diff --git a/Mathlib/Algebra/Module/ZLattice/Covolume.lean b/Mathlib/Algebra/Module/ZLattice/Covolume.lean index 8b3705ee2aa1e..f5740d29e7505 100644 --- a/Mathlib/Algebra/Module/ZLattice/Covolume.lean +++ b/Mathlib/Algebra/Module/ZLattice/Covolume.lean @@ -33,10 +33,7 @@ open Submodule MeasureTheory Module MeasureTheory Module ZSpan section General -variable (K : Type*) [NormedLinearOrderedField K] [HasSolidNorm K] [FloorRing K] -variable {E : Type*} [NormedAddCommGroup E] [NormedSpace K E] [FiniteDimensional K E] -variable [ProperSpace E] [MeasurableSpace E] -variable (L : Submodule ℤ E) [DiscreteTopology L] [IsZLattice K L] +variable {E : Type*} [NormedAddCommGroup E] [ProperSpace E] [MeasurableSpace E] (L : Submodule ℤ E) /-- The covolume of a `ℤ`-lattice is the volume of some fundamental domain; see `ZLattice.covolume_eq_volume` for the proof that the volume does not depend on the choice of diff --git a/Mathlib/Analysis/Calculus/Deriv/Prod.lean b/Mathlib/Analysis/Calculus/Deriv/Prod.lean index b0640b705f958..dfd2e896128ad 100644 --- a/Mathlib/Analysis/Calculus/Deriv/Prod.lean +++ b/Mathlib/Analysis/Calculus/Deriv/Prod.lean @@ -29,12 +29,7 @@ open Filter Asymptotics Set variable {𝕜 : Type u} [NontriviallyNormedField 𝕜] variable {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] -variable {E : Type w} [NormedAddCommGroup E] [NormedSpace 𝕜 E] -variable {f f₀ f₁ g : 𝕜 → F} -variable {f' f₀' f₁' g' : F} -variable {x : 𝕜} -variable {s t : Set 𝕜} -variable {L L₁ L₂ : Filter 𝕜} +variable {f₁ : 𝕜 → F} {f₁' : F} {x : 𝕜} {s : Set 𝕜} {L : Filter 𝕜} section CartesianProduct diff --git a/Mathlib/Analysis/Calculus/FDeriv/Pi.lean b/Mathlib/Analysis/Calculus/FDeriv/Pi.lean index f985ae505ea08..fdc2b96749939 100644 --- a/Mathlib/Analysis/Calculus/FDeriv/Pi.lean +++ b/Mathlib/Analysis/Calculus/FDeriv/Pi.lean @@ -11,7 +11,6 @@ import Mathlib.Analysis.Calculus.FDeriv.Add variable {𝕜 ι : Type*} [DecidableEq ι] [Fintype ι] [NontriviallyNormedField 𝕜] variable {E : ι → Type*} [∀ i, NormedAddCommGroup (E i)] [∀ i, NormedSpace 𝕜 (E i)] -variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] @[fun_prop] theorem hasFDerivAt_update (x : ∀ i, E i) {i : ι} (y : E i) : diff --git a/Mathlib/Analysis/Calculus/FDeriv/Star.lean b/Mathlib/Analysis/Calculus/FDeriv/Star.lean index 48f652a8dd13d..933c9c2c4fdc1 100644 --- a/Mathlib/Analysis/Calculus/FDeriv/Star.lean +++ b/Mathlib/Analysis/Calculus/FDeriv/Star.lean @@ -27,7 +27,7 @@ variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] variable {F : Type*} [NormedAddCommGroup F] [StarAddMonoid F] [NormedSpace 𝕜 F] [StarModule 𝕜 F] [ContinuousStar F] -variable {f : E → F} {f' : E →L[𝕜] F} (e : E →L[𝕜] F) {x : E} {s : Set E} {L : Filter E} +variable {f : E → F} {f' : E →L[𝕜] F} {x : E} {s : Set E} {L : Filter E} @[fun_prop] theorem HasStrictFDerivAt.star (h : HasStrictFDerivAt f f' x) : diff --git a/Mathlib/Analysis/Calculus/Gradient/Basic.lean b/Mathlib/Analysis/Calculus/Gradient/Basic.lean index 558b091cb21ac..5ebf3d941d6a8 100644 --- a/Mathlib/Analysis/Calculus/Gradient/Basic.lean +++ b/Mathlib/Analysis/Calculus/Gradient/Basic.lean @@ -252,7 +252,7 @@ section congr /-! ### Congruence properties of the Gradient -/ -variable {f₀ f₁ : F → 𝕜} {f₀' f₁' : F} {x₀ x₁ : F} {s₀ s₁ t : Set F} {L₀ L₁ : Filter F} +variable {f₀ f₁ : F → 𝕜} {f₀' f₁' : F} {t : Set F} theorem Filter.EventuallyEq.hasGradientAtFilter_iff (h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x) (h₁ : f₀' = f₁') : HasGradientAtFilter f₀ f₀' x L ↔ HasGradientAtFilter f₁ f₁' x L := diff --git a/Mathlib/Analysis/Calculus/InverseFunctionTheorem/ApproximatesLinearOn.lean b/Mathlib/Analysis/Calculus/InverseFunctionTheorem/ApproximatesLinearOn.lean index 67b3db1e4cd80..b23236aaf0baf 100644 --- a/Mathlib/Analysis/Calculus/InverseFunctionTheorem/ApproximatesLinearOn.lean +++ b/Mathlib/Analysis/Calculus/InverseFunctionTheorem/ApproximatesLinearOn.lean @@ -52,8 +52,6 @@ noncomputable section variable {𝕜 : Type*} [NontriviallyNormedField 𝕜] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] -variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G] -variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G'] variable {ε : ℝ} open Filter Metric Set diff --git a/Mathlib/Analysis/Calculus/LineDeriv/Basic.lean b/Mathlib/Analysis/Calculus/LineDeriv/Basic.lean index 3de1ac70f4558..b675314ee9710 100644 --- a/Mathlib/Analysis/Calculus/LineDeriv/Basic.lean +++ b/Mathlib/Analysis/Calculus/LineDeriv/Basic.lean @@ -475,7 +475,7 @@ section CompRight variable {E : Type*} [AddCommGroup E] [Module 𝕜 E] {E' : Type*} [AddCommGroup E'] [Module 𝕜 E'] - {f : E → F} {f' : F} {x v : E'} {L : E' →ₗ[𝕜] E} + {f : E → F} {f' : F} {x : E'} {L : E' →ₗ[𝕜] E} theorem HasLineDerivAt.of_comp {v : E'} (hf : HasLineDerivAt 𝕜 (f ∘ L) f' x v) : HasLineDerivAt 𝕜 f f' (L x) (L v) := by diff --git a/Mathlib/MeasureTheory/Integral/SetIntegral.lean b/Mathlib/MeasureTheory/Integral/SetIntegral.lean index 6376b28c74713..49b3978cb0252 100644 --- a/Mathlib/MeasureTheory/Integral/SetIntegral.lean +++ b/Mathlib/MeasureTheory/Integral/SetIntegral.lean @@ -66,7 +66,7 @@ variable [MeasurableSpace X] section NormedAddCommGroup variable [NormedAddCommGroup E] [NormedSpace ℝ E] - {f g : X → E} {s t : Set X} {μ ν : Measure X} {l l' : Filter X} + {f g : X → E} {s t : Set X} {μ : Measure X} theorem setIntegral_congr_ae₀ (hs : NullMeasurableSet s μ) (h : ∀ᵐ x ∂μ, x ∈ s → f x = g x) : ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ := diff --git a/Mathlib/Order/PrimeIdeal.lean b/Mathlib/Order/PrimeIdeal.lean index e8b6364e05f7b..aef2ade7bdfd4 100644 --- a/Mathlib/Order/PrimeIdeal.lean +++ b/Mathlib/Order/PrimeIdeal.lean @@ -101,7 +101,7 @@ end Preorder section SemilatticeInf -variable [SemilatticeInf P] {x y : P} {I : Ideal P} +variable [SemilatticeInf P] {I : Ideal P} theorem IsPrime.mem_or_mem (hI : IsPrime I) {x y : P} : x ⊓ y ∈ I → x ∈ I ∨ y ∈ I := by contrapose! diff --git a/Mathlib/Probability/Distributions/Uniform.lean b/Mathlib/Probability/Distributions/Uniform.lean index 43f54dab8c27d..77f3a13bb4a8c 100644 --- a/Mathlib/Probability/Distributions/Uniform.lean +++ b/Mathlib/Probability/Distributions/Uniform.lean @@ -48,7 +48,7 @@ noncomputable section namespace MeasureTheory -variable {E : Type*} [MeasurableSpace E] {m : Measure E} {μ : Measure E} +variable {E : Type*} [MeasurableSpace E] {μ : Measure E} namespace pdf @@ -206,7 +206,7 @@ end MeasureTheory namespace PMF -variable {α β γ : Type*} +variable {α : Type*} open scoped Classical NNReal ENNReal diff --git a/Mathlib/Probability/Kernel/Composition.lean b/Mathlib/Probability/Kernel/Composition.lean index 9a2db5e2be4bc..5dbebd1c9f25c 100644 --- a/Mathlib/Probability/Kernel/Composition.lean +++ b/Mathlib/Probability/Kernel/Composition.lean @@ -65,7 +65,7 @@ namespace ProbabilityTheory namespace Kernel -variable {α β ι : Type*} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} +variable {α β : Type*} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} section CompositionProduct @@ -335,7 +335,7 @@ end Ae section Restrict -variable {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] {a : α} +variable {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] theorem compProd_restrict {s : Set β} {t : Set γ} (hs : MeasurableSet s) (ht : MeasurableSet t) : Kernel.restrict κ hs ⊗ₖ Kernel.restrict η ht = Kernel.restrict (κ ⊗ₖ η) (hs.prod ht) := by @@ -759,7 +759,7 @@ def prodMkLeft (γ : Type*) [MeasurableSpace γ] (κ : Kernel α β) : Kernel ( def prodMkRight (γ : Type*) [MeasurableSpace γ] (κ : Kernel α β) : Kernel (α × γ) β := comap κ Prod.fst measurable_fst -variable {γ : Type*} {mγ : MeasurableSpace γ} {f : β → γ} {g : γ → α} +variable {γ : Type*} {mγ : MeasurableSpace γ} @[simp] theorem prodMkLeft_apply (κ : Kernel α β) (ca : γ × α) : prodMkLeft γ κ ca = κ ca.snd := diff --git a/Mathlib/Probability/Kernel/Disintegration/CondCDF.lean b/Mathlib/Probability/Kernel/Disintegration/CondCDF.lean index a5c415461bb5b..c02e122e3cff2 100644 --- a/Mathlib/Probability/Kernel/Disintegration/CondCDF.lean +++ b/Mathlib/Probability/Kernel/Disintegration/CondCDF.lean @@ -42,7 +42,7 @@ open scoped NNReal ENNReal MeasureTheory Topology namespace MeasureTheory.Measure -variable {α β : Type*} {mα : MeasurableSpace α} (ρ : Measure (α × ℝ)) +variable {α : Type*} {mα : MeasurableSpace α} (ρ : Measure (α × ℝ)) /-- Measure on `α` such that for a measurable set `s`, `ρ.IicSnd r s = ρ (s ×ˢ Iic r)`. -/ noncomputable def IicSnd (r : ℝ) : Measure α := @@ -112,7 +112,7 @@ open MeasureTheory namespace ProbabilityTheory -variable {α β ι : Type*} {mα : MeasurableSpace α} +variable {α : Type*} {mα : MeasurableSpace α} attribute [local instance] MeasureTheory.Measure.IsFiniteMeasure.IicSnd diff --git a/Mathlib/Probability/Kernel/Integral.lean b/Mathlib/Probability/Kernel/Integral.lean index f259203acbe03..e97ef25407719 100644 --- a/Mathlib/Probability/Kernel/Integral.lean +++ b/Mathlib/Probability/Kernel/Integral.lean @@ -91,7 +91,7 @@ end Const section Restrict -variable {s t : Set β} +variable {s : Set β} @[simp] theorem integral_restrict (hs : MeasurableSet s) : diff --git a/Mathlib/Probability/Kernel/Invariance.lean b/Mathlib/Probability/Kernel/Invariance.lean index 58d1a2185d16b..e9d40e85a0dd9 100644 --- a/Mathlib/Probability/Kernel/Invariance.lean +++ b/Mathlib/Probability/Kernel/Invariance.lean @@ -30,7 +30,7 @@ open scoped MeasureTheory ENNReal ProbabilityTheory namespace ProbabilityTheory -variable {α β γ : Type*} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} +variable {α β : Type*} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} namespace Kernel diff --git a/Mathlib/Probability/Kernel/MeasurableIntegral.lean b/Mathlib/Probability/Kernel/MeasurableIntegral.lean index 2d5fff10ca258..63c99fb77ebfa 100644 --- a/Mathlib/Probability/Kernel/MeasurableIntegral.lean +++ b/Mathlib/Probability/Kernel/MeasurableIntegral.lean @@ -231,7 +231,7 @@ alias _root_.Measurable.set_lintegral_kernel := _root_.Measurable.setLIntegral_k end Lintegral -variable {E : Type*} [NormedAddCommGroup E] [IsSFiniteKernel κ] [IsSFiniteKernel η] +variable {E : Type*} [NormedAddCommGroup E] [IsSFiniteKernel κ] theorem measurableSet_kernel_integrable ⦃f : α → β → E⦄ (hf : StronglyMeasurable (uncurry f)) : MeasurableSet {x | Integrable (f x) (κ x)} := by diff --git a/Mathlib/Probability/Martingale/OptionalSampling.lean b/Mathlib/Probability/Martingale/OptionalSampling.lean index 535963b759aba..90b9489aaa39c 100644 --- a/Mathlib/Probability/Martingale/OptionalSampling.lean +++ b/Mathlib/Probability/Martingale/OptionalSampling.lean @@ -143,11 +143,11 @@ and is a measurable space with the Borel σ-algebra. -/ variable {ι : Type*} [LinearOrder ι] [LocallyFiniteOrder ι] [OrderBot ι] [TopologicalSpace ι] [DiscreteTopology ι] [MeasurableSpace ι] [BorelSpace ι] [MeasurableSpace E] [BorelSpace E] - [SecondCountableTopology E] {ℱ : Filtration ι m} {τ σ : Ω → ι} {f : ι → Ω → E} {i n : ι} + [SecondCountableTopology E] {ℱ : Filtration ι m} {τ σ : Ω → ι} {f : ι → Ω → E} {i : ι} theorem condexp_stoppedValue_stopping_time_ae_eq_restrict_le (h : Martingale f ℱ μ) (hτ : IsStoppingTime ℱ τ) (hσ : IsStoppingTime ℱ σ) [SigmaFinite (μ.trim hσ.measurableSpace_le)] - (hτ_le : ∀ x, τ x ≤ n) : + (hτ_le : ∀ x, τ x ≤ i) : μ[stoppedValue f τ|hσ.measurableSpace] =ᵐ[μ.restrict {x : Ω | τ x ≤ σ x}] stoppedValue f τ := by rw [ae_eq_restrict_iff_indicator_ae_eq (hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ))] diff --git a/Mathlib/RingTheory/Flat/Stability.lean b/Mathlib/RingTheory/Flat/Stability.lean index 57de113408f23..8b0e1c14b0fa9 100644 --- a/Mathlib/RingTheory/Flat/Stability.lean +++ b/Mathlib/RingTheory/Flat/Stability.lean @@ -153,7 +153,7 @@ section Localization variable {R : Type u} {M Mp : Type*} (Rp : Type v) [CommRing R] [AddCommGroup M] [Module R M] [CommRing Rp] [Algebra R Rp] - [AddCommGroup Mp] [Module R Mp] [Module Rp Mp] [IsScalarTower R Rp Mp] (f : M →ₗ[R] Mp) + [AddCommGroup Mp] [Module R Mp] [Module Rp Mp] [IsScalarTower R Rp Mp] instance localizedModule [Module.Flat R M] (S : Submonoid R) : Module.Flat (Localization S) (LocalizedModule S M) := by diff --git a/Mathlib/RingTheory/HahnSeries/Summable.lean b/Mathlib/RingTheory/HahnSeries/Summable.lean index b4e933391ff50..c3b6bf05ac681 100644 --- a/Mathlib/RingTheory/HahnSeries/Summable.lean +++ b/Mathlib/RingTheory/HahnSeries/Summable.lean @@ -42,7 +42,7 @@ open Pointwise noncomputable section -variable {Γ Γ' R V α β : Type*} +variable {Γ R α β : Type*} namespace HahnSeries diff --git a/Mathlib/RingTheory/LocalRing/Module.lean b/Mathlib/RingTheory/LocalRing/Module.lean index 332bccee7c8f5..d446db6698308 100644 --- a/Mathlib/RingTheory/LocalRing/Module.lean +++ b/Mathlib/RingTheory/LocalRing/Module.lean @@ -28,7 +28,7 @@ This file gathers various results about finite modules over a local ring `(R, `l` is a split injection if and only if `k ⊗ l` is a (split) injection. -/ -variable {R S} [CommRing R] [CommRing S] [Algebra R S] +variable {R} [CommRing R] section diff --git a/Mathlib/RingTheory/Regular/IsSMulRegular.lean b/Mathlib/RingTheory/Regular/IsSMulRegular.lean index efe4d52d7cef9..3619263bfda72 100644 --- a/Mathlib/RingTheory/Regular/IsSMulRegular.lean +++ b/Mathlib/RingTheory/Regular/IsSMulRegular.lean @@ -136,7 +136,7 @@ open Submodule Pointwise variable (M) [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup M'] [Module R M'] [AddCommGroup M''] [Module R M''] - (I : Ideal R) (N : Submodule R M) (r : R) + (N : Submodule R M) (r : R) variable (R) in lemma biUnion_associatedPrimes_eq_compl_regular [IsNoetherianRing R] : diff --git a/Mathlib/Topology/Order/UpperLowerSetTopology.lean b/Mathlib/Topology/Order/UpperLowerSetTopology.lean index 02681dbd9f86d..c3e5e3a52ad12 100644 --- a/Mathlib/Topology/Order/UpperLowerSetTopology.lean +++ b/Mathlib/Topology/Order/UpperLowerSetTopology.lean @@ -95,7 +95,7 @@ protected def rec {β : WithUpperSet α → Sort*} (h : ∀ a, β (toUpperSet a) instance [Nonempty α] : Nonempty (WithUpperSet α) := ‹Nonempty α› instance [Inhabited α] : Inhabited (WithUpperSet α) := ‹Inhabited α› -variable [Preorder α] [Preorder β] [Preorder γ] +variable [Preorder α] [Preorder β] instance : Preorder (WithUpperSet α) := ‹Preorder α› instance : TopologicalSpace (WithUpperSet α) := upperSet α