From 5ddd0ae2d57a887d36d8c99db785285cbf154439 Mon Sep 17 00:00:00 2001 From: Dagur Asgeirsson Date: Fri, 4 Oct 2024 11:14:18 +0000 Subject: [PATCH] feat(CategoryTheory): lemmas about `descOfIsLeftKanExtension` for pointwise left Kan extensions (+dual) (#17383) --- .../Functor/KanExtension/Pointwise.lean | 43 +++++++++++++++++++ 1 file changed, 43 insertions(+) diff --git a/Mathlib/CategoryTheory/Functor/KanExtension/Pointwise.lean b/Mathlib/CategoryTheory/Functor/KanExtension/Pointwise.lean index cf9297f47d979..9d4cb7a6c2ea1 100644 --- a/Mathlib/CategoryTheory/Functor/KanExtension/Pointwise.lean +++ b/Mathlib/CategoryTheory/Functor/KanExtension/Pointwise.lean @@ -343,6 +343,27 @@ instance : (pointwiseLeftKanExtension L F).IsLeftKanExtension instance : HasLeftKanExtension L F := HasLeftKanExtension.mk _ (pointwiseLeftKanExtensionUnit L F) +/-- An auxiliary cocone used in the lemma `pointwiseLeftKanExtension_desc_app` -/ +@[simps] +def costructuredArrowMapCocone (G : D ⥤ H) (α : F ⟶ L ⋙ G) (Y : D) : + Cocone (CostructuredArrow.proj L Y ⋙ F) where + pt := G.obj Y + ι := { + app := fun f ↦ α.app f.left ≫ G.map f.hom + naturality := by simp [← G.map_comp] } + +@[simp] +lemma pointwiseLeftKanExtension_desc_app (G : D ⥤ H) (α : F ⟶ L ⋙ G) (Y : D) : + ((pointwiseLeftKanExtension L F).descOfIsLeftKanExtension (pointwiseLeftKanExtensionUnit L F) + G α |>.app Y) = colimit.desc _ (costructuredArrowMapCocone L F G α Y) := by + let β : L.pointwiseLeftKanExtension F ⟶ G := + { app := fun Y ↦ colimit.desc _ (costructuredArrowMapCocone L F G α Y) } + have h : (pointwiseLeftKanExtension L F).descOfIsLeftKanExtension + (pointwiseLeftKanExtensionUnit L F) G α = β := by + apply hom_ext_of_isLeftKanExtension (α := pointwiseLeftKanExtensionUnit L F) + aesop + exact NatTrans.congr_app h Y + variable {F L} /-- If `F` admits a pointwise left Kan extension along `L`, then any left Kan extension of `F` @@ -421,6 +442,28 @@ instance : (pointwiseRightKanExtension L F).IsRightKanExtension instance : HasRightKanExtension L F := HasRightKanExtension.mk _ (pointwiseRightKanExtensionCounit L F) +/-- An auxiliary cocone used in the lemma `pointwiseRightKanExtension_lift_app` -/ +@[simps] +def structuredArrowMapCone (G : D ⥤ H) (α : L ⋙ G ⟶ F) (Y : D) : + Cone (StructuredArrow.proj Y L ⋙ F) where + pt := G.obj Y + π := { + app := fun f ↦ G.map f.hom ≫ α.app f.right + naturality := by simp [← α.naturality, ← G.map_comp_assoc] } + +@[simp] +lemma pointwiseRightKanExtension_lift_app (G : D ⥤ H) (α : L ⋙ G ⟶ F) (Y : D) : + ((pointwiseRightKanExtension L F).liftOfIsRightKanExtension + (pointwiseRightKanExtensionCounit L F) G α |>.app Y) = + limit.lift _ (structuredArrowMapCone L F G α Y) := by + let β : G ⟶ L.pointwiseRightKanExtension F := + { app := fun Y ↦ limit.lift _ (structuredArrowMapCone L F G α Y) } + have h : (pointwiseRightKanExtension L F).liftOfIsRightKanExtension + (pointwiseRightKanExtensionCounit L F) G α = β := by + apply hom_ext_of_isRightKanExtension (α := pointwiseRightKanExtensionCounit L F) + aesop + exact NatTrans.congr_app h Y + variable {F L} /-- If `F` admits a pointwise right Kan extension along `L`, then any right Kan extension of `F`