diff --git a/Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean b/Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean index b7ea5c807bd4d..94e639487495f 100644 --- a/Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean +++ b/Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean @@ -92,7 +92,7 @@ lemma hasSum_mellin_pi_mul₀ {a : ι → ℂ} {p : ι → ℝ} {F : ℝ → ℂ let a' i := if p i = 0 then 0 else a i have hp' i : a' i = 0 ∨ 0 < p i := by simp only [a'] - split_ifs with h <;> tauto + split_ifs with h <;> try tauto exact Or.inr (lt_of_le_of_ne (hp i) (Ne.symm h)) have (i t) : (if p i = 0 then 0 else a i * rexp (-π * p i * t)) = a' i * rexp (-π * p i * t) := by