From 3cb89c328a3be1d4d56c44f08b4c8cb3adfdab1b Mon Sep 17 00:00:00 2001 From: Michael Rothgang Date: Sat, 7 Sep 2024 09:53:16 +0200 Subject: [PATCH] RFC: fix checkUnivs linter --- Mathlib/Geometry/Manifold/Bordisms.lean | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/Mathlib/Geometry/Manifold/Bordisms.lean b/Mathlib/Geometry/Manifold/Bordisms.lean index a6f7ea3657741..b82bd7ca80627 100644 --- a/Mathlib/Geometry/Manifold/Bordisms.lean +++ b/Mathlib/Geometry/Manifold/Bordisms.lean @@ -48,21 +48,22 @@ open FiniteDimensional Set noncomputable section +universe u in /-- A **singular `n`-manifold** on a topological space `X`, for `n ∈ ℕ`, is a pair `(M,f)` of a closed `n`-dimensional smooth manifold `M` together with a continuous map `M → X`. -/ structure SingularNManifold (X : Type*) [TopologicalSpace X] (n : ℕ) where /-- The normed space on which the manifold `M` is modeled. -/ - E : Type* + E : Type u /-- `E` is normed (additive) abelian group -/ [normedAddCommGroup : NormedAddCommGroup E] /-- `E` is a real normed space -/ [normedSpace: NormedSpace ℝ E] /-- The smooth manifold `M` of a singular `n`-manifold `(M,f)` -/ - M : Type* + M : Type u /-- The smooth manifold `M` is a topological space -/ [topSpaceM : TopologicalSpace M] /-- The topological space on which the manifold `M` is modeled -/ - H : Type* + H : Type u /-- `H` is a topological space -/ [topSpaceH : TopologicalSpace H] /-- The smooth manifold `M` is a charted space over `H` -/ @@ -128,14 +129,15 @@ lemma map_comp (s : SingularNManifold X n) rfl -- Let M, M' and W be smooth manifolds. -variable {E E' E'' E''' H H' H'' H''' : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] +universe u +variable {E E' E'' E''' H H' H'' H''' : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup E'] [NormedSpace ℝ E'] [NormedAddCommGroup E''] [NormedSpace ℝ E''] [NormedAddCommGroup E'''] [NormedSpace ℝ E'''] [TopologicalSpace H] [TopologicalSpace H'] [TopologicalSpace H''] [TopologicalSpace H'''] -variable {M : Type*} [TopologicalSpace M] [ChartedSpace H M] +variable {M : Type u} [TopologicalSpace M] [ChartedSpace H M] {I : ModelWithCorners ℝ E H} [SmoothManifoldWithCorners I M] - {M' : Type*} [TopologicalSpace M'] [ChartedSpace H' M'] + {M' : Type u} [TopologicalSpace M'] [ChartedSpace H' M'] {I' : ModelWithCorners ℝ E' H'} [SmoothManifoldWithCorners I' M'] {n : ℕ} [BoundarylessManifold I M] [CompactSpace M] [FiniteDimensional ℝ E] [BoundarylessManifold I' M'] [CompactSpace M'] [FiniteDimensional ℝ E'] @@ -171,7 +173,7 @@ lemma comap_f [Fact (finrank ℝ E = n)] variable (M) in /-- The canonical singular `n`-manifold associated to the empty set (seen as an `n`-dimensional manifold, i.e. modelled on an `n`-dimensional space). -/ -def empty [h: Fact (finrank ℝ E = n)] (M : Type*) [TopologicalSpace M] [ChartedSpace H M] +def empty [h: Fact (finrank ℝ E = n)] (M : Type u) [TopologicalSpace M] [ChartedSpace H M] {I : ModelWithCorners ℝ E H} [SmoothManifoldWithCorners I M] [IsEmpty M] : SingularNManifold X n where M := M