diff --git a/Mathlib/SetTheory/Cardinal/Basic.lean b/Mathlib/SetTheory/Cardinal/Basic.lean index 10ebaa481ad46..cfd91460ac93e 100644 --- a/Mathlib/SetTheory/Cardinal/Basic.lean +++ b/Mathlib/SetTheory/Cardinal/Basic.lean @@ -335,14 +335,14 @@ def liftInitialSeg : Cardinal.{u} ≤i Cardinal.{max u v} := by rintro ⟨a, ⟨b, rfl⟩⟩ exact ⟨b, rfl⟩ -theorem mem_range_of_le_lift {a : Cardinal.{u}} {b : Cardinal.{max u v}} : +theorem mem_range_lift_of_le {a : Cardinal.{u}} {b : Cardinal.{max u v}} : b ≤ lift.{v, u} a → b ∈ Set.range lift.{v, u} := liftInitialSeg.mem_range_of_le -@[deprecated mem_range_of_le_lift (since := "2024-10-07")] +@[deprecated mem_range_lift_of_le (since := "2024-10-07")] theorem lift_down {a : Cardinal.{u}} {b : Cardinal.{max u v}} : b ≤ lift.{v, u} a → ∃ a', lift.{v, u} a' = b := - mem_range_of_le_lift + mem_range_lift_of_le /-- `Cardinal.lift` as an `OrderEmbedding`. -/ @[deprecated Cardinal.liftInitialSeg (since := "2024-10-07")] @@ -1037,7 +1037,7 @@ theorem lift_sSup {s : Set Cardinal} (hs : BddAbove s) : apply ((le_csSup_iff' (bddAbove_image.{_,u} _ hs)).2 fun c hc => _).antisymm (csSup_le' _) · intro c hc by_contra h - obtain ⟨d, rfl⟩ := Cardinal.mem_range_of_le_lift (not_le.1 h).le + obtain ⟨d, rfl⟩ := Cardinal.mem_range_lift_of_le (not_le.1 h).le simp_rw [lift_le] at h hc rw [csSup_le_iff' hs] at h exact h fun a ha => lift_le.1 <| hc (mem_image_of_mem _ ha) diff --git a/Mathlib/SetTheory/Cardinal/Cofinality.lean b/Mathlib/SetTheory/Cardinal/Cofinality.lean index e0ff450fad422..08369b5257281 100644 --- a/Mathlib/SetTheory/Cardinal/Cofinality.lean +++ b/Mathlib/SetTheory/Cardinal/Cofinality.lean @@ -700,7 +700,7 @@ theorem cof_univ : cof univ.{u, v} = Cardinal.univ.{u, v} := rcases @cof_eq Ordinal.{u} (· < ·) _ with ⟨S, H, Se⟩ rw [univ, ← lift_cof, ← Cardinal.lift_lift.{u+1, v, u}, Cardinal.lift_lt, ← Se] refine lt_of_not_ge fun h => ?_ - cases' Cardinal.mem_range_of_le_lift h with a e + cases' Cardinal.mem_range_lift_of_le h with a e refine Quotient.inductionOn a (fun α e => ?_) e cases' Quotient.exact e with f have f := Equiv.ulift.symm.trans f