diff --git a/Mathlib.lean b/Mathlib.lean index 6917161a2ee67..4304ebaaafbdb 100644 --- a/Mathlib.lean +++ b/Mathlib.lean @@ -4744,7 +4744,7 @@ import Mathlib.Topology.MetricSpace.ThickenedIndicator import Mathlib.Topology.MetricSpace.Thickening import Mathlib.Topology.MetricSpace.Ultra.Basic import Mathlib.Topology.MetricSpace.Ultra.ContinuousMaps -import Mathlib.Topology.MetricSpace.Ultra.TotallyDisconnected +import Mathlib.Topology.MetricSpace.Ultra.TotallySeparated import Mathlib.Topology.Metrizable.Basic import Mathlib.Topology.Metrizable.ContinuousMap import Mathlib.Topology.Metrizable.Uniformity diff --git a/Mathlib/Topology/Clopen.lean b/Mathlib/Topology/Clopen.lean index c560e10009cd9..ff10a04698b33 100644 --- a/Mathlib/Topology/Clopen.lean +++ b/Mathlib/Topology/Clopen.lean @@ -102,6 +102,10 @@ theorem isClopen_inter_of_disjoint_cover_clopen {s a b : Set X} (h : IsClopen s) rintro x ⟨hx₁, hx₂⟩ exact ⟨hx₁, by simpa [not_mem_of_mem_compl hx₂] using cover hx₁⟩ +theorem isClopen_of_disjoint_cover_open {a b : Set X} (cover : univ ⊆ a ∪ b) + (ha : IsOpen a) (hb : IsOpen b) (hab : Disjoint a b) : IsClopen a := + univ_inter a ▸ isClopen_inter_of_disjoint_cover_clopen isClopen_univ cover ha hb hab + @[simp] theorem isClopen_discrete [DiscreteTopology X] (s : Set X) : IsClopen s := ⟨isClosed_discrete _, isOpen_discrete _⟩ diff --git a/Mathlib/Topology/Connected/TotallyDisconnected.lean b/Mathlib/Topology/Connected/TotallyDisconnected.lean index 0da1004c037f4..b7f1ff02b4fb4 100644 --- a/Mathlib/Topology/Connected/TotallyDisconnected.lean +++ b/Mathlib/Topology/Connected/TotallyDisconnected.lean @@ -195,7 +195,7 @@ alias IsTotallySeparated.isTotallyDisconnected := isTotallyDisconnected_of_isTot /-- A space is totally separated if any two points can be separated by two disjoint open sets covering the whole space. -/ -class TotallySeparatedSpace (α : Type u) [TopologicalSpace α] : Prop where +@[mk_iff] class TotallySeparatedSpace (α : Type u) [TopologicalSpace α] : Prop where /-- The universal set `Set.univ` in a totally separated space is totally separated. -/ isTotallySeparated_univ : IsTotallySeparated (univ : Set α) @@ -210,15 +210,19 @@ instance (priority := 100) TotallySeparatedSpace.of_discrete (α : Type*) [Topol ⟨fun _ _ b _ h => ⟨{b}ᶜ, {b}, isOpen_discrete _, isOpen_discrete _, h, rfl, (compl_union_self _).symm.subset, disjoint_compl_left⟩⟩ +theorem totallySeparatedSpace_iff_exists_isClopen {α : Type*} [TopologicalSpace α] : + TotallySeparatedSpace α ↔ ∀ x y : α, x ≠ y → ∃ U : Set α, IsClopen U ∧ x ∈ U ∧ y ∈ Uᶜ := by + simp only [totallySeparatedSpace_iff, IsTotallySeparated, Set.Pairwise, mem_univ, true_implies] + refine forall₃_congr fun x y _ ↦ + ⟨fun ⟨U, V, hU, hV, Ux, Vy, f, disj⟩ ↦ ?_, fun ⟨U, hU, Ux, Ucy⟩ ↦ ?_⟩ + · exact ⟨U, isClopen_of_disjoint_cover_open f hU hV disj, + Ux, fun Uy ↦ Set.disjoint_iff.mp disj ⟨Uy, Vy⟩⟩ + · exact ⟨U, Uᶜ, hU.2, hU.compl.2, Ux, Ucy, (Set.union_compl_self U).ge, disjoint_compl_right⟩ + theorem exists_isClopen_of_totally_separated {α : Type*} [TopologicalSpace α] [TotallySeparatedSpace α] {x y : α} (hxy : x ≠ y) : - ∃ U : Set α, IsClopen U ∧ x ∈ U ∧ y ∈ Uᶜ := by - obtain ⟨U, V, hU, hV, Ux, Vy, f, disj⟩ := - TotallySeparatedSpace.isTotallySeparated_univ (Set.mem_univ x) (Set.mem_univ y) hxy - have hU := isClopen_inter_of_disjoint_cover_clopen isClopen_univ f hU hV disj - rw [univ_inter _] at hU - rw [← Set.subset_compl_iff_disjoint_right, subset_compl_comm] at disj - exact ⟨U, hU, Ux, disj Vy⟩ + ∃ U : Set α, IsClopen U ∧ x ∈ U ∧ y ∈ Uᶜ := + totallySeparatedSpace_iff_exists_isClopen.mp ‹_› _ _ hxy end TotallySeparated @@ -260,7 +264,6 @@ theorem Continuous.connectedComponentsLift_unique (h : Continuous f) (g : Connec (hg : g ∘ (↑) = f) : g = h.connectedComponentsLift := connectedComponents_lift_unique' <| hg.trans h.connectedComponentsLift_comp_coe.symm - instance ConnectedComponents.totallyDisconnectedSpace : TotallyDisconnectedSpace (ConnectedComponents α) := by rw [totallyDisconnectedSpace_iff_connectedComponent_singleton] diff --git a/Mathlib/Topology/MetricSpace/Ultra/TotallyDisconnected.lean b/Mathlib/Topology/MetricSpace/Ultra/TotallyDisconnected.lean deleted file mode 100644 index 161f861120e27..0000000000000 --- a/Mathlib/Topology/MetricSpace/Ultra/TotallyDisconnected.lean +++ /dev/null @@ -1,25 +0,0 @@ -/- -Copyright (c) 2024 Yakov Pechersky. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. -Authors: Yakov Pechersky, David Loeffler --/ -import Mathlib.Topology.MetricSpace.Defs -import Mathlib.Topology.MetricSpace.Ultra.Basic - -/-! -# Ultrametric spaces are totally disconnected - -In a metric space with an ultrametric, the space is totally disconnected. - -## Tags - -ultrametric, nonarchimedean, totally disconnected --/ -open Metric IsUltrametricDist - -instance {X : Type*} [MetricSpace X] [IsUltrametricDist X] : TotallyDisconnectedSpace X := by - refine (totallyDisconnectedSpace_iff X).mpr (isTotallyDisconnected_of_isClopen_set fun x y h ↦ ?_) - obtain ⟨r, hr, hr'⟩ := exists_between (dist_pos.mpr h) - refine ⟨_, IsUltrametricDist.isClopen_ball x r, ?_, ?_⟩ - · simp only [mem_ball, dist_self, hr] - · simp only [mem_ball, dist_comm, not_lt, hr'.le] diff --git a/Mathlib/Topology/MetricSpace/Ultra/TotallySeparated.lean b/Mathlib/Topology/MetricSpace/Ultra/TotallySeparated.lean new file mode 100644 index 0000000000000..09edc0330ec3e --- /dev/null +++ b/Mathlib/Topology/MetricSpace/Ultra/TotallySeparated.lean @@ -0,0 +1,28 @@ +/- +Copyright (c) 2024 Yakov Pechersky. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Yakov Pechersky, David Loeffler +-/ +import Mathlib.Topology.MetricSpace.Defs +import Mathlib.Topology.MetricSpace.Ultra.Basic + +/-! +# Ultrametric spaces are totally separated + +In a metric space with an ultrametric, the space is totally separated, hence totally disconnected. + +## Tags + +ultrametric, nonarchimedean, totally separated, totally disconnected +-/ +open Metric IsUltrametricDist + +instance {X : Type*} [MetricSpace X] [IsUltrametricDist X] : TotallySeparatedSpace X := + totallySeparatedSpace_iff_exists_isClopen.mpr fun x y h ↦ by + obtain ⟨r, hr, hr'⟩ := exists_between (dist_pos.mpr h) + refine ⟨_, IsUltrametricDist.isClopen_ball x r, ?_, ?_⟩ + · simp only [mem_ball, dist_self, hr] + · simp only [Set.mem_compl, mem_ball, dist_comm, not_lt, hr'.le] + +example {X : Type*} [MetricSpace X] [IsUltrametricDist X] : TotallyDisconnectedSpace X := + inferInstance