diff --git a/Mathlib/SetTheory/Cardinal/Cofinality.lean b/Mathlib/SetTheory/Cardinal/Cofinality.lean index 035f8671aa50d4..53bfb76a4a06ee 100644 --- a/Mathlib/SetTheory/Cardinal/Cofinality.lean +++ b/Mathlib/SetTheory/Cardinal/Cofinality.lean @@ -680,11 +680,14 @@ theorem aleph_cof {o : Ordinal} (ho : o.IsLimit) : (aleph o).ord.cof = o.cof := aleph_isNormal.cof_eq ho @[simp] -theorem cof_omega : cof ω = ℵ₀ := - (aleph0_le_cof.2 omega_isLimit).antisymm' <| by - rw [← card_omega] +theorem cof_omega0 : cof ω = ℵ₀ := + (aleph0_le_cof.2 omega0_isLimit).antisymm' <| by + rw [← card_omega0] apply cof_le_card +@[deprecated (since := "2024-09-30")] +alias cof_omega := cof_omega0 + theorem cof_eq' (r : α → α → Prop) [IsWellOrder α r] (h : IsLimit (type r)) : ∃ S : Set α, (∀ a, ∃ b ∈ S, r a b) ∧ #S = cof (type r) := let ⟨S, H, e⟩ := cof_eq r diff --git a/Mathlib/SetTheory/Cardinal/Ordinal.lean b/Mathlib/SetTheory/Cardinal/Ordinal.lean index f605981cb3c6bc..fe8a2ac9038379 100644 --- a/Mathlib/SetTheory/Cardinal/Ordinal.lean +++ b/Mathlib/SetTheory/Cardinal/Ordinal.lean @@ -61,7 +61,7 @@ theorem ord_isLimit {c} (co : ℵ₀ ≤ c) : (ord c).IsLimit := by rw [← ord_le, ← le_succ_of_isLimit, ord_le] · exact co.trans h · rw [ord_aleph0] - exact omega_isLimit + exact omega0_isLimit theorem noMaxOrder {c} (h : ℵ₀ ≤ c) : NoMaxOrder c.ord.toType := toType_noMax_of_succ_lt (ord_isLimit h).2 @@ -217,11 +217,14 @@ theorem aleph'_limit {o : Ordinal} (ho : o.IsLimit) : aleph' o = ⨆ a : Iio o, exact fun a ha => le_ciSup (bddAbove_of_small _) (⟨a, ha⟩ : Iio o) @[simp] -theorem aleph'_omega : aleph' ω = ℵ₀ := +theorem aleph'_omega0 : aleph' ω = ℵ₀ := eq_of_forall_ge_iff fun c => by - simp only [aleph'_le_of_limit omega_isLimit, lt_omega, exists_imp, aleph0_le] + simp only [aleph'_le_of_limit omega0_isLimit, lt_omega0, exists_imp, aleph0_le] exact forall_swap.trans (forall_congr' fun n => by simp only [forall_eq, aleph'_nat]) +@[deprecated (since := "2024-09-30")] +alias aleph'_omega := aleph'_omega0 + set_option linter.deprecated false in /-- `aleph'` and `aleph_idx` form an equivalence between `Ordinal` and `Cardinal` -/ @[deprecated aleph' (since := "2024-08-28")] @@ -256,7 +259,7 @@ theorem aleph_succ (o : Ordinal) : aleph (succ o) = succ (aleph o) := by rw [aleph_eq_aleph', add_succ, aleph'_succ, aleph_eq_aleph'] @[simp] -theorem aleph_zero : aleph 0 = ℵ₀ := by rw [aleph_eq_aleph', add_zero, aleph'_omega] +theorem aleph_zero : aleph 0 = ℵ₀ := by rw [aleph_eq_aleph', add_zero, aleph'_omega0] theorem aleph_limit {o : Ordinal} (ho : o.IsLimit) : aleph o = ⨆ a : Iio o, aleph a := by apply le_antisymm _ (ciSup_le' _) @@ -264,13 +267,13 @@ theorem aleph_limit {o : Ordinal} (ho : o.IsLimit) : aleph o = ⨆ a : Iio o, al refine ciSup_mono' (bddAbove_of_small _) ?_ rintro ⟨i, hi⟩ cases' lt_or_le i ω with h h - · rcases lt_omega.1 h with ⟨n, rfl⟩ + · rcases lt_omega0.1 h with ⟨n, rfl⟩ use ⟨0, ho.pos⟩ simpa using (nat_lt_aleph0 n).le · exact ⟨⟨_, (sub_lt_of_le h).2 hi⟩, aleph'_le.2 (le_add_sub _ _)⟩ · exact fun i => aleph_le.2 (le_of_lt i.2) -theorem aleph0_le_aleph' {o : Ordinal} : ℵ₀ ≤ aleph' o ↔ ω ≤ o := by rw [← aleph'_omega, aleph'_le] +theorem aleph0_le_aleph' {o : Ordinal} : ℵ₀ ≤ aleph' o ↔ ω ≤ o := by rw [← aleph'_omega0, aleph'_le] theorem aleph0_le_aleph (o : Ordinal) : ℵ₀ ≤ aleph o := by rw [aleph_eq_aleph', aleph0_le_aleph'] @@ -1442,7 +1445,7 @@ scoped notation "ω_" o => ord <| aleph o -/ scoped notation "ω₁" => ord <| aleph 1 -lemma omega_lt_omega1 : ω < ω₁ := ord_aleph0.symm.trans_lt (ord_lt_ord.mpr (aleph0_lt_aleph_one)) +lemma omega0_lt_omega1 : ω < ω₁ := ord_aleph0.symm.trans_lt (ord_lt_ord.mpr (aleph0_lt_aleph_one)) section OrdinalIndices /-! diff --git a/Mathlib/SetTheory/Game/Nim.lean b/Mathlib/SetTheory/Game/Nim.lean index dea7c7401922ce..46bd9ae9c794ea 100644 --- a/Mathlib/SetTheory/Game/Nim.lean +++ b/Mathlib/SetTheory/Game/Nim.lean @@ -343,7 +343,7 @@ theorem grundyValue_nim_add_nim (n m : ℕ) : grundyValue (nim.{u} n + nim.{u} m all_goals intro j have hj := toLeftMovesNim_symm_lt j - obtain ⟨k, hk⟩ := lt_omega.1 (hj.trans (nat_lt_omega _)) + obtain ⟨k, hk⟩ := lt_omega0.1 (hj.trans (nat_lt_omega0 _)) rw [hk, Nat.cast_lt] at hj have := hj.ne have := hj -- The termination checker doesn't work without this. @@ -354,7 +354,7 @@ theorem grundyValue_nim_add_nim (n m : ℕ) : grundyValue (nim.{u} n + nim.{u} m -- For any `k < n ^^^ m`, either `nim (k ^^^ m) + nim m` or `nim n + nim (k ^^^ n)` is a left -- option with Grundy value `k`. · intro k hk - obtain ⟨k, rfl⟩ := Ordinal.lt_omega.1 (hk.trans (Ordinal.nat_lt_omega _)) + obtain ⟨k, rfl⟩ := Ordinal.lt_omega0.1 (hk.trans (Ordinal.nat_lt_omega0 _)) rw [Set.mem_Iio, Nat.cast_lt] at hk obtain hk | hk := Nat.lt_xor_cases hk <;> rw [← natCast_lt] at hk · use toLeftMovesAdd (Sum.inl (toLeftMovesNim ⟨_, hk⟩)) diff --git a/Mathlib/SetTheory/Game/Short.lean b/Mathlib/SetTheory/Game/Short.lean index 1d55f6247f4520..03c8ecbda2c5ba 100644 --- a/Mathlib/SetTheory/Game/Short.lean +++ b/Mathlib/SetTheory/Game/Short.lean @@ -136,7 +136,7 @@ def moveRightShort' {xl xr} (xL xR) [S : Short (mk xl xr xL xR)] (j : xr) : Shor attribute [local instance] moveRightShort' -theorem short_birthday (x : PGame.{u}) : [Short x] → x.birthday < Ordinal.omega := by +theorem short_birthday (x : PGame.{u}) : [Short x] → x.birthday < Ordinal.omega0 := by -- Porting note: Again `induction` is used instead of `pgame_wf_tac` induction x with | mk xl xr xL xR ihl ihr => diff --git a/Mathlib/SetTheory/Ordinal/Arithmetic.lean b/Mathlib/SetTheory/Ordinal/Arithmetic.lean index c53d3f62b99c50..7c32c24c42d886 100644 --- a/Mathlib/SetTheory/Ordinal/Arithmetic.lean +++ b/Mathlib/SetTheory/Ordinal/Arithmetic.lean @@ -539,9 +539,9 @@ theorem sub_isLimit {a b} (l : IsLimit a) (h : b < a) : IsLimit (a - b) := rw [lt_sub, add_succ]; exact l.2 _ (lt_sub.1 h)⟩ -- @[simp] -- Porting note (#10618): simp can prove this -theorem one_add_omega : 1 + ω = ω := by +theorem one_add_omega0 : 1 + ω = ω := by refine le_antisymm ?_ (le_add_left _ _) - rw [omega, ← lift_one.{0}, ← lift_add, lift_le, ← type_unit, ← type_sum_lex] + rw [omega0, ← lift_one.{0}, ← lift_add, lift_le, ← type_unit, ← type_sum_lex] refine ⟨RelEmbedding.collapse (RelEmbedding.ofMonotone ?_ ?_)⟩ · apply Sum.rec · exact fun _ => 0 @@ -550,9 +550,15 @@ theorem one_add_omega : 1 + ω = ω := by cases a <;> cases b <;> intro H <;> cases' H with _ _ H _ _ H <;> [exact H.elim; exact Nat.succ_pos _; exact Nat.succ_lt_succ H] +@[deprecated (since := "2024-09-30")] +alias one_add_omega := one_add_omega0 + @[simp] -theorem one_add_of_omega_le {o} (h : ω ≤ o) : 1 + o = o := by - rw [← Ordinal.add_sub_cancel_of_le h, ← add_assoc, one_add_omega] +theorem one_add_of_omega0_le {o} (h : ω ≤ o) : 1 + o = o := by + rw [← Ordinal.add_sub_cancel_of_le h, ← add_assoc, one_add_omega0] + +@[deprecated (since := "2024-09-30")] +alias one_add_of_omega_le := one_add_of_omega0_le /-! ### Multiplication of ordinals -/ @@ -2252,7 +2258,7 @@ theorem lift_ofNat (n : ℕ) [n.AtLeastTwo] : end Ordinal -/-! ### Properties of `omega` -/ +/-! ### Properties of ω -/ namespace Cardinal @@ -2269,7 +2275,7 @@ theorem ord_aleph0 : ord.{u} ℵ₀ = ω := @[simp] theorem add_one_of_aleph0_le {c} (h : ℵ₀ ≤ c) : c + 1 = c := by - rw [add_comm, ← card_ord c, ← card_one, ← card_add, one_add_of_omega_le] + rw [add_comm, ← card_ord c, ← card_one, ← card_add, one_add_of_omega0_le] rwa [← ord_aleph0, ord_le_ord] end Cardinal @@ -2281,34 +2287,56 @@ theorem lt_add_of_limit {a b c : Ordinal.{u}} (h : IsLimit c) : -- Porting note: `bex_def` is required. rw [← IsNormal.bsup_eq.{u, u} (add_isNormal b) h, lt_bsup, bex_def] -theorem lt_omega {o : Ordinal} : o < ω ↔ ∃ n : ℕ, o = n := by +theorem lt_omega0 {o : Ordinal} : o < ω ↔ ∃ n : ℕ, o = n := by simp_rw [← Cardinal.ord_aleph0, Cardinal.lt_ord, lt_aleph0, card_eq_nat] -theorem nat_lt_omega (n : ℕ) : ↑n < ω := - lt_omega.2 ⟨_, rfl⟩ +@[deprecated (since := "2024-09-30")] +alias lt_omega := lt_omega0 + +theorem nat_lt_omega0 (n : ℕ) : ↑n < ω := + lt_omega0.2 ⟨_, rfl⟩ +@[deprecated (since := "2024-09-30")] +alias nat_lt_omega := nat_lt_omega0 + +theorem omega0_pos : 0 < ω := + nat_lt_omega0 0 + +@[deprecated (since := "2024-09-30")] theorem omega_pos : 0 < ω := - nat_lt_omega 0 + nat_lt_omega0 0 + +theorem omega0_ne_zero : ω ≠ 0 := + omega0_pos.ne' -theorem omega_ne_zero : ω ≠ 0 := - omega_pos.ne' +@[deprecated (since := "2024-09-30")] +alias omega_ne_zero := omega0_ne_zero -theorem one_lt_omega : 1 < ω := by simpa only [Nat.cast_one] using nat_lt_omega 1 +theorem one_lt_omega0 : 1 < ω := by simpa only [Nat.cast_one] using nat_lt_omega0 1 -theorem omega_isLimit : IsLimit ω := - ⟨omega_ne_zero, fun o h => by - let ⟨n, e⟩ := lt_omega.1 h - rw [e]; exact nat_lt_omega (n + 1)⟩ +@[deprecated (since := "2024-09-30")] +alias one_lt_omega := one_lt_omega0 -theorem omega_le {o : Ordinal} : ω ≤ o ↔ ∀ n : ℕ, ↑n ≤ o := - ⟨fun h n => (nat_lt_omega _).le.trans h, fun H => +theorem omega0_isLimit : IsLimit ω := + ⟨omega0_ne_zero, fun o h => by + let ⟨n, e⟩ := lt_omega0.1 h + rw [e]; exact nat_lt_omega0 (n + 1)⟩ + +@[deprecated (since := "2024-09-30")] +alias omega_isLimit := omega0_isLimit + +theorem omega0_le {o : Ordinal} : ω ≤ o ↔ ∀ n : ℕ, ↑n ≤ o := + ⟨fun h n => (nat_lt_omega0 _).le.trans h, fun H => le_of_forall_lt fun a h => by - let ⟨n, e⟩ := lt_omega.1 h + let ⟨n, e⟩ := lt_omega0.1 h rw [e, ← succ_le_iff]; exact H (n + 1)⟩ +@[deprecated (since := "2024-09-30")] +alias omega_le := omega0_le + @[simp] theorem iSup_natCast : iSup Nat.cast = ω := - (Ordinal.iSup_le fun n => (nat_lt_omega n).le).antisymm <| omega_le.2 <| Ordinal.le_iSup _ + (Ordinal.iSup_le fun n => (nat_lt_omega0 n).le).antisymm <| omega0_le.2 <| Ordinal.le_iSup _ set_option linter.deprecated false in @[deprecated iSup_natCast (since := "2024-04-17")] @@ -2322,24 +2350,30 @@ theorem nat_lt_limit {o} (h : IsLimit o) : ∀ n : ℕ, ↑n < o | 0 => lt_of_le_of_ne (Ordinal.zero_le o) h.1.symm | n + 1 => h.2 _ (nat_lt_limit h n) -theorem omega_le_of_isLimit {o} (h : IsLimit o) : ω ≤ o := - omega_le.2 fun n => le_of_lt <| nat_lt_limit h n +theorem omega0_le_of_isLimit {o} (h : IsLimit o) : ω ≤ o := + omega0_le.2 fun n => le_of_lt <| nat_lt_limit h n -theorem isLimit_iff_omega_dvd {a : Ordinal} : IsLimit a ↔ a ≠ 0 ∧ ω ∣ a := by +@[deprecated (since := "2024-09-30")] +alias omega_le_of_isLimit := omega0_le_of_isLimit + +theorem isLimit_iff_omega0_dvd {a : Ordinal} : IsLimit a ↔ a ≠ 0 ∧ ω ∣ a := by refine ⟨fun l => ⟨l.1, ⟨a / ω, le_antisymm ?_ (mul_div_le _ _)⟩⟩, fun h => ?_⟩ · refine (limit_le l).2 fun x hx => le_of_lt ?_ - rw [← div_lt omega_ne_zero, ← succ_le_iff, le_div omega_ne_zero, mul_succ, - add_le_of_limit omega_isLimit] + rw [← div_lt omega0_ne_zero, ← succ_le_iff, le_div omega0_ne_zero, mul_succ, + add_le_of_limit omega0_isLimit] intro b hb - rcases lt_omega.1 hb with ⟨n, rfl⟩ + rcases lt_omega0.1 hb with ⟨n, rfl⟩ exact (add_le_add_right (mul_div_le _ _) _).trans (lt_sub.1 <| nat_lt_limit (sub_isLimit l hx) _).le · rcases h with ⟨a0, b, rfl⟩ - refine mul_isLimit_left omega_isLimit (Ordinal.pos_iff_ne_zero.2 <| mt ?_ a0) + refine mul_isLimit_left omega0_isLimit (Ordinal.pos_iff_ne_zero.2 <| mt ?_ a0) intro e simp only [e, mul_zero] +@[deprecated (since := "2024-09-30")] +alias isLimit_iff_omega_dvd := isLimit_iff_omega0_dvd + theorem add_mul_limit_aux {a b c : Ordinal} (ba : b + a = a) (l : IsLimit c) (IH : ∀ c' < c, (a + b) * succ c' = a * succ c' + b) : (a + b) * c = a * c := le_antisymm @@ -2378,24 +2412,27 @@ theorem add_le_of_forall_add_lt {a b c : Ordinal} (hb : 0 < b) (h : ∀ d < b, a by_contra! hb exact (h _ hb).ne H -theorem IsNormal.apply_omega {f : Ordinal.{u} → Ordinal.{v}} (hf : IsNormal f) : +theorem IsNormal.apply_omega0 {f : Ordinal.{u} → Ordinal.{v}} (hf : IsNormal f) : ⨆ n : ℕ, f n = f ω := by rw [← iSup_natCast, hf.map_iSup] +@[deprecated (since := "2024-09-30")] +alias IsNormal.apply_omega := IsNormal.apply_omega0 + @[simp] theorem iSup_add_nat (o : Ordinal) : ⨆ n : ℕ, o + n = o + ω := - (add_isNormal o).apply_omega + (add_isNormal o).apply_omega0 set_option linter.deprecated false in @[deprecated iSup_add_nat (since := "2024-08-27")] theorem sup_add_nat (o : Ordinal) : (sup fun n : ℕ => o + n) = o + ω := - (add_isNormal o).apply_omega + (add_isNormal o).apply_omega0 @[simp] theorem iSup_mul_nat (o : Ordinal) : ⨆ n : ℕ, o * n = o * ω := by rcases eq_zero_or_pos o with (rfl | ho) · rw [zero_mul] exact iSup_eq_zero_iff.2 fun n => zero_mul (n : Ordinal) - · exact (mul_isNormal ho).apply_omega + · exact (mul_isNormal ho).apply_omega0 set_option linter.deprecated false in @[deprecated iSup_add_nat (since := "2024-08-27")] @@ -2403,7 +2440,7 @@ theorem sup_mul_nat (o : Ordinal) : (sup fun n : ℕ => o * n) = o * ω := by rcases eq_zero_or_pos o with (rfl | ho) · rw [zero_mul] exact sup_eq_zero_iff.2 fun n => zero_mul (n : Ordinal) - · exact (mul_isNormal ho).apply_omega + · exact (mul_isNormal ho).apply_omega0 end Ordinal diff --git a/Mathlib/SetTheory/Ordinal/Basic.lean b/Mathlib/SetTheory/Ordinal/Basic.lean index d9a0cb4a39c91d..895d453ab84d99 100644 --- a/Mathlib/SetTheory/Ordinal/Basic.lean +++ b/Mathlib/SetTheory/Ordinal/Basic.lean @@ -31,9 +31,10 @@ initial segment (or, equivalently, in any way). This total order is well founded `Ordinal.liftInitialSeg`. For a version registering that it is a principal segment embedding if `u < v`, see `Ordinal.liftPrincipalSeg`. -* `Ordinal.omega` or `ω` is the order type of `ℕ`. This definition is universe polymorphic: - `Ordinal.omega.{u} : Ordinal.{u}` (contrast with `ℕ : Type`, which lives in a specific - universe). In some cases the universe level has to be given explicitly. +* `Ordinal.omega0` or `ω` is the order type of `ℕ`. It is called this to match `Cardinal.aleph0` + and so that the omega function can be named `Ordinal.omega`. This definition is universe + polymorphic: `Ordinal.omega0.{u} : Ordinal.{u}` (contrast with `ℕ : Type`, which lives in + a specific universe). In some cases the universe level has to be given explicitly. * `o₁ + o₂` is the order on the disjoint union of `o₁` and `o₂` obtained by declaring that every element of `o₁` is smaller than every element of `o₂`. @@ -701,29 +702,38 @@ set_option linter.deprecated false in theorem lift.initialSeg_coe : (lift.initialSeg.{u, v} : Ordinal → Ordinal) = lift.{v, u} := rfl -/-! ### The first infinite ordinal `omega` -/ +/-! ### The first infinite ordinal ω -/ /-- `ω` is the first infinite ordinal, defined as the order type of `ℕ`. -/ -def omega : Ordinal.{u} := +def omega0 : Ordinal.{u} := lift <| @type ℕ (· < ·) _ +@[deprecated Ordinal.omega0 (since := "2024-09-26")] +alias omega := omega0 + @[inherit_doc] -scoped notation "ω" => Ordinal.omega +scoped notation "ω" => Ordinal.omega0 -/-- Note that the presence of this lemma makes `simp [omega]` form a loop. -/ +/-- Note that the presence of this lemma makes `simp [omega0]` form a loop. -/ @[simp] theorem type_nat_lt : @type ℕ (· < ·) _ = ω := (lift_id _).symm @[simp] -theorem card_omega : card ω = ℵ₀ := +theorem card_omega0 : card ω = ℵ₀ := rfl +@[deprecated (since := "2024-09-30")] +alias card_omega := card_omega0 + @[simp] -theorem lift_omega : lift ω = ω := +theorem lift_omega0 : lift ω = ω := lift_lift _ +@[deprecated (since := "2024-09-30")] +alias lift_omega := lift_omega0 + /-! ### Definition and first properties of addition on ordinals diff --git a/Mathlib/SetTheory/Ordinal/Exponential.lean b/Mathlib/SetTheory/Ordinal/Exponential.lean index d134e192623ac6..f5d3ed03ea35fe 100644 --- a/Mathlib/SetTheory/Ordinal/Exponential.lean +++ b/Mathlib/SetTheory/Ordinal/Exponential.lean @@ -403,7 +403,7 @@ theorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ theorem iSup_pow {o : Ordinal} (ho : 0 < o) : ⨆ n : ℕ, o ^ n = o ^ ω := by simp_rw [← opow_natCast] rcases (one_le_iff_pos.2 ho).lt_or_eq with ho₁ | rfl - · exact (opow_isNormal ho₁).apply_omega + · exact (opow_isNormal ho₁).apply_omega0 · rw [one_opow] refine le_antisymm (Ordinal.iSup_le fun n => by rw [one_opow]) ?_ convert Ordinal.le_iSup _ 0 @@ -414,7 +414,7 @@ set_option linter.deprecated false in theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ n) = o ^ ω := by simp_rw [← opow_natCast] rcases (one_le_iff_pos.2 ho).lt_or_eq with ho₁ | rfl - · exact (opow_isNormal ho₁).apply_omega + · exact (opow_isNormal ho₁).apply_omega0 · rw [one_opow] refine le_antisymm (sup_le fun n => by rw [one_opow]) ?_ convert le_sup (fun n : ℕ => 1 ^ (n : Ordinal)) 0 diff --git a/Mathlib/SetTheory/Ordinal/FixedPoint.lean b/Mathlib/SetTheory/Ordinal/FixedPoint.lean index 235483b8420b98..4fe7f81c092182 100644 --- a/Mathlib/SetTheory/Ordinal/FixedPoint.lean +++ b/Mathlib/SetTheory/Ordinal/FixedPoint.lean @@ -21,8 +21,8 @@ Moreover, we prove some lemmas about the fixed points of specific normal functio * `nfpFamily`, `nfpBFamily`, `nfp`: the next fixed point of a (family of) normal function(s). * `fp_family_unbounded`, `fp_bfamily_unbounded`, `fp_unbounded`: the (common) fixed points of a (family of) normal function(s) are unbounded in the ordinals. -* `deriv_add_eq_mul_omega_add`: a characterization of the derivative of addition. -* `deriv_mul_eq_opow_omega_mul`: a characterization of the derivative of multiplication. +* `deriv_add_eq_mul_omega0_add`: a characterization of the derivative of addition. +* `deriv_mul_eq_opow_omega0_mul`: a characterization of the derivative of multiplication. -/ @@ -521,20 +521,23 @@ end /-! ### Fixed points of addition -/ @[simp] -theorem nfp_add_zero (a) : nfp (a + ·) 0 = a * omega := by +theorem nfp_add_zero (a) : nfp (a + ·) 0 = a * ω := by simp_rw [← iSup_iterate_eq_nfp, ← iSup_mul_nat] congr; funext n induction' n with n hn · rw [Nat.cast_zero, mul_zero, iterate_zero_apply] · rw [iterate_succ_apply', Nat.add_comm, Nat.cast_add, Nat.cast_one, mul_one_add, hn] -theorem nfp_add_eq_mul_omega {a b} (hba : b ≤ a * omega) : nfp (a + ·) b = a * omega := by +theorem nfp_add_eq_mul_omega0 {a b} (hba : b ≤ a * ω) : nfp (a + ·) b = a * ω := by apply le_antisymm (nfp_le_fp (add_isNormal a).monotone hba _) · rw [← nfp_add_zero] exact nfp_monotone (add_isNormal a).monotone (Ordinal.zero_le b) - · dsimp; rw [← mul_one_add, one_add_omega] + · dsimp; rw [← mul_one_add, one_add_omega0] -theorem add_eq_right_iff_mul_omega_le {a b : Ordinal} : a + b = b ↔ a * omega ≤ b := by +@[deprecated (since := "2024-09-30")] +alias nfp_add_eq_mul_omega := nfp_add_eq_mul_omega0 + +theorem add_eq_right_iff_mul_omega0_le {a b : Ordinal} : a + b = b ↔ a * ω ≤ b := by refine ⟨fun h => ?_, fun h => ?_⟩ · rw [← nfp_add_zero a, ← deriv_zero_right] cases' (add_isNormal a).fp_iff_deriv.1 h with c hc @@ -542,25 +545,34 @@ theorem add_eq_right_iff_mul_omega_le {a b : Ordinal} : a + b = b ↔ a * omega exact (deriv_isNormal _).monotone (Ordinal.zero_le _) · have := Ordinal.add_sub_cancel_of_le h nth_rw 1 [← this] - rwa [← add_assoc, ← mul_one_add, one_add_omega] + rwa [← add_assoc, ← mul_one_add, one_add_omega0] + +@[deprecated (since := "2024-09-30")] +alias add_eq_right_iff_mul_omega_le := add_eq_right_iff_mul_omega0_le -theorem add_le_right_iff_mul_omega_le {a b : Ordinal} : a + b ≤ b ↔ a * omega ≤ b := by - rw [← add_eq_right_iff_mul_omega_le] +theorem add_le_right_iff_mul_omega0_le {a b : Ordinal} : a + b ≤ b ↔ a * ω ≤ b := by + rw [← add_eq_right_iff_mul_omega0_le] exact (add_isNormal a).le_iff_eq -theorem deriv_add_eq_mul_omega_add (a b : Ordinal.{u}) : deriv (a + ·) b = a * omega + b := by +@[deprecated (since := "2024-09-30")] +alias add_le_right_iff_mul_omega_le := add_le_right_iff_mul_omega0_le + +theorem deriv_add_eq_mul_omega0_add (a b : Ordinal.{u}) : deriv (a + ·) b = a * ω + b := by revert b rw [← funext_iff, IsNormal.eq_iff_zero_and_succ (deriv_isNormal _) (add_isNormal _)] refine ⟨?_, fun a h => ?_⟩ · rw [deriv_zero_right, add_zero] exact nfp_add_zero a · rw [deriv_succ, h, add_succ] - exact nfp_eq_self (add_eq_right_iff_mul_omega_le.2 ((le_add_right _ _).trans (le_succ _))) + exact nfp_eq_self (add_eq_right_iff_mul_omega0_le.2 ((le_add_right _ _).trans (le_succ _))) + +@[deprecated (since := "2024-09-30")] +alias deriv_add_eq_mul_omega_add := deriv_add_eq_mul_omega0_add /-! ### Fixed points of multiplication -/ @[simp] -theorem nfp_mul_one {a : Ordinal} (ha : 0 < a) : nfp (a * ·) 1 = (a^omega) := by +theorem nfp_mul_one {a : Ordinal} (ha : 0 < a) : nfp (a * ·) 1 = (a ^ ω) := by rw [← iSup_iterate_eq_nfp, ← iSup_pow ha] congr funext n @@ -575,22 +587,25 @@ theorem nfp_mul_zero (a : Ordinal) : nfp (a * ·) 0 = 0 := by induction' n with n hn; · rfl dsimp only; rwa [iterate_succ_apply, mul_zero] -theorem nfp_mul_eq_opow_omega {a b : Ordinal} (hb : 0 < b) (hba : b ≤ (a^omega)) : - nfp (a * ·) b = (a^omega.{u}) := by +theorem nfp_mul_eq_opow_omega0 {a b : Ordinal} (hb : 0 < b) (hba : b ≤ (a ^ ω)) : + nfp (a * ·) b = (a ^ (ω : Ordinal.{u})) := by rcases eq_zero_or_pos a with ha | ha - · rw [ha, zero_opow omega_ne_zero] at hba ⊢ + · rw [ha, zero_opow omega0_ne_zero] at hba ⊢ simp_rw [Ordinal.le_zero.1 hba, zero_mul] exact nfp_zero_left 0 apply le_antisymm · apply nfp_le_fp (mul_isNormal ha).monotone hba - rw [← opow_one_add, one_add_omega] + rw [← opow_one_add, one_add_omega0] rw [← nfp_mul_one ha] exact nfp_monotone (mul_isNormal ha).monotone (one_le_iff_pos.2 hb) -theorem eq_zero_or_opow_omega_le_of_mul_eq_right {a b : Ordinal} (hab : a * b = b) : - b = 0 ∨ (a^omega.{u}) ≤ b := by +@[deprecated (since := "2024-09-30")] +alias nfp_mul_eq_opow_omega := nfp_mul_eq_opow_omega0 + +theorem eq_zero_or_opow_omega0_le_of_mul_eq_right {a b : Ordinal} (hab : a * b = b) : + b = 0 ∨ (a ^ (ω : Ordinal.{u})) ≤ b := by rcases eq_zero_or_pos a with ha | ha - · rw [ha, zero_opow omega_ne_zero] + · rw [ha, zero_opow omega0_ne_zero] exact Or.inr (Ordinal.zero_le b) rw [or_iff_not_imp_left] intro hb @@ -598,51 +613,66 @@ theorem eq_zero_or_opow_omega_le_of_mul_eq_right {a b : Ordinal} (hab : a * b = rw [← Ne, ← one_le_iff_ne_zero] at hb exact nfp_le_fp (mul_isNormal ha).monotone hb (le_of_eq hab) -theorem mul_eq_right_iff_opow_omega_dvd {a b : Ordinal} : a * b = b ↔ (a^omega) ∣ b := by +@[deprecated (since := "2024-09-30")] +alias eq_zero_or_opow_omega_le_of_mul_eq_right := eq_zero_or_opow_omega0_le_of_mul_eq_right + +theorem mul_eq_right_iff_opow_omega0_dvd {a b : Ordinal} : a * b = b ↔ (a ^ ω) ∣ b := by rcases eq_zero_or_pos a with ha | ha - · rw [ha, zero_mul, zero_opow omega_ne_zero, zero_dvd_iff] + · rw [ha, zero_mul, zero_opow omega0_ne_zero, zero_dvd_iff] exact eq_comm refine ⟨fun hab => ?_, fun h => ?_⟩ · rw [dvd_iff_mod_eq_zero] - rw [← div_add_mod b (a^omega), mul_add, ← mul_assoc, ← opow_one_add, one_add_omega, + rw [← div_add_mod b (a ^ ω), mul_add, ← mul_assoc, ← opow_one_add, one_add_omega0, add_left_cancel] at hab - cases' eq_zero_or_opow_omega_le_of_mul_eq_right hab with hab hab + cases' eq_zero_or_opow_omega0_le_of_mul_eq_right hab with hab hab · exact hab - refine (not_lt_of_le hab (mod_lt b (opow_ne_zero omega ?_))).elim + refine (not_lt_of_le hab (mod_lt b (opow_ne_zero ω ?_))).elim rwa [← Ordinal.pos_iff_ne_zero] cases' h with c hc - rw [hc, ← mul_assoc, ← opow_one_add, one_add_omega] + rw [hc, ← mul_assoc, ← opow_one_add, one_add_omega0] + +@[deprecated (since := "2024-09-30")] +alias mul_eq_right_iff_opow_omega_dvd := mul_eq_right_iff_opow_omega0_dvd -theorem mul_le_right_iff_opow_omega_dvd {a b : Ordinal} (ha : 0 < a) : - a * b ≤ b ↔ (a^omega) ∣ b := by - rw [← mul_eq_right_iff_opow_omega_dvd] +theorem mul_le_right_iff_opow_omega0_dvd {a b : Ordinal} (ha : 0 < a) : + a * b ≤ b ↔ (a ^ ω) ∣ b := by + rw [← mul_eq_right_iff_opow_omega0_dvd] exact (mul_isNormal ha).le_iff_eq -theorem nfp_mul_opow_omega_add {a c : Ordinal} (b) (ha : 0 < a) (hc : 0 < c) (hca : c ≤ (a^omega)) : - nfp (a * ·) ((a^omega) * b + c) = (a^omega.{u}) * succ b := by +@[deprecated (since := "2024-09-30")] +alias mul_le_right_iff_opow_omega_dvd := mul_le_right_iff_opow_omega0_dvd + +theorem nfp_mul_opow_omega0_add {a c : Ordinal} (b) (ha : 0 < a) (hc : 0 < c) + (hca : c ≤ a ^ ω) : nfp (a * ·) (a ^ ω * b + c) = (a ^ (ω : Ordinal.{u})) * succ b := by apply le_antisymm · apply nfp_le_fp (mul_isNormal ha).monotone · rw [mul_succ] apply add_le_add_left hca - · dsimp only; rw [← mul_assoc, ← opow_one_add, one_add_omega] - · cases' mul_eq_right_iff_opow_omega_dvd.1 ((mul_isNormal ha).nfp_fp ((a^omega) * b + c)) with + · dsimp only; rw [← mul_assoc, ← opow_one_add, one_add_omega0] + · cases' mul_eq_right_iff_opow_omega0_dvd.1 ((mul_isNormal ha).nfp_fp ((a ^ ω) * b + c)) with d hd rw [hd] apply mul_le_mul_left' - have := le_nfp (Mul.mul a) ((a^omega) * b + c) + have := le_nfp (a * ·) (a ^ ω * b + c) erw [hd] at this - have := (add_lt_add_left hc ((a^omega) * b)).trans_le this - rw [add_zero, mul_lt_mul_iff_left (opow_pos omega ha)] at this + have := (add_lt_add_left hc (a ^ ω * b)).trans_le this + rw [add_zero, mul_lt_mul_iff_left (opow_pos ω ha)] at this rwa [succ_le_iff] -theorem deriv_mul_eq_opow_omega_mul {a : Ordinal.{u}} (ha : 0 < a) (b) : - deriv (a * ·) b = (a^omega) * b := by +@[deprecated (since := "2024-09-30")] +alias nfp_mul_opow_omega_add := nfp_mul_opow_omega0_add + +theorem deriv_mul_eq_opow_omega0_mul {a : Ordinal.{u}} (ha : 0 < a) (b) : + deriv (a * ·) b = (a ^ ω) * b := by revert b rw [← funext_iff, - IsNormal.eq_iff_zero_and_succ (deriv_isNormal _) (mul_isNormal (opow_pos omega ha))] + IsNormal.eq_iff_zero_and_succ (deriv_isNormal _) (mul_isNormal (opow_pos ω ha))] refine ⟨?_, fun c h => ?_⟩ · dsimp only; rw [deriv_zero_right, nfp_mul_zero, mul_zero] · rw [deriv_succ, h] - exact nfp_mul_opow_omega_add c ha zero_lt_one (one_le_iff_pos.2 (opow_pos _ ha)) + exact nfp_mul_opow_omega0_add c ha zero_lt_one (one_le_iff_pos.2 (opow_pos _ ha)) + +@[deprecated (since := "2024-09-30")] +alias deriv_mul_eq_opow_omega_mul := deriv_mul_eq_opow_omega0_mul end Ordinal diff --git a/Mathlib/SetTheory/Ordinal/Notation.lean b/Mathlib/SetTheory/Ordinal/Notation.lean index d32c08e3c86d19..fd54a141e21311 100644 --- a/Mathlib/SetTheory/Ordinal/Notation.lean +++ b/Mathlib/SetTheory/Ordinal/Notation.lean @@ -139,12 +139,15 @@ theorem repr_ofNat (n : ℕ) : repr (ofNat n) = n := by cases n <;> simp -- @[simp] -- Porting note (#10618): simp can prove this theorem repr_one : repr (ofNat 1) = (1 : ℕ) := repr_ofNat 1 -theorem omega_le_oadd (e n a) : ω ^ repr e ≤ repr (oadd e n a) := by +theorem omega0_le_oadd (e n a) : ω ^ repr e ≤ repr (oadd e n a) := by refine le_trans ?_ (le_add_right _ _) - simpa using (Ordinal.mul_le_mul_iff_left <| opow_pos (repr e) omega_pos).2 (natCast_le.2 n.2) + simpa using (Ordinal.mul_le_mul_iff_left <| opow_pos (repr e) omega0_pos).2 (natCast_le.2 n.2) + +@[deprecated (since := "2024-09-30")] +alias omega_le_oadd := omega0_le_oadd theorem oadd_pos (e n a) : 0 < oadd e n a := - @lt_of_lt_of_le _ _ _ (ω ^ repr e) _ (opow_pos (repr e) omega_pos) (omega_le_oadd e n a) + @lt_of_lt_of_le _ _ _ (ω ^ repr e) _ (opow_pos (repr e) omega0_pos) (omega0_le_oadd e n a) /-- Compare ordinal notations -/ def cmp : ONote → ONote → Ordering @@ -231,14 +234,14 @@ theorem NF.zero_of_zero {e n a} (h : NF (ONote.oadd e n a)) (e0 : e = 0) : a = 0 theorem NFBelow.repr_lt {o b} (h : NFBelow o b) : repr o < ω ^ b := by induction h with - | zero => exact opow_pos _ omega_pos + | zero => exact opow_pos _ omega0_pos | oadd' _ _ h₃ _ IH => rw [repr] apply ((add_lt_add_iff_left _).2 IH).trans_le rw [← mul_succ] - apply (mul_le_mul_left' (succ_le_of_lt (nat_lt_omega _)) _).trans + apply (mul_le_mul_left' (succ_le_of_lt (nat_lt_omega0 _)) _).trans rw [← opow_succ] - exact opow_le_opow_right omega_pos (succ_le_of_lt h₃) + exact opow_le_opow_right omega0_pos (succ_le_of_lt h₃) theorem NFBelow.mono {o b₁ b₂} (bb : b₁ ≤ b₂) (h : NFBelow o b₁) : NFBelow o b₂ := by induction h with @@ -253,7 +256,7 @@ theorem NF.below_of_lt' : ∀ {o b}, repr o < ω ^ b → NF o → NFBelow o b | 0, _, _, _ => NFBelow.zero | ONote.oadd _ _ _, _, H, h => h.below_of_lt <| - (opow_lt_opow_iff_right one_lt_omega).1 <| lt_of_le_of_lt (omega_le_oadd _ _ _) H + (opow_lt_opow_iff_right one_lt_omega0).1 <| lt_of_le_of_lt (omega0_le_oadd _ _ _) H theorem nfBelow_ofNat : ∀ n, NFBelow (ofNat n) 1 | 0 => NFBelow.zero @@ -267,13 +270,13 @@ instance nf_one : NF 1 := by rw [← ofNat_one]; infer_instance theorem oadd_lt_oadd_1 {e₁ n₁ o₁ e₂ n₂ o₂} (h₁ : NF (oadd e₁ n₁ o₁)) (h : e₁ < e₂) : oadd e₁ n₁ o₁ < oadd e₂ n₂ o₂ := @lt_of_lt_of_le _ _ (repr (oadd e₁ n₁ o₁)) _ _ - (NF.below_of_lt h h₁).repr_lt (omega_le_oadd e₂ n₂ o₂) + (NF.below_of_lt h h₁).repr_lt (omega0_le_oadd e₂ n₂ o₂) theorem oadd_lt_oadd_2 {e o₁ o₂ : ONote} {n₁ n₂ : ℕ+} (h₁ : NF (oadd e n₁ o₁)) (h : (n₁ : ℕ) < n₂) : oadd e n₁ o₁ < oadd e n₂ o₂ := by simp only [lt_def, repr] refine lt_of_lt_of_le ((add_lt_add_iff_left _).2 h₁.snd'.repr_lt) (le_trans ?_ (le_add_right _ _)) - rwa [← mul_succ,Ordinal.mul_le_mul_iff_left (opow_pos _ omega_pos), succ_le_iff, natCast_lt] + rwa [← mul_succ,Ordinal.mul_le_mul_iff_left (opow_pos _ omega0_pos), succ_le_iff, natCast_lt] theorem oadd_lt_oadd_3 {e n a₁ a₂} (h : a₁ < a₂) : oadd e n a₁ < oadd e n a₂ := by rw [lt_def]; unfold repr @@ -325,7 +328,7 @@ theorem repr_inj {a b} [NF a] [NF b] : repr a = repr b ↔ a = b := | Ordering.eq, h => h, congr_arg _⟩ -theorem NF.of_dvd_omega_opow {b e n a} (h : NF (ONote.oadd e n a)) +theorem NF.of_dvd_omega0_opow {b e n a} (h : NF (ONote.oadd e n a)) (d : ω ^ b ∣ repr (ONote.oadd e n a)) : b ≤ repr e ∧ ω ^ b ∣ repr a := by have := mt repr_inj.1 (fun h => by injection h : ONote.oadd e n a ≠ 0) @@ -333,9 +336,15 @@ theorem NF.of_dvd_omega_opow {b e n a} (h : NF (ONote.oadd e n a)) simp only [repr] at d exact ⟨L, (dvd_add_iff <| (opow_dvd_opow _ L).mul_right _).1 d⟩ -theorem NF.of_dvd_omega {e n a} (h : NF (ONote.oadd e n a)) : +@[deprecated (since := "2024-09-30")] +alias NF.of_dvd_omega_opow := NF.of_dvd_omega0_opow + +theorem NF.of_dvd_omega0 {e n a} (h : NF (ONote.oadd e n a)) : ω ∣ repr (ONote.oadd e n a) → repr e ≠ 0 ∧ ω ∣ repr a := by - (rw [← opow_one ω, ← one_le_iff_ne_zero]; exact h.of_dvd_omega_opow) + (rw [← opow_one ω, ← one_le_iff_ne_zero]; exact h.of_dvd_omega0_opow) + +@[deprecated (since := "2024-09-30")] +alias NF.of_dvd_omega := NF.of_dvd_omega0 /-- `TopBelow b o` asserts that the largest exponent in `o`, if it exists, is less than `b`. This is an auxiliary definition @@ -443,7 +452,7 @@ theorem repr_add : ∀ (o₁ o₂) [NF o₁] [NF o₂], repr (o₁ + o₂) = rep unfold repr at this cases he' : e' <;> simp only [he', zero_def, opow_zero, repr, gt_iff_lt] at this ⊢ <;> exact lt_of_le_of_lt (le_add_right _ _) this - · simpa using (Ordinal.mul_le_mul_iff_left <| opow_pos (repr e') omega_pos).2 + · simpa using (Ordinal.mul_le_mul_iff_left <| opow_pos (repr e') omega0_pos).2 (natCast_le.2 n'.pos) · rw [ee, ← add_assoc, ← mul_add] @@ -503,7 +512,7 @@ theorem repr_sub : ∀ (o₁ o₂) [NF o₁] [NF o₂], repr (o₁ - o₂) = rep simpa using mul_le_mul_left' (natCast_le.2 <| Nat.succ_pos _) _ · exact (Ordinal.sub_eq_of_add_eq <| - add_absorp (h₂.below_of_lt ee).repr_lt <| omega_le_oadd _ _ _).symm + add_absorp (h₂.below_of_lt ee).repr_lt <| omega0_le_oadd _ _ _).symm /-- Multiplication of ordinal notations (correct only for normal input) -/ def mul : ONote → ONote → ONote @@ -557,7 +566,7 @@ theorem repr_mul : ∀ (o₁ o₂) [NF o₁] [NF o₂], repr (o₁ * o₂) = rep simp [(· * ·)] have ao : repr a₁ + ω ^ repr e₁ * (n₁ : ℕ) = ω ^ repr e₁ * (n₁ : ℕ) := by apply add_absorp h₁.snd'.repr_lt - simpa using (Ordinal.mul_le_mul_iff_left <| opow_pos _ omega_pos).2 (natCast_le.2 n₁.2) + simpa using (Ordinal.mul_le_mul_iff_left <| opow_pos _ omega0_pos).2 (natCast_le.2 n₁.2) by_cases e0 : e₂ = 0 · cases' Nat.exists_eq_succ_of_ne_zero n₂.ne_zero with x xe simp only [e0, repr, PNat.mul_coe, natCast_mul, opow_zero, one_mul] @@ -570,8 +579,8 @@ theorem repr_mul : ∀ (o₁ o₂) [NF o₁] [NF o₂], repr (o₁ * o₂) = rep rw [← mul_assoc] congr 2 have := mt repr_inj.1 e0 - rw [add_mul_limit ao (opow_isLimit_left omega_isLimit this), mul_assoc, - mul_omega_dvd (natCast_pos.2 n₁.pos) (nat_lt_omega _)] + rw [add_mul_limit ao (opow_isLimit_left omega0_isLimit this), mul_assoc, + mul_omega0_dvd (natCast_pos.2 n₁.pos) (nat_lt_omega0 _)] simpa using opow_dvd_opow ω (one_le_iff_ne_zero.2 this) /-- Calculate division and remainder of `o` mod ω. @@ -680,7 +689,7 @@ theorem nf_repr_split' : ∀ {o o' m} [NF o], split' o = (o', m) → NF o' ∧ r · simp at this ⊢ refine IH₁.below_of_lt' - ((Ordinal.mul_lt_mul_iff_left omega_pos).1 <| lt_of_le_of_lt (le_add_right _ m') ?_) + ((Ordinal.mul_lt_mul_iff_left omega0_pos).1 <| lt_of_le_of_lt (le_add_right _ m') ?_) rw [← this, ← IH₂] exact h.snd'.repr_lt · rw [this] @@ -723,9 +732,9 @@ theorem split_dvd {o o' m} [NF o] (h : split o = (o', m)) : ω ∣ repr o' := by theorem split_add_lt {o e n a m} [NF o] (h : split o = (oadd e n a, m)) : repr a + m < ω ^ repr e := by cases' nf_repr_split h with h₁ h₂ - cases' h₁.of_dvd_omega (split_dvd h) with e0 d - apply principal_add_omega_opow _ h₁.snd'.repr_lt (lt_of_lt_of_le (nat_lt_omega _) _) - simpa using opow_le_opow_right omega_pos (one_le_iff_ne_zero.2 e0) + cases' h₁.of_dvd_omega0 (split_dvd h) with e0 d + apply principal_add_omega0_opow _ h₁.snd'.repr_lt (lt_of_lt_of_le (nat_lt_omega0 _) _) + simpa using opow_le_opow_right omega0_pos (one_le_iff_ne_zero.2 e0) @[simp] theorem mulNat_eq_mul (n o) : mulNat o n = o * ofNat n := by cases o <;> cases n <;> rfl @@ -781,22 +790,22 @@ theorem repr_opow_aux₁ {e a} [Ne : NF e] [Na : NF a] {a' : Ordinal} (e0 : repr (ω ^ repr e) ^ (ω : Ordinal.{0}) := by subst aa have No := Ne.oadd n (Na.below_of_lt' h) - have := omega_le_oadd e n a + have := omega0_le_oadd e n a rw [repr] at this refine le_antisymm ?_ (opow_le_opow_left _ this) - apply (opow_le_of_limit ((opow_pos _ omega_pos).trans_le this).ne' omega_isLimit).2 + apply (opow_le_of_limit ((opow_pos _ omega0_pos).trans_le this).ne' omega0_isLimit).2 intro b l have := (No.below_of_lt (lt_succ _)).repr_lt rw [repr] at this apply (opow_le_opow_left b <| this.le).trans rw [← opow_mul, ← opow_mul] - apply opow_le_opow_right omega_pos + apply opow_le_opow_right omega0_pos rcases le_or_lt ω (repr e) with h | h · apply (mul_le_mul_left' (le_succ b) _).trans - rw [← add_one_eq_succ, add_mul_succ _ (one_add_of_omega_le h), add_one_eq_succ, succ_le_iff, + rw [← add_one_eq_succ, add_mul_succ _ (one_add_of_omega0_le h), add_one_eq_succ, succ_le_iff, Ordinal.mul_lt_mul_iff_left (Ordinal.pos_iff_ne_zero.2 e0)] - exact omega_isLimit.2 _ l - · apply (principal_mul_omega (omega_isLimit.2 _ h) l).le.trans + exact omega0_isLimit.2 _ l + · apply (principal_mul_omega0 (omega0_isLimit.2 _ h) l).le.trans simpa using mul_le_mul_right' (one_le_iff_ne_zero.2 e0) ω section @@ -827,30 +836,30 @@ theorem repr_opow_aux₂ {a0 a'} [N0 : NF a0] [Na' : NF a'] (m : ℕ) (d : ω · simp only [R', ONote.repr_scale, ONote.repr, ONote.mulNat_eq_mul, ONote.opowAux, ONote.repr_ofNat, ONote.repr_mul, ONote.repr_add, Ordinal.opow_mul, ONote.zero_add] have α0 : 0 < α' := by simpa [lt_def, repr] using oadd_pos a0 n a' - have ω00 : 0 < ω0 ^ (k : Ordinal) := opow_pos _ (opow_pos _ omega_pos) + have ω00 : 0 < ω0 ^ (k : Ordinal) := opow_pos _ (opow_pos _ omega0_pos) have Rl : R < ω ^ (repr a0 * succ ↑k) := by by_cases k0 : k = 0 · simp only [k0, Nat.cast_zero, succ_zero, mul_one, R] - refine lt_of_lt_of_le ?_ (opow_le_opow_right omega_pos (one_le_iff_ne_zero.2 e0)) - cases' m with m <;> simp [opowAux, omega_pos] + refine lt_of_lt_of_le ?_ (opow_le_opow_right omega0_pos (one_le_iff_ne_zero.2 e0)) + cases' m with m <;> simp [opowAux, omega0_pos] rw [← add_one_eq_succ, ← Nat.cast_succ] - apply nat_lt_omega + apply nat_lt_omega0 · rw [opow_mul] exact IH.1 k0 refine ⟨fun _ => ?_, ?_⟩ · rw [RR, ← opow_mul _ _ (succ k.succ)] have e0 := Ordinal.pos_iff_ne_zero.2 e0 have rr0 : 0 < repr a0 + repr a0 := lt_of_lt_of_le e0 (le_add_left _ _) - apply principal_add_omega_opow + apply principal_add_omega0_opow · simp only [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one, add_one_eq_succ, opow_mul, opow_succ, mul_assoc] rw [Ordinal.mul_lt_mul_iff_left ω00, ← Ordinal.opow_add] have : _ < ω ^ (repr a0 + repr a0) := (No.below_of_lt ?_).repr_lt - · exact mul_lt_omega_opow rr0 this (nat_lt_omega _) + · exact mul_lt_omega0_opow rr0 this (nat_lt_omega0 _) · simpa using (add_lt_add_iff_left (repr a0)).2 e0 · exact lt_of_lt_of_le Rl - (opow_le_opow_right omega_pos <| + (opow_le_opow_right omega0_pos <| mul_le_mul_left' (succ_le_succ_iff.2 (natCast_le.2 (le_of_lt k.lt_succ_self))) _) calc (ω0 ^ (k.succ : Ordinal)) * α' + R' @@ -862,10 +871,10 @@ theorem repr_opow_aux₂ {a0 a'} [N0 : NF a0] [Na' : NF a'] (m : ℕ) (d : ω · have αd : ω ∣ α' := dvd_add (dvd_mul_of_dvd_left (by simpa using opow_dvd_opow ω (one_le_iff_ne_zero.2 e0)) _) d rw [mul_add (ω0 ^ (k : Ordinal)), add_assoc, ← mul_assoc, ← opow_succ, - add_mul_limit _ (isLimit_iff_omega_dvd.2 ⟨ne_of_gt α0, αd⟩), mul_assoc, - @mul_omega_dvd n (natCast_pos.2 n.pos) (nat_lt_omega _) _ αd] + add_mul_limit _ (isLimit_iff_omega0_dvd.2 ⟨ne_of_gt α0, αd⟩), mul_assoc, + @mul_omega0_dvd n (natCast_pos.2 n.pos) (nat_lt_omega0 _) _ αd] apply @add_absorp _ (repr a0 * succ ↑k) - · refine principal_add_omega_opow _ ?_ Rl + · refine principal_add_omega0_opow _ ?_ Rl rw [opow_mul, opow_succ, Ordinal.mul_lt_mul_iff_left ω00] exact No.snd'.repr_lt · have := mul_le_mul_left' (one_le_iff_pos.2 <| natCast_pos.2 n.pos) (ω0 ^ succ (k : Ordinal)) @@ -878,7 +887,7 @@ theorem repr_opow_aux₂ {a0 a'} [N0 : NF a0] [Na' : NF a'] (m : ℕ) (d : ω apply add_absorp Rl rw [opow_mul, opow_succ] apply mul_le_mul_left' - simpa [repr] using omega_le_oadd a0 n a' + simpa [repr] using omega0_le_oadd a0 n a' end @@ -897,18 +906,18 @@ theorem repr_opow (o₁ o₂) [NF o₁] [NF o₂] : repr (o₁ ^ o₂) = repr o simp only [opow_def, opowAux2, opow, e₁, h, r₁, e₂, r₂, repr, opow_zero, Nat.succPNat_coe, Nat.cast_succ, Nat.cast_zero, _root_.zero_add, mul_one, add_zero, one_opow, npow_eq_pow] - rw [opow_add, opow_mul, opow_omega, add_one_eq_succ] + rw [opow_add, opow_mul, opow_omega0, add_one_eq_succ] · congr conv_lhs => dsimp [(· ^ ·)] simp [Pow.pow, opow, Ordinal.succ_ne_zero] rw [opow_natCast] · simpa [Nat.one_le_iff_ne_zero] - · rw [← Nat.cast_succ, lt_omega] + · rw [← Nat.cast_succ, lt_omega0] exact ⟨_, rfl⟩ · haveI := N₁.fst haveI := N₁.snd - cases' N₁.of_dvd_omega (split_dvd e₁) with a00 ad + cases' N₁.of_dvd_omega0 (split_dvd e₁) with a00 ad have al := split_add_lt e₁ have aa : repr (a' + ofNat m) = repr a' + m := by simp only [eq_self_iff_true, ONote.repr_ofNat, ONote.repr_add] @@ -955,13 +964,13 @@ private theorem exists_lt_add {α} [hα : Nonempty α] {o : Ordinal} {f : α → refine (H h).imp fun i H => ?_ rwa [← Ordinal.add_sub_cancel_of_le h', add_lt_add_iff_left] -private theorem exists_lt_mul_omega' {o : Ordinal} ⦃a⦄ (h : a < o * ω) : +private theorem exists_lt_mul_omega0' {o : Ordinal} ⦃a⦄ (h : a < o * ω) : ∃ i : ℕ, a < o * ↑i + o := by - obtain ⟨i, hi, h'⟩ := (lt_mul_of_limit omega_isLimit).1 h - obtain ⟨i, rfl⟩ := lt_omega.1 hi + obtain ⟨i, hi, h'⟩ := (lt_mul_of_limit omega0_isLimit).1 h + obtain ⟨i, rfl⟩ := lt_omega0.1 hi exact ⟨i, h'.trans_le (le_add_right _ _)⟩ -private theorem exists_lt_omega_opow' {α} {o b : Ordinal} (hb : 1 < b) (ho : o.IsLimit) +private theorem exists_lt_omega0_opow' {α} {o b : Ordinal} (hb : 1 < b) (ho : o.IsLimit) {f : α → Ordinal} (H : ∀ ⦃a⦄, a < o → ∃ i, a < f i) ⦃a⦄ (h : a < b ^ o) : ∃ i, a < b ^ f i := by obtain ⟨d, hd, h'⟩ := (lt_opow_of_limit (zero_lt_one.trans hb).ne' ho).1 h @@ -1014,39 +1023,40 @@ theorem fundamentalSequence_has_prop (o) : FundamentalSequenceProp o (fundamenta have := PNat.natPred_add_one m; rw [e'] at this; exact PNat.coe_inj.1 this.symm]) <;> (try rw [show m = (m' + 1).succPNat by rw [← e', ← PNat.coe_inj, Nat.succPNat_coe, ← Nat.add_one, PNat.natPred_add_one]]) <;> - simp only [repr, iha, ihb, opow_lt_opow_iff_right one_lt_omega, add_lt_add_iff_left, add_zero, - eq_self_iff_true, lt_add_iff_pos_right, lt_def, mul_one, Nat.cast_zero, Nat.cast_succ, - Nat.succPNat_coe, opow_succ, opow_zero, mul_add_one, PNat.one_coe, succ_zero, + simp only [repr, iha, ihb, opow_lt_opow_iff_right one_lt_omega0, add_lt_add_iff_left, + add_zero, eq_self_iff_true, lt_add_iff_pos_right, lt_def, mul_one, Nat.cast_zero, + Nat.cast_succ, Nat.succPNat_coe, opow_succ, opow_zero, mul_add_one, PNat.one_coe, succ_zero, _root_.zero_add, zero_def] · decide · exact ⟨rfl, inferInstance⟩ - · have := opow_pos (repr a') omega_pos + · have := opow_pos (repr a') omega0_pos refine - ⟨mul_isLimit this omega_isLimit, fun i => - ⟨this, ?_, fun H => @NF.oadd_zero _ _ (iha.2 H.fst)⟩, exists_lt_mul_omega'⟩ + ⟨mul_isLimit this omega0_isLimit, fun i => + ⟨this, ?_, fun H => @NF.oadd_zero _ _ (iha.2 H.fst)⟩, exists_lt_mul_omega0'⟩ rw [← mul_succ, ← natCast_succ, Ordinal.mul_lt_mul_iff_left this] - apply nat_lt_omega - · have := opow_pos (repr a') omega_pos + apply nat_lt_omega0 + · have := opow_pos (repr a') omega0_pos refine - ⟨add_isLimit _ (mul_isLimit this omega_isLimit), fun i => ⟨this, ?_, ?_⟩, - exists_lt_add exists_lt_mul_omega'⟩ + ⟨add_isLimit _ (mul_isLimit this omega0_isLimit), fun i => ⟨this, ?_, ?_⟩, + exists_lt_add exists_lt_mul_omega0'⟩ · rw [← mul_succ, ← natCast_succ, Ordinal.mul_lt_mul_iff_left this] - apply nat_lt_omega + apply nat_lt_omega0 · refine fun H => H.fst.oadd _ (NF.below_of_lt' ?_ (@NF.oadd_zero _ _ (iha.2 H.fst))) rw [repr, ← zero_def, repr, add_zero, iha.1, opow_succ, Ordinal.mul_lt_mul_iff_left this] - apply nat_lt_omega + apply nat_lt_omega0 · rcases iha with ⟨h1, h2, h3⟩ - refine ⟨opow_isLimit one_lt_omega h1, fun i => ?_, exists_lt_omega_opow' one_lt_omega h1 h3⟩ + refine ⟨opow_isLimit one_lt_omega0 h1, fun i => ?_, + exists_lt_omega0_opow' one_lt_omega0 h1 h3⟩ obtain ⟨h4, h5, h6⟩ := h2 i exact ⟨h4, h5, fun H => @NF.oadd_zero _ _ (h6 H.fst)⟩ · rcases iha with ⟨h1, h2, h3⟩ refine - ⟨add_isLimit _ (opow_isLimit one_lt_omega h1), fun i => ?_, - exists_lt_add (exists_lt_omega_opow' one_lt_omega h1 h3)⟩ + ⟨add_isLimit _ (opow_isLimit one_lt_omega0 h1), fun i => ?_, + exists_lt_add (exists_lt_omega0_opow' one_lt_omega0 h1 h3)⟩ obtain ⟨h4, h5, h6⟩ := h2 i refine ⟨h4, h5, fun H => H.fst.oadd _ (NF.below_of_lt' ?_ (@NF.oadd_zero _ _ (h6 H.fst)))⟩ rwa [repr, ← zero_def, repr, add_zero, PNat.one_coe, Nat.cast_one, mul_one, - opow_lt_opow_iff_right one_lt_omega] + opow_lt_opow_iff_right one_lt_omega0] · refine ⟨by rw [repr, ihb.1, add_succ, repr], fun H => H.fst.oadd _ (NF.below_of_lt' ?_ (ihb.2 H.snd))⟩ have := H.snd'.repr_lt diff --git a/Mathlib/SetTheory/Ordinal/Principal.lean b/Mathlib/SetTheory/Ordinal/Principal.lean index f149eea4b37a46..2835fd286b3f39 100644 --- a/Mathlib/SetTheory/Ordinal/Principal.lean +++ b/Mathlib/SetTheory/Ordinal/Principal.lean @@ -14,9 +14,9 @@ We define principal or indecomposable ordinals, and we prove the standard proper * `Principal`: A principal or indecomposable ordinal under some binary operation. We include 0 and any other typically excluded edge cases for simplicity. * `unbounded_principal`: Principal ordinals are unbounded. -* `principal_add_iff_zero_or_omega_opow`: The main characterization theorem for additive principal +* `principal_add_iff_zero_or_omega0_opow`: The main characterization theorem for additive principal ordinals. -* `principal_mul_iff_le_two_or_omega_opow_opow`: The main characterization theorem for +* `principal_mul_iff_le_two_or_omega0_opow_opow`: The main characterization theorem for multiplicative principal ordinals. ## TODO @@ -163,39 +163,51 @@ theorem principal_add_iff_add_lt_ne_self {a} : rcases exists_lt_add_of_not_principal_add ha with ⟨b, hb, c, hc, rfl⟩ exact (H b hb c hc).irrefl⟩ -theorem add_omega {a : Ordinal} (h : a < ω) : a + ω = ω := by - rcases lt_omega.1 h with ⟨n, rfl⟩ +theorem add_omega0 {a : Ordinal} (h : a < ω) : a + ω = ω := by + rcases lt_omega0.1 h with ⟨n, rfl⟩ clear h; induction' n with n IH · rw [Nat.cast_zero, zero_add] - · rwa [Nat.cast_succ, add_assoc, one_add_of_omega_le (le_refl _)] + · rwa [Nat.cast_succ, add_assoc, one_add_of_omega0_le (le_refl _)] -theorem principal_add_omega : Principal (· + ·) ω := - principal_add_iff_add_left_eq_self.2 fun _ => add_omega +@[deprecated (since := "2024-09-30")] +alias add_omega := add_omega0 -theorem add_omega_opow {a b : Ordinal} (h : a < ω ^ b) : a + ω ^ b = ω ^ b := by +theorem principal_add_omega0 : Principal (· + ·) ω := + principal_add_iff_add_left_eq_self.2 fun _ => add_omega0 + +@[deprecated (since := "2024-09-30")] +alias principal_add_omega := principal_add_omega0 + +theorem add_omega0_opow {a b : Ordinal} (h : a < ω ^ b) : a + ω ^ b = ω ^ b := by refine le_antisymm ?_ (le_add_left _ a) induction' b using limitRecOn with b _ b l IH · rw [opow_zero, ← succ_zero, lt_succ_iff, Ordinal.le_zero] at h rw [h, zero_add] · rw [opow_succ] at h - rcases (lt_mul_of_limit omega_isLimit).1 h with ⟨x, xo, ax⟩ + rcases (lt_mul_of_limit omega0_isLimit).1 h with ⟨x, xo, ax⟩ apply (add_le_add_right ax.le _).trans - rw [opow_succ, ← mul_add, add_omega xo] - · rcases (lt_opow_of_limit omega_ne_zero l).1 h with ⟨x, xb, ax⟩ - apply (((add_isNormal a).trans <| opow_isNormal one_lt_omega).limit_le l).2 + rw [opow_succ, ← mul_add, add_omega0 xo] + · rcases (lt_opow_of_limit omega0_ne_zero l).1 h with ⟨x, xb, ax⟩ + apply (((add_isNormal a).trans <| opow_isNormal one_lt_omega0).limit_le l).2 intro y yb calc a + ω ^ y ≤ a + ω ^ max x y := - add_le_add_left (opow_le_opow_right omega_pos (le_max_right x y)) _ + add_le_add_left (opow_le_opow_right omega0_pos (le_max_right x y)) _ _ ≤ ω ^ max x y := - IH _ (max_lt xb yb) <| ax.trans_le <| opow_le_opow_right omega_pos <| le_max_left x y + IH _ (max_lt xb yb) <| ax.trans_le <| opow_le_opow_right omega0_pos <| le_max_left x y _ ≤ ω ^ b := - opow_le_opow_right omega_pos <| (max_lt xb yb).le + opow_le_opow_right omega0_pos <| (max_lt xb yb).le + +@[deprecated (since := "2024-09-30")] +alias add_omega_opow := add_omega0_opow + +theorem principal_add_omega0_opow (o : Ordinal) : Principal (· + ·) (ω ^ o) := + principal_add_iff_add_left_eq_self.2 fun _ => add_omega0_opow -theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (ω ^ o) := - principal_add_iff_add_left_eq_self.2 fun _ => add_omega_opow +@[deprecated (since := "2024-09-30")] +alias principal_add_omega_opow := principal_add_omega0_opow /-- The main characterization theorem for additive principal ordinals. -/ -theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} : +theorem principal_add_iff_zero_or_omega0_opow {o : Ordinal} : Principal (· + ·) o ↔ o = 0 ∨ o ∈ Set.range (ω ^ · : Ordinal → Ordinal) := by rcases eq_or_ne o 0 with (rfl | ho) · simp only [principal_zero, Or.inl] @@ -203,12 +215,12 @@ theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} : simp only [ho, false_or] refine ⟨fun H => ⟨_, ((lt_or_eq_of_le (opow_log_le_self _ ho)).resolve_left fun h => ?_)⟩, - fun ⟨b, e⟩ => e.symm ▸ fun a => add_omega_opow⟩ + fun ⟨b, e⟩ => e.symm ▸ fun a => add_omega0_opow⟩ have := H _ h - have := lt_opow_succ_log_self one_lt_omega o - rw [opow_succ, lt_mul_of_limit omega_isLimit] at this + have := lt_opow_succ_log_self one_lt_omega0 o + rw [opow_succ, lt_mul_of_limit omega0_isLimit] at this rcases this with ⟨a, ao, h'⟩ - rcases lt_omega.1 ao with ⟨n, rfl⟩ + rcases lt_omega0.1 ao with ⟨n, rfl⟩ clear ao revert h' apply not_lt_of_le @@ -218,18 +230,21 @@ theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} : · simp [Nat.cast_zero, mul_zero, zero_add] · simp only [Nat.cast_succ, mul_add_one, add_assoc, this, IH] +@[deprecated (since := "2024-09-30")] +alias principal_add_iff_zero_or_omega_opow := principal_add_iff_zero_or_omega0_opow + theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) : Principal (· + ·) (a ^ b) := by - rcases principal_add_iff_zero_or_omega_opow.1 ha with (rfl | ⟨c, rfl⟩) + rcases principal_add_iff_zero_or_omega0_opow.1 ha with (rfl | ⟨c, rfl⟩) · rcases eq_or_ne b 0 with (rfl | hb) · rw [opow_zero] exact principal_add_one · rwa [zero_opow hb] · rw [← opow_mul] - exact principal_add_omega_opow _ + exact principal_add_omega0_opow _ theorem add_absorp {a b c : Ordinal} (h₁ : a < ω ^ b) (h₂ : ω ^ b ≤ c) : a + c = c := by - rw [← Ordinal.add_sub_cancel_of_le h₂, ← add_assoc, add_omega_opow h₁] + rw [← Ordinal.add_sub_cancel_of_le h₂, ← add_assoc, add_omega0_opow h₁] theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1) (hb : Principal (· + ·) b) : Principal (· + ·) (a * b) := by @@ -302,44 +317,59 @@ theorem principal_mul_iff_mul_left_eq {o : Ordinal} : rw [← h a ha hao] exact (mul_isNormal ha).strictMono hbo -theorem principal_mul_omega : Principal (· * ·) ω := fun a b ha hb => - match a, b, lt_omega.1 ha, lt_omega.1 hb with +theorem principal_mul_omega0 : Principal (· * ·) ω := fun a b ha hb => + match a, b, lt_omega0.1 ha, lt_omega0.1 hb with | _, _, ⟨m, rfl⟩, ⟨n, rfl⟩ => by dsimp only; rw [← natCast_mul] - apply nat_lt_omega + apply nat_lt_omega0 + +@[deprecated (since := "2024-09-30")] +alias principal_mul_omega := principal_mul_omega0 + +theorem mul_omega0 {a : Ordinal} (a0 : 0 < a) (ha : a < ω) : a * ω = ω := + principal_mul_iff_mul_left_eq.1 principal_mul_omega0 a a0 ha -theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < ω) : a * ω = ω := - principal_mul_iff_mul_left_eq.1 principal_mul_omega a a0 ha +@[deprecated (since := "2024-09-30")] +alias mul_omega := mul_omega0 -theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < ω ^ c) (hb : b < ω) : +theorem mul_lt_omega0_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < ω ^ c) (hb : b < ω) : a * b < ω ^ c := by rcases zero_or_succ_or_limit c with (rfl | ⟨c, rfl⟩ | l) · exact (lt_irrefl _).elim c0 · rw [opow_succ] at ha - rcases ((mul_isNormal <| opow_pos _ omega_pos).limit_lt omega_isLimit).1 ha with ⟨n, hn, an⟩ + rcases ((mul_isNormal <| opow_pos _ omega0_pos).limit_lt omega0_isLimit).1 ha with ⟨n, hn, an⟩ apply (mul_le_mul_right' (le_of_lt an) _).trans_lt - rw [opow_succ, mul_assoc, mul_lt_mul_iff_left (opow_pos _ omega_pos)] - exact principal_mul_omega hn hb - · rcases ((opow_isNormal one_lt_omega).limit_lt l).1 ha with ⟨x, hx, ax⟩ + rw [opow_succ, mul_assoc, mul_lt_mul_iff_left (opow_pos _ omega0_pos)] + exact principal_mul_omega0 hn hb + · rcases ((opow_isNormal one_lt_omega0).limit_lt l).1 ha with ⟨x, hx, ax⟩ refine (mul_le_mul' (le_of_lt ax) (le_of_lt hb)).trans_lt ?_ - rw [← opow_succ, opow_lt_opow_iff_right one_lt_omega] + rw [← opow_succ, opow_lt_opow_iff_right one_lt_omega0] exact l.2 _ hx -theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < ω ^ ω ^ b) : +@[deprecated (since := "2024-09-30")] +alias mul_lt_omega_opow := mul_lt_omega0_opow + +theorem mul_omega0_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < ω ^ ω ^ b) : a * ω ^ ω ^ b = ω ^ ω ^ b := by obtain rfl | b0 := eq_or_ne b 0 · rw [opow_zero, opow_one] at h ⊢ - exact mul_omega a0 h + exact mul_omega0 a0 h · apply le_antisymm · obtain ⟨x, xb, ax⟩ := - (lt_opow_of_limit omega_ne_zero (opow_isLimit_left omega_isLimit b0)).1 h + (lt_opow_of_limit omega0_ne_zero (opow_isLimit_left omega0_isLimit b0)).1 h apply (mul_le_mul_right' (le_of_lt ax) _).trans - rw [← opow_add, add_omega_opow xb] + rw [← opow_add, add_omega0_opow xb] · conv_lhs => rw [← one_mul (ω ^ _)] exact mul_le_mul_right' (one_le_iff_pos.2 a0) _ -theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (ω ^ ω ^ o) := - principal_mul_iff_mul_left_eq.2 fun _ => mul_omega_opow_opow +@[deprecated (since := "2024-09-30")] +alias mul_omega_opow_opow := mul_omega0_opow_opow + +theorem principal_mul_omega0_opow_opow (o : Ordinal) : Principal (· * ·) (ω ^ ω ^ o) := + principal_mul_iff_mul_left_eq.2 fun _ => mul_omega0_opow_opow + +@[deprecated (since := "2024-09-30")] +alias principal_mul_omega_opow_opow := principal_mul_omega0_opow_opow theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b) (ho : Principal (· * ·) (b ^ o)) : Principal (· + ·) o := by @@ -349,24 +379,30 @@ theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b) rwa [← opow_add, opow_lt_opow_iff_right hb] at this /-- The main characterization theorem for multiplicative principal ordinals. -/ -theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} : +theorem principal_mul_iff_le_two_or_omega0_opow_opow {o : Ordinal} : Principal (· * ·) o ↔ o ≤ 2 ∨ o ∈ Set.range (ω ^ ω ^ · : Ordinal → Ordinal) := by refine ⟨fun ho => ?_, ?_⟩ · rcases le_or_lt o 2 with ho₂ | ho₂ · exact Or.inl ho₂ - · rcases principal_add_iff_zero_or_omega_opow.1 (principal_add_of_principal_mul ho ho₂.ne') with - (rfl | ⟨a, rfl⟩) + · rcases principal_add_iff_zero_or_omega0_opow.1 (principal_add_of_principal_mul ho ho₂.ne') + with (rfl | ⟨a, rfl⟩) · exact (Ordinal.not_lt_zero 2 ho₂).elim - · rcases principal_add_iff_zero_or_omega_opow.1 - (principal_add_of_principal_mul_opow one_lt_omega ho) with (rfl | ⟨b, rfl⟩) + · rcases principal_add_iff_zero_or_omega0_opow.1 + (principal_add_of_principal_mul_opow one_lt_omega0 ho) with (rfl | ⟨b, rfl⟩) · simp · exact Or.inr ⟨b, rfl⟩ · rintro (ho₂ | ⟨a, rfl⟩) · exact principal_mul_of_le_two ho₂ - · exact principal_mul_omega_opow_opow a + · exact principal_mul_omega0_opow_opow a + +@[deprecated (since := "2024-09-30")] +alias principal_mul_iff_le_two_or_omega_opow_opow := principal_mul_iff_le_two_or_omega0_opow_opow -theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < ω) : ∀ {b}, ω ∣ b → a * b = b - | _, ⟨b, rfl⟩ => by rw [← mul_assoc, mul_omega a0 ha] +theorem mul_omega0_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < ω) : ∀ {b}, ω ∣ b → a * b = b + | _, ⟨b, rfl⟩ => by rw [← mul_assoc, mul_omega0 a0 ha] + +@[deprecated (since := "2024-09-30")] +alias mul_omega_dvd := mul_omega0_dvd theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b) (hb₂ : 2 < b) : a * b = b ^ succ (log b a) := by @@ -387,15 +423,21 @@ theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal /-! #### Exponential principal ordinals -/ -theorem principal_opow_omega : Principal (· ^ ·) ω := fun a b ha hb => - match a, b, lt_omega.1 ha, lt_omega.1 hb with +theorem principal_opow_omega0 : Principal (· ^ ·) ω := fun a b ha hb => + match a, b, lt_omega0.1 ha, lt_omega0.1 hb with | _, _, ⟨m, rfl⟩, ⟨n, rfl⟩ => by simp_rw [← natCast_opow] - apply nat_lt_omega + apply nat_lt_omega0 + +@[deprecated (since := "2024-09-30")] +alias principal_opow_omega := principal_opow_omega0 -theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < ω) : a ^ ω = ω := - ((opow_le_of_limit (one_le_iff_ne_zero.1 <| le_of_lt a1) omega_isLimit).2 fun _ hb => - (principal_opow_omega h hb).le).antisymm +theorem opow_omega0 {a : Ordinal} (a1 : 1 < a) (h : a < ω) : a ^ ω = ω := + ((opow_le_of_limit (one_le_iff_ne_zero.1 <| le_of_lt a1) omega0_isLimit).2 fun _ hb => + (principal_opow_omega0 h hb).le).antisymm (right_le_opow _ a1) +@[deprecated (since := "2024-09-30")] +alias opow_omega := opow_omega0 + end Ordinal diff --git a/scripts/no_lints_prime_decls.txt b/scripts/no_lints_prime_decls.txt index d66cd78fe7c09b..61a8f1beba4017 100644 --- a/scripts/no_lints_prime_decls.txt +++ b/scripts/no_lints_prime_decls.txt @@ -3514,8 +3514,8 @@ one_ne_zero' OnePoint.continuousAt_infty' OnePoint.isOpen_iff_of_mem' OnePoint.tendsto_nhds_infty' -ONote.exists_lt_mul_omega' -ONote.exists_lt_omega_opow' +ONote.exists_lt_mul_omega0' +ONote.exists_lt_omega0_opow' ONote.fastGrowing_zero' ONote.NF.below_of_lt' ONote.nf_repr_split'