analysis/NormedSpace/OperatorNorm/Prod.lean +++ b/Mathlib/Analysis/NormedSpace/OperatorNorm/Prod.lean @@ -160,7 +160,7 @@ variable (𝕜 E F) ‖fst 𝕜 E F‖ = 1 := by refine le_antisymm (norm_fst_le ..) ?_ let ⟨e, he⟩ := exists_ne (0 : E) - have : ‖e‖ ≤ _ * max ‖e‖ ‖0‖ := (fst 𝕜 E F).le_opNorm (e, 0) + have : ‖e‖ ≤ _ * max ‖e‖ ‖(0 : F)‖ := (fst 𝕜 E F).le_opNorm (e, 0) rw [norm_zero, max_eq_left (norm_nonneg e)] at this rwa [← mul_le_mul_iff_of_pos_right (norm_pos_iff.mpr he), one_mul] @@ -170,7 +170,7 @@ variable (𝕜 E F) ‖snd 𝕜 E F‖ = 1 := by refine le_antisymm (norm_snd_le ..) ?_ let ⟨f, hf⟩ := exists_ne (0 : F) - have : ‖f‖ ≤ _ * max ‖0‖ ‖f‖ := (snd 𝕜 E F).le_opNorm (0, f) + have : ‖f‖ ≤ _ * max ‖(0 : E)‖ ‖f‖ := (snd 𝕜 E F).le_opNorm (0, f) rw [norm_zero, max_eq_right (norm_nonneg f)] at this rwa [← mul_le_mul_iff_of_pos_right (norm_pos_iff.mpr hf), one_mul] diff --git a/Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean b/Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean index 35b5932ff26a3..60ffd6fc7e1e9 100644 --- a/Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean +++ b/Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean @@ -96,7 +96,7 @@ theorem not_integrableOn_Ioi_rpow (s : ℝ) : ¬ IntegrableOn (fun x ↦ x ^ s) · have : IntegrableOn (fun x ↦ x ^ s) (Ioo (0 : ℝ) 1) := h.mono Ioo_subset_Ioi_self le_rfl rw [integrableOn_Ioo_rpow_iff zero_lt_one] at this exact hs.not_lt this - · have : IntegrableOn (fun x ↦ x ^ s) (Ioi 1) := h.mono (Ioi_subset_Ioi zero_le_one) le_rfl + · have : IntegrableOn (fun x ↦ x ^ s) (Ioi (1 : ℝ)) := h.mono (Ioi_subset_Ioi zero_le_one) le_rfl rw [integrableOn_Ioi_rpow_iff zero_lt_one] at this exact hs.not_lt this diff --git a/Mathlib/Computability/AkraBazzi/AkraBazzi.lean b/Mathlib/Computability/AkraBazzi/AkraBazzi.lean index ab91ba6657b6b..914f92776b9ff 100644 --- a/Mathlib/Computability/AkraBazzi/AkraBazzi.lean +++ b/Mathlib/Computability/AkraBazzi/AkraBazzi.lean @@ -520,7 +520,7 @@ lemma tendsto_zero_sumCoeffsExp : Tendsto (fun (p : ℝ) => ∑ i, a i * (b i) ^ linarith lemma tendsto_atTop_sumCoeffsExp : Tendsto (fun (p : ℝ) => ∑ i, a i * (b i) ^ p) atBot atTop := by - have h₁ : Tendsto (fun p => (a (max_bi b) : ℝ) * b (max_bi b) ^ p) atBot atTop := + have h₁ : Tendsto (fun p : ℝ => (a (max_bi b) : ℝ) * b (max_bi b) ^ p) atBot atTop := Tendsto.mul_atTop (R.a_pos (max_bi b)) (by simp) <| tendsto_rpow_atBot_of_base_lt_one _ (by have := R.b_pos (max_bi b); linarith) (R.b_lt_one _) diff --git a/Mathlib/GroupTheory/Coset.lean b/Mathlib/GroupTheory/Coset.lean index 3e22b20e912cd..0f4b46c1664b1 100644 --- a/Mathlib/GroupTheory/Coset.lean +++ b/Mathlib/GroupTheory/Coset.lean @@ -148,7 +148,7 @@ variable [Monoid α] (s : Submonoid α) @[to_additive mem_own_leftAddCoset] theorem mem_own_leftCoset (a : α) : a ∈ a • (s : Set α) := - suffices a * 1 ∈ a • ↑s by simpa + suffices a * 1 ∈ a • (s : Set α) by simpa mem_leftCoset a (one_mem s : 1 ∈ s) #align mem_own_left_coset mem_own_leftCoset #align mem_own_left_add_coset mem_own_leftAddCoset diff --git a/Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean b/Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean index 6a5351e8839ba..b7885fae4ed40 100644 --- a/Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean +++ b/Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean @@ -118,7 +118,7 @@ def invertibleEquivDetInvertible : Invertible A ≃ Invertible A.det where variable {A B} theorem mul_eq_one_comm : A * B = 1 ↔ B * A = 1 := - suffices ∀ A B, A * B = 1 → B * A = 1 from ⟨this A B, this B A⟩ + suffices ∀ A B : Matrix n n α, A * B = 1 → B * A = 1 from ⟨this A B, this B A⟩ fun A B h => by letI : Invertible B.det := detInvertibleOfLeftInverse _ _ h letI : Invertible B := invertibleOfDetInvertible B diff --git a/Mathlib/MeasureTheory/Measure/Haar/Unique.lean b/Mathlib/MeasureTheory/Measure/Haar/Unique.lean index 6a74cbf3e0ea6..39ef8d37ab32f 100644 --- a/Mathlib/MeasureTheory/Measure/Haar/Unique.lean +++ b/Mathlib/MeasureTheory/Measure/Haar/Unique.lean @@ -492,7 +492,7 @@ lemma measure_preimage_isMulLeftInvariant_eq_smul_of_hasCompactSupport · simpa using (u_mem n).2.le have I1 := I μ' (by infer_instance) simp_rw [M] at I1 - have J1 : ∫ (x : G), indicator {1} (fun _ ↦ 1) (f x) ∂μ' + have J1 : ∫ (x : G), indicator {1} (fun _ ↦ (1 : ℝ)) (f x) ∂μ' = ∫ (x : G), indicator {1} (fun _ ↦ 1) (f x) ∂(haarScalarFactor μ' μ • μ) := tendsto_nhds_unique I1 (I (haarScalarFactor μ' μ • μ) (by infer_instance)) have J2 : ENNReal.toReal (μ' (f ⁻¹' {1})) diff --git a/Mathlib/NumberTheory/Zsqrtd/QuadraticReciprocity.lean b/Mathlib/NumberTheory/Zsqrtd/QuadraticReciprocity.lean index 9a94e2cc82300..1e5a747035295 100644 --- a/Mathlib/NumberTheory/Zsqrtd/QuadraticReciprocity.lean +++ b/Mathlib/NumberTheory/Zsqrtd/QuadraticReciprocity.lean @@ -88,7 +88,7 @@ theorem prime_of_nat_prime_of_mod_four_eq_three (p : ℕ) [hp : Fact p.Prime] (h irreducible_iff_prime.1 <| by_contradiction fun hpi => let ⟨a, b, hab⟩ := sq_add_sq_of_nat_prime_of_not_irreducible p hpi - have : ∀ a b : ZMod 4, a ^ 2 + b ^ 2 ≠ ↑p := by + have : ∀ a b : ZMod 4, a ^ 2 + b ^ 2 ≠ (p : ZMod 4) := by erw [← ZMod.natCast_mod p 4, hp3]; decide this a b (hab ▸ by simp) #align gaussian_int.prime_of_nat_prime_of_mod_four_eq_three GaussianInt.prime_of_nat_prime_of_mod_four_eq_three diff --git a/Mathlib/Order/PrimeIdeal.lean b/Mathlib/Order/PrimeIdeal.lean index 00ca6fc656f29..137da1310f5c3 100644 --- a/Mathlib/Order/PrimeIdeal.lean +++ b/Mathlib/Order/PrimeIdeal.lean @@ -158,7 +158,7 @@ instance (priority := 100) IsMaximal.isPrime [IsMaximal I] : IsPrime I := by let J := I ⊔ principal x have hJuniv : (J : Set P) = Set.univ := IsMaximal.maximal_proper (lt_sup_principal_of_not_mem ‹_›) - have hyJ : y ∈ ↑J := Set.eq_univ_iff_forall.mp hJuniv y + have hyJ : y ∈ (J : Set P) := Set.eq_univ_iff_forall.mp hJuniv y rw [coe_sup_eq] at hyJ rcases hyJ with ⟨a, ha, b, hb, hy⟩ rw [hy] diff --git a/Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean b/Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean index 21b12711a50b1..86bc20cf4ce1f 100644 --- a/Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean +++ b/Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean @@ -175,7 +175,7 @@ theorem dvd_pow_natDegree_of_eval₂_eq_zero {f : R →+* A} (hf : Function.Inje (Ideal.mem_span_singleton.mpr <| dvd_refl x)).pow_natDegree_le_of_root_of_monic_mem _ ((monic_scaleRoots_iff x).mpr hp) _ le_rfl rw [injective_iff_map_eq_zero'] at hf - have : eval₂ _ _ (p.scaleRoots x) = 0 := scaleRoots_eval₂_eq_zero f h + have : eval₂ f _ (p.scaleRoots x) = 0 := scaleRoots_eval₂_eq_zero f h rwa [hz, Polynomial.eval₂_at_apply, hf] at this #align polynomial.dvd_pow_nat_degree_of_eval₂_eq_zero Polynomial.dvd_pow_natDegree_of_eval₂_eq_zero diff --git a/Mathlib/Topology/ContinuousFunction/Bounded.lean b/Mathlib/Topology/ContinuousFunction/Bounded.lean index c37c0582b37d3..39ec9997fa04d 100644 --- a/Mathlib/Topology/ContinuousFunction/Bounded.lean +++ b/Mathlib/Topology/ContinuousFunction/Bounded.lean @@ -581,7 +581,7 @@ theorem arzela_ascoli₂ (s : Set β) (hs : IsCompact s) (A : Set (α →ᵇ β) IsCompact A := by /- This version is deduced from the previous one by restricting to the compact type in the target, using compactness there and then lifting everything to the original space. -/ - have M : LipschitzWith 1 (↑) := LipschitzWith.subtype_val s + have M : LipschitzWith 1 Subtype.val := LipschitzWith.subtype_val s let F : (α →ᵇ s) → α →ᵇ β := comp (↑) M refine' IsCompact.of_isClosed_subset ((_ : IsCompact (F ⁻¹' A)).image (continuous_comp M)) closed fun f hf => _