diff --git a/Mathlib/Analysis/Asymptotics/Asymptotics.lean b/Mathlib/Analysis/Asymptotics/Asymptotics.lean index 6c6b7be8b5ffe1..040386d779755e 100644 --- a/Mathlib/Analysis/Asymptotics/Asymptotics.lean +++ b/Mathlib/Analysis/Asymptotics/Asymptotics.lean @@ -1251,6 +1251,9 @@ theorem IsLittleO.trans_tendsto (hfg : f'' =o[l] g'') (hg : Tendsto g'' l (𝓝 Tendsto f'' l (𝓝 0) := hfg.isBigO.trans_tendsto hg +lemma isLittleO_id_one [One F''] [NeZero (1 : F'')] : (fun x : E'' => x) =o[𝓝 0] (1 : E'' → F'') := + isLittleO_id_const one_ne_zero + /-! ### Multiplication by a constant -/ @@ -1915,6 +1918,13 @@ theorem isBigO_atTop_iff_eventually_exists_pos {α : Type*} f =O[atTop] g ↔ ∀ᶠ n₀ in atTop, ∃ c > 0, ∀ n ≥ n₀, c * ‖f n‖ ≤ ‖g n‖ := by simp_rw [isBigO_iff'', ← exists_prop, Subtype.exists', exists_eventually_atTop] +lemma isBigO_mul_iff_isBigO_div {f g h : α → 𝕜} (hf : ∀ᶠ x in l, f x ≠ 0) : + (fun x ↦ f x * g x) =O[l] h ↔ g =O[l] (fun x ↦ h x / f x) := by + rw [isBigO_iff', isBigO_iff'] + refine ⟨fun ⟨c, hc, H⟩ ↦ ⟨c, hc, ?_⟩, fun ⟨c, hc, H⟩ ↦ ⟨c, hc, ?_⟩⟩ <;> + · refine H.congr <| Eventually.mp hf <| Eventually.of_forall fun x hx ↦ ?_ + rw [norm_mul, norm_div, ← mul_div_assoc, le_div_iff₀' (norm_pos_iff.mpr hx)] + end Asymptotics open Asymptotics